Skip to content
2000
image of The Anti-Leukemic Activities of Campesterol and Α-Tocopherol Against BCL-2 Target through Computational Drug Design Approaches

Abstract

Introduction

Heterogeneous Acute Myeloid Leukemia (AML) causes substantial worldwide morbidity and death. AML is characterized by excessive proliferation of immature myeloid cells in the bone marrow and impaired apoptotic regulator expression.

Method

B-Cell Lymphoma 2 (BCL-2), an anti-apoptotic protein overexpressed in AML, promotes leukemic cell survival and chemoresistance. Thus, reducing BCL-2 may treat AML. Anticancer activities are found in Aloe barbadensis Miller (Aloe vera). Thus, this work used molecular modeling to assess Aloe vera bioactive chemicals as BCL-2 inhibitors. Molecular docking simulation showed that all identified Aloe vera phytocompounds have strong BCL-2 binding affinities (-6.7 to -8.7 kcal/mol).

Result

Campesterol and α-tocopherol were identified as promising compounds for BCL-2 inhibitor research based on their drug-likeness, pharmacokinetics, and toxicity profiles. The stability and conformational of the BCL-2-compound complexes showed that the compounds were stable in BCL-2's binding pocket.

Conclusion

Campesterol and α-tocopherol are promising BCL-2 inhibitors that might become effective anti-leukemic therapies with additional and research.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266316570240926081647
2024-10-15
2024-11-21
Loading full text...

Full text loading...

References

  1. Arnone M. Konantz M. Hanns P. Paczulla Stanger A.M. Bertels S. Godavarthy P.S. Christopeit M. Lengerke C. Acute myeloid leukemia stem cells: The challenges of phenotypic heterogeneity. Cancers (Basel) 2020 12 12 3742 10.3390/cancers12123742 33322769
    [Google Scholar]
  2. Behrmann L. Wellbrock J. Fiedler W. Acute myeloid leukemia and the bone marrow niche—Take a closer look. Front. Oncol. 2018 8 444 10.3389/fonc.2018.00444 30370251
    [Google Scholar]
  3. Grove C.S. Vassiliou G.S. Acute myeloid leukaemia: A paradigm for the clonal evolution of cancer? Dis. Model. Mech. 2014 7 8 941 951 10.1242/dmm.015974 25056697
    [Google Scholar]
  4. Lagunas-Rangel F.A. Chávez-Valencia V. Gómez-Guijosa M.Á. Cortes-Penagos C. Acute myeloid leukemia—genetic alterations and their clinical prognosis. Int. J. Hematol. Oncol. Stem Cell Res. 2017 11 4 328 339 29340131
    [Google Scholar]
  5. Thomas X. First contributors in the history of leukemia. World J. Hepatol. 2013 2 3 62 70 10.5315/wjh.v2.i3.62
    [Google Scholar]
  6. Ho T.C. LaMere M. Stevens B.M. Ashton J.M. Myers J.R. O’Dwyer K.M. Liesveld J.L. Mendler J.H. Guzman M. Morrissette J.D. Zhao J. Wang E.S. Wetzler M. Jordan C.T. Becker M.W. Evolution of acute myelogenous leukemia stem cell properties after treatment and progression. Blood 2016 128 13 1671 1678 10.1182/blood‑2016‑02‑695312 27421961
    [Google Scholar]
  7. Bejar R. Steensma D.P. Myelodysplastic syndromes. Williams Hematology Mc Graw Hill 2016
    [Google Scholar]
  8. Linet M.S. Dores G.M. Kim C.J. Devesa S.S. Morton L.M. Epidemiology and Hereditary Aspects of Acute Leukemia. Neoplastic Diseases of the Blood. Wiernik P. Goldman J. Dutcher J. Kyle R. New York, NY Springer 2013 10.1007/978‑1‑4614‑3764‑2_15
    [Google Scholar]
  9. Shipley J.L. Butera J.N. Acute myelogenous leukemia. Exp. Hematol. 2009 37 6 649 658 10.1016/j.exphem.2009.04.002 19463767
    [Google Scholar]
  10. Masoumi-Dehshiri R. Hashemi A. Neamatzadeh H. Zare-Zardeini H. A case report: Acute myeloid leukemia (FAB M7). Iran. J. Ped. Hematol. Oncol. 2014 4 4 188 190 25598960
    [Google Scholar]
  11. Zaidi S.Z. Owaidah T. Al Sharif F. Ahmed S.Y. Chaudhri N. Aljurf M. The challenge of risk stratification in acute myeloid leukemia with normal karyotype. Hematol. Oncol. Stem Cell Ther. 2008 1 3 141 158 10.1016/S1658‑3876(08)50023‑9 20063545
    [Google Scholar]
  12. Saultz J. Garzon R. Acute myeloid leukemia: A concise review. J. Clin. Med. 2016 5 3 33 10.3390/jcm5030033 26959069
    [Google Scholar]
  13. De Kouchkovsky I. Abdul-Hay M. Acute myeloid leukemia: A comprehensive review and 2016 update. Blood Cancer J. 2016 6 7 e441 e441 10.1038/bcj.2016.50 27367478
    [Google Scholar]
  14. Zhou J. Zhang T. Xu Z. Gu Y. Ma J. Li X. Guo H. Wen X. Zhang W. Yang L. Liu X. Lin J. Qian J. BCL2 overexpression: Clinical implication and biological insights in acute myeloid leukemia. Diagn. Pathol. 2019 14 1 68 10.1186/s13000‑019‑0841‑1 31253168
    [Google Scholar]
  15. Wei A.H. Tiong I.S. Midostaurin, enasidenib, CPX-351, gemtuzumab ozogamicin, and venetoclax bring new hope to AML. Blood 2017 130 23 2469 2474 10.1182/blood‑2017‑08‑784066 29051180
    [Google Scholar]
  16. Wei Y. Cao Y. Sun R. Cheng L. Xiong X. Jin X. He X. Lu W. Zhao M. Targeting Bcl-2 proteins in acute myeloid leukemia. Front. Oncol. 2020 10 584974 10.3389/fonc.2020.584974 33251145
    [Google Scholar]
  17. Sánchez M. González-Burgos E. Iglesias I. Gómez-Serranillos M.P. Pharmacological update properties of Aloe vera and its major active constituents. Molecules 2020 25 6 1324 10.3390/molecules25061324 32183224
    [Google Scholar]
  18. Berman H.M. Westbrook J. Feng Z. Gilliland G. Bhat T.N. Weissig H. Shindyalov I.N. Bourne P.E. The protein data bank. Nucleic Acids Res. 2000 28 1 235 242 10.1093/nar/28.1.235 10592235
    [Google Scholar]
  19. Oltersdorf T. Elmore S.W. Shoemaker A.R. Armstrong R.C. Augeri D.J. Belli B.A. Bruncko M. Deckwerth T.L. Dinges J. Hajduk P.J. Joseph M.K. Kitada S. Korsmeyer S.J. Kunzer A.R. Letai A. Li C. Mitten M.J. Nettesheim D.G. Ng S. Nimmer P.M. O’Connor J.M. Oleksijew A. Petros A.M. Reed J.C. Shen W. Tahir S.K. Thompson C.B. Tomaselli K.J. Wang B. Wendt M.D. Zhang H. Fesik S.W. Rosenberg S.H. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 2005 435 7042 677 681 10.1038/nature03579 15902208
    [Google Scholar]
  20. Pettersen E.F. Goddard T.D. Huang C.C. Couch G.S. Greenblatt D.M. Meng E.C. Ferrin T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004 25 13 1605 1612 10.1002/jcc.20084 15264254
    [Google Scholar]
  21. Trott O. Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010 31 2 455 461 10.1002/jcc.21334 19499576
    [Google Scholar]
  22. Cheng F. Li W. Zhou Y. Shen J. Wu Z. Liu G. Lee P.W. Tang Y. admetSAR: A Comprehensive Source and Free Tool for Assessment of Chemical ADMET Properties. J. Chem. Inf. Model. 2012 52 11 3099 3105 10.1021/ci300367a.
    [Google Scholar]
  23. Srivastava N. Garg P. Srivastava P. Seth P.K. A molecular dynamics simulation study of the ACE2 receptor with screened natural inhibitors to identify novel drug candidate against COVID-19. PeerJ 2021 9 e11171 10.7717/peerj.11171 33981493
    [Google Scholar]
  24. Tutumlu G. Dogan B. Avsar T. Orhan M.D. Calis S. Durdagi S. Integrating ligand and target-driven based virtual screening approaches with in vitro human cell line models and time-resolved fluorescence resonance energy transfer assay to identify novel hit compounds against BCL-2. Front Chem. 2020 8 167 10.3389/fchem.2020.00167 32328476
    [Google Scholar]
  25. Nordin N. Abd Ghani M.F. Othman R. Molecular docking study of naturally derived flavonoids with antiapoptotic BCL-2 and BCL-XL proteins toward ovarian cancer treatment. J. Pharm. Bioallied Sci. 2020 12 6 676 10.4103/jpbs.JPBS_272_19 33828360
    [Google Scholar]
  26. Umar A.B. Uzairu A. Shallangwa G.A. Uba S. Ligand-based drug design and molecular docking simulation studies of some novel anticancer compounds on MALME-3M melanoma cell line. Egypt. J. Med. Hum. Genet. 2021 22 1 15
    [Google Scholar]
  27. Bot A. Phytosterols. Reference Module in Food Science Elsevier 2018
    [Google Scholar]
  28. Shahzad N. Khan W. Md S. Ali A. Saluja S.S. Sharma S. Al-Allaf F.A. Abduljaleel Z. Ibrahim I.A.A. Abdel-Wahab A.F. Afify M.A. Al-Ghamdi S.S. Phytosterols as a natural anticancer agent: Current status and future perspective. Biomed. Pharmacother. 2017 88 786 794 10.1016/j.biopha.2017.01.068 28157655
    [Google Scholar]
  29. Adewole K.E. Ishola A.A. Phytosterols and triterpenes from Morinda lucida Benth ( Rubiaceae ) as potential inhibitors of anti-apoptotic BCL-XL, BCL-2, and MCL-1: An in-silico study. J. Recept. Signal Transduct. Res. 2019 39 1 87 97 10.1080/10799893.2019.1625062 31215288
    [Google Scholar]
  30. Engin K.N. Alpha-tocopherol: Looking beyond an antioxidant. Mol. Vis. 2009 15 855 860 19390643
    [Google Scholar]
  31. Lin L. Wong H. Predicting oral drug absorption: Mini review on physiologically-based pharmacokinetic models. Pharmaceutics 2017 9 4 41 10.3390/pharmaceutics9040041 28954416
    [Google Scholar]
  32. Leclerc M. Dudonné S. Calon F. Can Natural Products Exert Neuroprotection without Crossing the Blood–Brain Barrier? Int. J. Mol. Sci. 2021 22 7 3356 10.3390/ijms22073356 33805947
    [Google Scholar]
  33. Esteves F. Rueff J. Kranendonk M. The central role of cytochrome P450 in xenobiotic metabolism—A brief review on a fascinating enzyme family. J. Xenobiot. 2021 11 3 94 114 10.3390/jox11030007 34206277
    [Google Scholar]
  34. Ogu C.C. Maxa J.L. Drug interactions due to cytochrome P450. Proc (Bayl Univ Med Cent) 2000 13 4 421 3 10.1080/08998280.2000.11927719
    [Google Scholar]
  35. Lee H.M. Yu M.S. Kazmi S.R. Oh S.Y. Rhee K.H. Bae M.A. Lee B.H. Shin D.S. Oh K.S. Ceong H. Lee D. Na D. Computational determination of hERG-related cardiotoxicity of drug candidates. BMC Bioinformatics 2019 20 S10 250 10.1186/s12859‑019‑2814‑5 31138104
    [Google Scholar]
  36. Bergström C.A.S. Larsson P. Computational prediction of drug solubility in water-based systems: Qualitative and quantitative approaches used in the current drug discovery and development setting. Int. J. Pharm. 2018 540 1-2 185 193 10.1016/j.ijpharm.2018.01.044 29421301
    [Google Scholar]
  37. Savjani K.T. Gajjar A.K. Savjani J.K. Drug solubility: Importance and enhancement techniques. ISRN Pharm 2012 2012 195727 10.5402/2012/195727.
    [Google Scholar]
  38. Cavasotto C.N. Aucar M.G. Adler N.S. Computational chemistry in drug lead discovery and design. Int. J. Quantum Chem. 2019 119 2 e25678 10.1002/qua.25678
    [Google Scholar]
  39. Salo-Ahen O.M.H. Alanko I. Bhadane R. Bonvin A.M.J.J. Honorato R.V. Hossain S. Juffer A.H. Kabedev A. Lahtela-Kakkonen M. Larsen A.S. Lescrinier E. Marimuthu P. Mirza M.U. Mustafa G. Nunes-Alves A. Pantsar T. Saadabadi A. Singaravelu K. Vanmeert M. Molecular dynamics simulations in drug discovery and pharmaceutical development. Processes (Basel) 2020 9 1 71 10.3390/pr9010071
    [Google Scholar]
  40. Du X. Li Y. Xia Y.L. Ai S.M. Liang J. Sang P. Ji X.L. Liu S.Q. Insights into protein–ligand interactions: Mechanisms, models, and methods. Int. J. Mol. Sci. 2016 17 2 144 10.3390/ijms17020144 26821017
    [Google Scholar]
  41. Hollingsworth S.A. Dror R.O. Molecular dynamics simulation for all. Neuron 2018 99 6 1129 1143 10.1016/j.neuron.2018.08.011 30236283
    [Google Scholar]
  42. do Carmo A.L. Bettanin F. Oliveira Almeida M. Pantaleão S.Q. Rodrigues T. Homem-de-Mello P. Honorio K.M. Competition between phenothiazines and BH3 peptide for the binding site of the antiapoptotic BCL-2 protein. Front Chem. 2020 8 235 10.3389/fchem.2020.00235 32309275
    [Google Scholar]
  43. Patel C.N. Kumar S.P. Pandya H.A. Rawal R.M. Identification of potential inhibitors of coronavirus hemagglutinin-esterase using molecular docking, molecular dynamics simulation and binding free energy calculation. Mol. Divers. 2021 25 1 421 433 10.1007/s11030‑020‑10135‑w 32996011
    [Google Scholar]
  44. Sharma N. Gupta N. Orfali R. Kumar V. Patel C.N. Peng J. Perveen S. Evaluation of the Antifungal, Antioxidant, and Anti-Diabetic Potential of the Essential Oil of Curcuma longa Leaves from the North-Western Himalayas by In Vitro and In Silico Analysis. Molecules 2022 27 22 7664 10.3390/molecules27227664 36431765
    [Google Scholar]
  45. Mishra C.B. Pandey P. Sharma R.D. Malik M.Z. Mongre R.K. Lynn A.M. Prasad R. Jeon R. Prakash A. Identifying the natural polyphenol catechin as a multi-targeted agent against SARS-CoV-2 for the plausible therapy of COVID-19: An integrated computational approach. Brief. Bioinform. 2021 22 2 1346 1360 10.1093/bib/bbaa378 33386025
    [Google Scholar]
  46. Gowtham H.G. Ahmed F. Anandan S. Shivakumara C.S. Bilagi A. Pradeep S. Shivamallu C. Shati A.A. Alfaifi M.Y. Elbehairi S.E.I. Achar R.R. Silina E. Stupin V. Murali M. Kollur S.P. In silico computational studies of bioactive secondary metabolites from wedelia trilobata against anti-apoptotic B-cell lymphoma-2 (Bcl-2) protein associated with cancer cell survival and resistance. Molecules 2023 28 4 1588 10.3390/molecules28041588 36838574
    [Google Scholar]
  47. Wakui N. Yoshino R. Yasuo N. Ohue M. Sekijima M. Exploring the selectivity of inhibitor complexes with Bcl-2 and Bcl-XL: A molecular dynamics simulation approach. J. Mol. Graph. Model. 2018 79 166 174 10.1016/j.jmgm.2017.11.011 29197725
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266316570240926081647
Loading
/content/journals/ctmc/10.2174/0115680266316570240926081647
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: BCL-2 ; Molecular dynamics simulations ; Aloe vera ; Bioactives ; In silico ; Acute Myeloid Leukaemia
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test