Skip to content
2000
image of Strategies in Parkinson's Disease Therapeutics - A Need for Synergy of Ayurveda, Small Molecules and Nanoparticles aided Approaches

Abstract

Despite extensive research, there is an unmet need for developing disease-modifying therapies for Parkinson’s disease (PD). Failure of certain landmark clinical trials has highlighted the need for a better understanding of the disease pathogenesis as well as identifying the hurdles in developing drug candidates and designing clinical trials. While adhering to these needs, several promising trials are currently underway with the hope of developing reliable targets. There is also a need to conduct research on plant-based natural products and use them as therapeutic candidates for PD. In this context, many studies have demonstrated the efficacy of medicinal plants and their principal phytochemicals. This review provides an update on the presently underway clinical trials with a small emphasis on the disease modifying therapies that target small molecules, mitochondria, and oligodendrocytes. The role of ethnopharmacology-based approaches for treatment of PD has also been discussed. The third aspect of the article considers the importance of nanomedicine in this area, including the use of liposomes and nanoparticles to provide a novel approach for the treatment of PD.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266314877241105051752
2024-11-27
2024-12-26
Loading full text...

Full text loading...

References

  1. Braak H. Del Tredici K. Neuroanatomy and pathology of sporadic parkinson’s disease. Adv. Anat. Embryol. Cell Biol. 2009 201 1 119 19230552
    [Google Scholar]
  2. Vijiaratnam N. Simuni T. Bandmann O. Morris H.R. Foltynie T. Progress towards therapies for disease modification in parkinson’s disease. Lancet Neurol. 2021 20 7 559 572 10.1016/S1474‑4422(21)00061‑2 34146514
    [Google Scholar]
  3. Willis A.W. Roberts E. Beck J.C. Fiske B. Ross W. Savica R. Van Den Eeden S.K. Tanner C.M. Marras C. Alcalay R. Schwarzschild M. Racette B. Chen H. Church T. Wilson B. Doria J.M. Incidence of parkinson disease in North America. NPJ Parkinsons Dis. 2022 8 1 170 10.1038/s41531‑022‑00410‑y
    [Google Scholar]
  4. Ou Z. Pan J. Tang S. Duan D. Yu D. Nong H. Wang Z. Global trends in the incidence, prevalence, and years lived with disability of parkinson’s disease in 204 countries/territories from 1990 to 2019. Front. Public Health 2021 9 776847 10.3389/fpubh.2021.776847 34950630
    [Google Scholar]
  5. Athauda D. Maclagan K. Skene S.S. Bajwa-Joseph M. Letchford D. Chowdhury K. Hibbert S. Budnik N. Zampedri L. Dickson J. Li Y. Aviles-Olmos I. Warner T.T. Limousin P. Lees A.J. Greig N.H. Tebbs S. Foltynie T. Exenatide once weekly versus placebo in parkinson’s disease: A randomised, double-blind, placebo-controlled trial. Lancet 2017 390 10103 1664 1675 10.1016/S0140‑6736(17)31585‑4 28781108
    [Google Scholar]
  6. Eggert K. Squillacote D. Barone P. Dodel R. Katzenschlager R. Emre M. Lees A.J. Rascol O. Poewe W. Tolosa E. Trenkwalder C. Onofrj M. Stocchi F. Nappi G. Kostic V. Potic J. Ruzicka E. Oertel W. Safety and efficacy of perampanel in advanced Parkinson’s disease: A randomized, placebo-controlled study. Mov. Disord. 2010 25 7 896 905 10.1002/mds.22974 20461807
    [Google Scholar]
  7. LeWitt P.A. Levodopa therapy for Parkinson’s disease: Pharmacokinetics and pharmacodynamics. Mov. Disord. 2015 30 1 64 72 10.1002/mds.26082 25449210
    [Google Scholar]
  8. Lees A.J. Ferreira J. Rascol O. Poewe W. Rocha J.F. McCrory M. Soares-da-Silva P. Opicapone as adjunct to levodopa therapy in patients with parkinson disease and motor fluctuations: A randomized clinical trial. JAMA Neurol. 2017 74 2 197 206 10.1001/jamaneurol.2016.4703 28027332
    [Google Scholar]
  9. Rinne U.K. Larsen J.P. Siden Å. Worm-Petersen J. Nomecomt Study Group Entacapone enhances the response to levodopa in parkinsonian patients with motor fluctuations. Neurology 1998 51 5 1309 1314 10.1212/WNL.51.5.1309 9818851
    [Google Scholar]
  10. Armstrong M.J. Okun M.S. Diagnosis and treatment of parkinson disease: A review. JAMA 2020 323 6 548 560 10.1001/jama.2019.22360 32044947
    [Google Scholar]
  11. Nijhuis F.A.P. Esselink R. de Bie R.M.A. Groenewoud H. Bloem B.R. Post B. Meinders M.J. Translating evidence to advanced parkinson’s disease patients: A systematic review and meta‐analysis. Mov. Disord. 2021 36 6 1293 1307 10.1002/mds.28599 33797786
    [Google Scholar]
  12. Pardo-Moreno T. García-Morales V. Suleiman-Martos S. Rivas-Domínguez A. Mohamed-Mohamed H. Ramos-Rodríguez J.J. Melguizo-Rodríguez L. González-Acedo A. Current treatments and new, tentative therapies for parkinson’s disease. Pharmaceutics 2023 15 3 770 10.3390/pharmaceutics15030770 36986631
    [Google Scholar]
  13. Beaney A. Trials to watch: Pipeline parkinson’s drugs could revolutionise treatment 2023 Available from: https://www.clinicaltrialsarena.com/features/trials-to-watch-parkinsons-disease/ 2023
  14. Bezard E. Gray D. Kozak R. Leoni M. Combs C. Duvvuri S. Rationale and development of Tavapadon, a D1/D5-Selective partial dopamine agonist for the treatment of parkinson's disease. CNS Neurol Disord Drug Targets. 2024 23 4 476 487
    [Google Scholar]
  15. LeWitt P.A. Kymes S. Hauser R.A. Parkinson disease and orthostatic hypotension in the elderly: Recognition and management of risk factors for falls. Aging Dis. 2020 11 3 679 691 10.14336/AD.2019.0805 32489712
    [Google Scholar]
  16. Alladi P.A. Mahadevan A. Vijayalakshmi K. Muthane U. Shankar S.K. Raju T.R. Ageing enhances α-synuclein, ubiquitin and endoplasmic reticular stress protein expression in the nigral neurons of Asian Indians. Neurochem. Int. 2010 57 5 530 539 10.1016/j.neuint.2010.06.018 20615443
    [Google Scholar]
  17. Castonguay A.M. Gravel C. Lévesque M. Treating parkinson’s disease with antibodies: Previous studies and future directions. J. Parkinsons Dis. 2021 11 1 71 92 10.3233/JPD‑202221 33104039
    [Google Scholar]
  18. Suresh S.N. Chavalmane A.K. Pillai M. Ammanathan V. Vidyadhara D.J. Yarreiphang H. Rai S. Paul A. Clement J.P. Alladi P.A. Manjithaya R. Modulation of autophagy by a small molecule inverse agonist of ERRα is neuroprotective. Front. Mol. Neurosci. 2018 11 109 10.3389/fnmol.2018.00109 29686608
    [Google Scholar]
  19. Suresh S.N. Chavalmane A.K. Dj V. Yarreiphang H. Rai S. Paul A. Clement J.P. Alladi P.A. Manjithaya R. A novel autophagy modulator 6-Bio ameliorates SNCA/α-synuclein toxicity. Autophagy 2017 13 7 1221 1234 10.1080/15548627.2017.1302045 28350199
    [Google Scholar]
  20. Sn S. Pandurangi J. Murumalla R. Dj V. Garimella L. Acharya A. Rai S. Paul A. Yarreiphang H. Pillai M.S. Giridharan M. Clement J.P. Alladi P.A. Saiyed T. Manjithaya R. Small molecule modulator of aggrephagy regulates neuroinflammation to curb pathogenesis of neurodegeneration. EBioMedicine 2019 50 260 273 10.1016/j.ebiom.2019.10.036 31727601
    [Google Scholar]
  21. Wagner J. Ryazanov S. Leonov A. Levin J. Shi S. Schmidt F. Prix C. Pan-Montojo F. Bertsch U. Mitteregger-Kretzschmar G. Geissen M. Eiden M. Leidel F. Hirschberger T. Deeg A.A. Krauth J.J. Zinth W. Tavan P. Pilger J. Zweckstetter M. Frank T. Bähr M. Weishaupt J.H. Uhr M. Urlaub H. Teichmann U. Samwer M. Bötzel K. Groschup M. Kretzschmar H. Griesinger C. Giese A. Anle138b: A novel oligomer modulator for disease-modifying therapy of neurodegenerative diseases such as prion and parkinson’s disease. Acta Neuropathol. 2013 125 6 795 813 10.1007/s00401‑013‑1114‑9 23604588
    [Google Scholar]
  22. Emin D. Zhang Y.P. Lobanova E. Miller A. Li X. Xia Z. Dakin H. Sideris D.I. Lam J.Y.L. Ranasinghe R.T. Kouli A. Zhao Y. De S. Knowles T.P.J. Vendruscolo M. Ruggeri F.S. Aigbirhio F.I. Williams-Gray C.H. Klenerman D. Small soluble α-synuclein aggregates are the toxic species in parkinson’s disease. Nat. Commun. 2022 13 1 5512 10.1038/s41467‑022‑33252‑6 36127374
    [Google Scholar]
  23. Wegrzynowicz M. Bar-On D. Calo’ L. Anichtchik O. Iovino M. Xia J. Ryazanov S. Leonov A. Giese A. Dalley J.W. Griesinger C. Ashery U. Spillantini M.G. Depopulation of dense α-synuclein aggregates is associated with rescue of dopamine neuron dysfunction and death in a new parkinson’s disease model. Acta Neuropathol. 2019 138 4 575 595 10.1007/s00401‑019‑02023‑x 31165254
    [Google Scholar]
  24. McFarthing K. Buff S. Rafaloff G. Fiske B. Mursaleen L. Fuest R. Wyse R. K. Stott S. R. Parkinson's disease drug therapies in the clinical trial pipeline: 2023 update. J Parkinsons Dis. 2023 13 4 427 439
    [Google Scholar]
  25. D’Urso G. Thomann A.E. Anzures-Cabrera J. Zinnhardt B. Ricci B. Marchesi M. Machado V. Mracsko E.Z. Pavese N. Marek K. Brockmann K. Simuni T. Milani Muelhardt N. Pagano G. A Phase 1b study to test the safety, pharmacokinetics, and pharmacodynamics of a novel inflammasome inhibitor in early-stage parkinson’s disease: Rationale and study design 2022 International Congress 111 RIVER ST, HOBOKEN, 2022 , Vol. 37, pp. S326-S326
    [Google Scholar]
  26. Olson K.E. Namminga K.L. Lu Y. Schwab A.D. Thurston M.J. Abdelmoaty M.M. Kumar V. Wojtkiewicz M. Obaro H. Santamaria P. Mosley R.L. Gendelman H.E. Safety, tolerability, and immune-biomarker profiling for year-long sargramostim treatment of parkinson’s disease. EBioMedicine 2021 67 103380 10.1016/j.ebiom.2021.103380 34000620
    [Google Scholar]
  27. Getchell K. Promising disease-modifying therapies in parkinson disease. Sci Transl Med. 2023 11 520 eaba1659
    [Google Scholar]
  28. Brakedal B. Dölle C. Riemer F. Ma Y. Nido G.S. Skeie G.O. Craven A.R. Schwarzlmüller T. Brekke N. Diab J. Sverkeli L. Skjeie V. Varhaug K. Tysnes O.B. Peng S. Haugarvoll K. Ziegler M. Grüner R. Eidelberg D. Tzoulis C. The NADPARK study: A randomized phase I trial of nicotinamide riboside supplementation in parkinson’s disease. Cell Metab. 2022 34 3 396 407.e6 10.1016/j.cmet.2022.02.001 35235774
    [Google Scholar]
  29. Nalls M.A. Blauwendraat C. Vallerga C.L. Heilbron K. Bandres-Ciga S. Chang D. Tan M. Kia D.A. Noyce A.J. Xue A. Bras J. Young E. von Coelln R. Simón-Sánchez J. Schulte C. Sharma M. Krohn L. Pihlstrøm L. Siitonen A. Iwaki H. Leonard H. Faghri F. Gibbs J.R. Hernandez D.G. Scholz S.W. Botia J.A. Martinez M. Corvol J.C. Lesage S. Jankovic J. Shulman L.M. Sutherland M. Tienari P. Majamaa K. Toft M. Andreassen O.A. Bangale T. Brice A. Yang J. Gan-Or Z. Gasser T. Heutink P. Shulman J.M. Wood N.W. Hinds D.A. Hardy J.A. Morris H.R. Gratten J. Visscher P.M. Graham R.R. Singleton A.B. Adarmes-Gómez A.D. Aguilar M. Aitkulova A. Akhmetzhanov V. Alcalay R.N. Alvarez I. Alvarez V. Bandres-Ciga S. Barrero F.J. Bergareche Yarza J.A. Bernal-Bernal I. Billingsley K. Blauwendraat C. Blazquez M. Bonilla-Toribio M. Botía J.A. Boungiorno M.T. Bras J. Brice A. Brockmann K. Bubb V. Buiza-Rueda D. Cámara A. Carrillo F. Carrión-Claro M. Cerdan D. Chelban V. Clarimón J. Clarke C. Compta Y. Cookson M.R. Corvol J-C. Craig D.W. Danjou F. Diez-Fairen M. Dols-Icardo O. Duarte J. Duran R. Escamilla-Sevilla F. Escott-Price V. Ezquerra M. Faghri F. Feliz C. Fernández M. Fernández-Santiago R. Finkbeiner S. Foltynie T. Gan-Or Z. Garcia C. García-Ruiz P. Gasser T. Gibbs J.R. Gomez Heredia M.J. Gómez-Garre P. González M.M. Gonzalez-Aramburu I. Guelfi S. Guerreiro R. Hardy J. Hassin-Baer S. Hernandez D.G. Heutink P. Hoenicka J. Holmans P. Houlden H. Infante J. Iwaki H. Jesús S. Jimenez-Escrig A. Kaishybayeva G. Kaiyrzhanov R. Karimova A. Kia D.A. Kinghorn K.J. Koks S. Krohn L. Kulisevsky J. Labrador-Espinosa M.A. Leonard H.L. Lesage S. Lewis P. Lopez-Sendon J.L. Lovering R. Lubbe S. Lungu C. Macias D. Majamaa K. Manzoni C. Marín J. Marinus J. Marti M.J. Martinez M. Martínez Torres I. Martínez-Castrillo J.C. Mata M. Mencacci N.E. Méndez-del-Barrio C. Middlehurst B. Mínguez A. Mir P. Mok K.Y. Morris H.R. Muñoz E. Nalls M.A. Narendra D. Noyce A.J. Ojo O.O. Okubadejo N.U. Pagola A.G. Pastor P. Perez Errazquin F. Periñán-Tocino T. Pihlstrom L. Plun-Favreau H. Quinn J. R’Bibo L. Reed X. Rezola E.M. Rizig M. Rizzu P. Robak L. Rodriguez A.S. Rouleau G.A. Ruiz-Martínez J. Ruz C. Ryten M. Sadykova D. Scholz S.W. Schreglmann S. Schulte C. Sharma M. Shashkin C. Shulman J.M. Sierra M. Siitonen A. Simón-Sánchez J. Singleton A.B. Suarez-Sanmartin E. Taba P. Tabernero C. Tan M.X. Tartari J.P. Tejera-Parrado C. Toft M. Tolosa E. Trabzuni D. Valldeoriola F. van Hilten J.J. Van Keuren-Jensen K. Vargas-González L. Vela L. Vives F. Williams N. Wood N.W. Zharkinbekova N. Zharmukhanov Z. Zholdybayeva E. Zimprich A. Ylikotila P. Shulman L.M. von Coelln R. Reich S. Savitt J. Agee M. Alipanahi B. Auton A. Bell R.K. Bryc K. Elson S.L. Fontanillas P. Furlotte N.A. Huber K.E. Hicks B. Jewett E.M. Jiang Y. Kleinman A. Lin K-H. Litterman N.K. McCreight J.C. McIntyre M.H. McManus K.F. Mountain J.L. Noblin E.S. Northover C.A.M. Pitts S.J. Poznik G.D. Sathirapongsasuti J.F. Shelton J.F. Shringarpure S. Tian C. Tung J. Vacic V. Wang X. Wilson C.H. Anderson T. Bentley S. Dalrymple-Alford J. Fowdar J. Gratten J. Halliday G. Henders A.K. Hickie I. Kassam I. Kennedy M. Kwok J. Lewis S. Mellick G. Montgomery G. Pearson J. Pitcher T. Sidorenko J. Silburn P.A. Vallerga C.L. Visscher P.M. Wallace L. Wray N.R. Xue A. Yang J. Zhang F. Identification of novel risk loci, causal insights, and heritable risk for parkinson’s disease: A meta-analysis of genome-wide association studies. Lancet Neurol. 2019 18 12 1091 1102 10.1016/S1474‑4422(19)30320‑5 31701892
    [Google Scholar]
  30. Do J. McKinney C. Sharma P. Sidransky E. Glucocerebrosidase and its relevance to parkinson disease. Mol. Neurodegener. 2019 14 1 36 10.1186/s13024‑019‑0336‑2 31464647
    [Google Scholar]
  31. Sidransky E. Nalls M.A. Aasly J.O. Aharon-Peretz J. Annesi G. Barbosa E.R. Bar-Shira A. Berg D. Bras J. Brice A. Chen C.M. Clark L.N. Condroyer C. De Marco E.V. Dürr A. Eblan M.J. Fahn S. Farrer M.J. Fung H.C. Gan-Or Z. Gasser T. Gershoni-Baruch R. Giladi N. Griffith A. Gurevich T. Januario C. Kropp P. Lang A.E. Lee-Chen G.J. Lesage S. Marder K. Mata I.F. Mirelman A. Mitsui J. Mizuta I. Nicoletti G. Oliveira C. Ottman R. Orr-Urtreger A. Pereira L.V. Quattrone A. Rogaeva E. Rolfs A. Rosenbaum H. Rozenberg R. Samii A. Samaddar T. Schulte C. Sharma M. Singleton A. Spitz M. Tan E.K. Tayebi N. Toda T. Troiano A.R. Tsuji S. Wittstock M. Wolfsberg T.G. Wu Y.R. Zabetian C.P. Zhao Y. Ziegler S.G. Multicenter analysis of glucocerebrosidase mutations in parkinson’s disease. N. Engl. J. Med. 2009 361 17 1651 1661 10.1056/NEJMoa0901281 19846850
    [Google Scholar]
  32. Athauda D. Foltynie T. Drug repurposing in parkinson’s disease. CNS Drugs 2018 32 8 747 761 10.1007/s40263‑018‑0548‑y 30066310
    [Google Scholar]
  33. Levin J. Sing N. Melbourne S. Morgan A. Mariner C. Spillantini M.G. Wegrzynowicz M. Dalley J.W. Langer S. Ryazanov S. Leonov A. Griesinger C. Schmidt F. Weckbecker D. Prager K. Matthias T. Giese A. Safety, tolerability and pharmacokinetics of the oligomer modulator anle138b with exposure levels sufficient for therapeutic efficacy in a murine Parkinson model: A randomised, double-blind, placebo-controlled phase 1a trial. EBioMedicine 2022 80 104021 10.1016/j.ebiom.2022.104021 35500536
    [Google Scholar]
  34. Lee Y. Morrison B.M. Li Y. Lengacher S. Farah M.H. Hoffman P.N. Liu Y. Tsingalia A. Jin L. Zhang P.W. Pellerin L. Magistretti P.J. Rothstein J.D. Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature 2012 487 7408 443 448 10.1038/nature11314 22801498
    [Google Scholar]
  35. Behrendt G. Baer K. Buffo A. Curtis M.A. Faull R.L. Rees M.I. Götz M. Dimou L. Dynamic changes in myelin aberrations and oligodendrocyte generation in chronic amyloidosis in mice and men. Glia 2013 61 2 273 286 10.1002/glia.22432 23090919
    [Google Scholar]
  36. Ubhi K. Inglis C. Mante M. Patrick C. Adame A. Spencer B. Rockenstein E. May V. Winkler J. Masliah E. Fluoxetine ameliorates behavioral and neuropathological deficits in a transgenic model mouse of α-synucleinopathy. Exp. Neurol. 2012 234 2 405 416 10.1016/j.expneurol.2012.01.008 22281106
    [Google Scholar]
  37. Ubhi K. Rockenstein E. Mante M. Inglis C. Adame A. Patrick C. Whitney K. Masliah E. Neurodegeneration in a transgenic mouse model of multiple system atrophy is associated with altered expression of oligodendroglial-derived neurotrophic factors. J. Neurosci. 2010 30 18 6236 6246 10.1523/JNEUROSCI.0567‑10.2010 20445049
    [Google Scholar]
  38. Dai X. Chen J. Xu F. Zhao J. Cai W. Sun Z. Hitchens T.K. Foley L.M. Leak R.K. Chen J. Hu X. TGFα preserves oligodendrocyte lineage cells and improves white matter integrity after cerebral ischemia. J. Cereb. Blood Flow Metab. 2020 40 3 639 655 10.1177/0271678X19830791 30834805
    [Google Scholar]
  39. Zonouzi M. Scafidi J. Li P. McEllin B. Edwards J. Dupree J.L. Harvey L. Sun D. Hübner C.A. Cull-Candy S.G. Farrant M. Gallo V. GABAergic regulation of cerebellar NG2 cell development is altered in perinatal white matter injury. Nat. Neurosci. 2015 18 5 674 682 10.1038/nn.3990 25821912
    [Google Scholar]
  40. Welliver R.R. Polanco J.J. Seidman R.A. Sinha A.K. O’Bara M.A. Khaku Z.M. Santiago González D.A. Nishiyama A. Wess J. Feltri M.L. Paez P.M. Sim F.J. Muscarinic receptor M3R signaling prevents efficient remyelination by human and mouse oligodendrocyte progenitor cells. J. Neurosci. 2018 38 31 6921 6932 10.1523/JNEUROSCI.1862‑17.2018 29959237
    [Google Scholar]
  41. Zhu Y. Wendler C.C. Shi O. Rivkees S.A. Diazoxide promotes oligodendrocyte differentiation in neonatal brain in normoxia and chronic sublethal hypoxia. Brain Res. 2014 1586 64 72 10.1016/j.brainres.2014.08.046 25157906
    [Google Scholar]
  42. Manousi A. Göttle P. Reiche L. Cui Q.L. Healy L.M. Akkermann R. Gruchot J. Schira-Heinen J. Antel J.P. Hartung H.P. Küry P. Identification of novel myelin repair drugs by modulation of oligodendroglial differentiation competence. EBioMedicine 2021 65 103276 10.1016/j.ebiom.2021.103276 33714029
    [Google Scholar]
  43. Steiner J. Martins-de-Souza D. Schiltz K. Sarnyai Z. Westphal S. Isermann B. Dobrowolny H. Turck C.W. Bogerts B. Bernstein H.G. Horvath T.L. Schild L. Keilhoff G. Clozapine promotes glycolysis and myelin lipid synthesis in cultured oligodendrocytes. Front. Cell. Neurosci. 2014 8 384 10.3389/fncel.2014.00384 25477781
    [Google Scholar]
  44. Beal M.F. Oakes D. Shoulson I. Henchcliffe C. Galpern W.R. Haas R. Juncos J.L. Nutt J.G. Voss T.S. Ravina B. Shults C.M. Helles K. Snively V. Lew M.F. Griebner B. Watts A. Gao S. Pourcher E. Bond L. Kompoliti K. Agarwal P. Sia C. Jog M. Cole L. Sultana M. Kurlan R. Richard I. Deeley C. Waters C.H. Figueroa A. Arkun A. Brodsky M. Ondo W.G. Hunter C.B. Jimenez-Shahed J. Palao A. Miyasaki J.M. So J. Tetrud J. Reys L. Smith K. Singer C. Blenke A. Russell D.S. Cotto C. Friedman J.H. Lannon M. Zhang L. Drasby E. Kumar R. Subramanian T. Ford D.S. Grimes D.A. Cote D. Conway J. Siderowf A.D. Evatt M.L. Sommerfeld B. Lieberman A.N. Okun M.S. Rodriguez R.L. Merritt S. Swartz C.L. Martin W.R.W. King P. Stover N. Guthrie S. Watts R.L. Ahmed A. Fernandez H.H. Winters A. Mari Z. Dawson T.M. Dunlop B. Feigin A.S. Shannon B. Nirenberg M.J. Ogg M. Ellias S.A. Thomas C.A. Frei K. Bodis-Wollner I. Glazman S. Mayer T. Hauser R.A. Pahwa R. Langhammer A. Ranawaya R. Derwent L. Sethi K.D. Farrow B. Prakash R. Litvan I. Robinson A. Sahay A. Gartner M. Hinson V.K. Markind S. Pelikan M. Perlmutter J.S. Hartlein J. Molho E. Evans S. Adler C.H. Duffy A. Lind M. Elmer L. Davis K. Spears J. Wilson S. Leehey M.A. Hermanowicz N. Niswonger S. Shill H.A. Obradov S. Rajput A. Cowper M. Lessig S. Song D. Fontaine D. Zadikoff C. Williams K. Blindauer K.A. Bergholte J. Propsom C.S. Stacy M.A. Field J. Mihaila D. Chilton M. Uc E.Y. Sieren J. Simon D.K. Kraics L. Silver A. Boyd J.T. Hamill R.W. Ingvoldstad C. Young J. Thomas K. Kostyk S.K. Wojcieszek J. Pfeiffer R.F. Panisset M. Beland M. Reich S.G. Cines M. Zappala N. Rivest J. Zweig R. Lumina L.P. Hilliard C.L. Grill S. Kellermann M. Tuite P. Rolandelli S. Kang U.J. Young J. Rao J. Cook M.M. Severt L. Boyar K. A randomized clinical trial of high-dosage coenzyme Q10 in early parkinson disease: No evidence of benefit. JAMA Neurol. 2014 71 5 543 552 10.1001/jamaneurol.2014.131 24664227
    [Google Scholar]
  45. Isradipine versus placebo in early Parkinson disease: A randomized trial. Ann. Intern. Med. 2020 172 9 591 598 10.7326/M19‑2534 32227247
    [Google Scholar]
  46. Rabiei Z. Solati K. Amini-Khoei H. Phytotherapy in treatment of parkinson’s disease: A review. Pharm. Biol. 2019 57 1 355 362 10.1080/13880209.2019.1618344 31141426
    [Google Scholar]
  47. Rai S.N. Yadav S.K. Singh D. Singh S.P. Ursolic acid attenuates oxidative stress in nigrostriatal tissue and improves neurobehavioral activity in MPTP-induced parkinsonian mouse model. J. Chem. Neuroanat. 2016 71 41 49 10.1016/j.jchemneu.2015.12.002 26686287
    [Google Scholar]
  48. Yadav S.K. Rai S.N. Singh S.P. Mucuna pruriens shows neuroprotective effect by inhibiting apoptotic pathways of dopaminergic neurons in the paraquat mouse model of parkinsonism. Eur. J. Pharm. Med. Res. 2016 3 441 451
    [Google Scholar]
  49. Sathiyanarayanan L. Arulmozhi S. Mucuna pruriens Linn.-A comprehensive review. Pharmacogn. Rev. 2007 1 1
    [Google Scholar]
  50. Adepoju G.K.A. Odubena O.O. Effect of Mucuna pruriens on some haematological and biochemical parameters. J. Med. Plants Res. 2009 3 2 73 76
    [Google Scholar]
  51. Yadav S.K. Prakash J. Chouhan S. Singh S.P. Mucuna pruriens seed extract reduces oxidative stress in nigrostriatal tissue and improves neurobehavioral activity in paraquat-induced parkinsonian mouse model. Neurochem. Int. 2013 62 8 1039 1047 10.1016/j.neuint.2013.03.015 23562769
    [Google Scholar]
  52. Bhaskar A. Nithya V. Vidhya V.G. Phytochemical evaluation by GC-MS and antihyperglycemic activity of Mucuna pruriens on streptozotocin induced diabetes in rats. J. Chem. Pharm. Res. 2011 3 5 689 696
    [Google Scholar]
  53. Nayak V.S. Pai K.S.R. Nayak S.S. Kumar N. Bangera H. Effect of Mucuna pruriens (Linn.) on global cerebral Ischemia-induced motor incoordination. Trop. J. Pharm. Res. 2022 20 6 1193 1198 10.4314/tjpr.v20i6.14
    [Google Scholar]
  54. Poddighe S. De Rose F. Marotta R. Ruffilli R. Fanti M. Secci P.P. Mostallino M.C. Setzu M.D. Zuncheddu M.A. Collu I. Solla P. Marrosu F. Kasture S. Acquas E. Liscia A. Mucuna pruriens (Velvet bean) rescues motor, olfactory, mitochondrial and synaptic impairment in PINK1B9 Drosophila melanogaster genetic model of parkinson’s disease. PLoS One 2014 9 10 e110802 10.1371/journal.pone.0110802 25340511
    [Google Scholar]
  55. Rai S.N. Birla H. Singh S.S. Zahra W. Patil R.R. Jadhav J.P. Gedda M.R. Singh S.P. Mucuna pruriens protects against MPTP intoxicated neuroinflammation in parkinson’s disease through NF-κB/pAKT signaling pathways. Front. Aging Neurosci. 2017 9 421 10.3389/fnagi.2017.00421 29311905
    [Google Scholar]
  56. Yadav S.K. Rai S.N. Singh S.P. Mucuna pruriens reduces inducible nitric oxide synthase expression in parkinsonian mice model. J. Chem. Neuroanat. 2017 80 1 10 10.1016/j.jchemneu.2016.11.009 27919828
    [Google Scholar]
  57. Yadav S.K. Prakash J. Chouhan S. Westfall S. Verma M. Singh T.D. Singh S.P. Comparison of the neuroprotective potential of Mucuna pruriens seed extract with estrogen in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice model. Neurochem. Int. 2014 65 1 13 10.1016/j.neuint.2013.12.001 24333323
    [Google Scholar]
  58. Olson K.E. Gendelman H.E. Immunomodulation as a neuroprotective and therapeutic strategy for parkinson’s disease. Curr. Opin. Pharmacol. 2016 26 87 95 10.1016/j.coph.2015.10.006 26571205
    [Google Scholar]
  59. Tharakan B. Dhanasekaran M. Mize-Berge J. Manyam B.V. Anti‐parkinson botanical Mucuna pruriens prevents levodopa induced plasmid and genomic DNA damage. Phytother. Res. 2007 21 12 1124 1126 10.1002/ptr.2219 17622977
    [Google Scholar]
  60. Dhanasekaran M. Tharakan B. Manyam B.V. Antiparkinson drug – Mucuna pruriens shows antioxidant and metal chelating activity. Phytother. Res. 2008 22 1 6 11 10.1002/ptr.2109 18064727
    [Google Scholar]
  61. An alternative medicine treatment for parkinson’s disease: Results of a multicenter clinical trial. J. Altern. Complement. Med. 1995 1 3 249 255 10.1089/acm.1995.1.249 9395621
    [Google Scholar]
  62. Manyam B.V. Paralysis agitans and levodopa in “Ayurveda”: Ancient Indian medical treatise. Mov. Disord. 1990 5 1 47 48 10.1002/mds.870050112 2404203
    [Google Scholar]
  63. Katzenschlager R. Evans A. Manson A. Patsalos P.N. Ratnaraj N. Watt H. Timmermann L. Van der Giessen R. Lees A.J. Mucuna pruriens in parkinson’s disease: A double blind clinical and pharmacological study. J. Neurol. Neurosurg. Psychiatry 2004 75 12 1672 1677 10.1136/jnnp.2003.028761 15548480
    [Google Scholar]
  64. Cilia R. Laguna J. Cassani E. Cereda E. Pozzi N.G. Isaias I.U. Contin M. Barichella M. Pezzoli G. Mucuna pruriens in parkinson disease. Neurology 2017 89 5 432 438 10.1212/WNL.0000000000004175 28679598
    [Google Scholar]
  65. Cilia R. Laguna J. Cassani E. Cereda E. Raspini B. Barichella M. Pezzoli G. Daily intake of Mucuna pruriens in advanced Parkinson’s disease: A 16-week, noninferiority, randomized, crossover, pilot study. Parkinsonism Relat. Disord. 2018 49 60 66 10.1016/j.parkreldis.2018.01.014 29352722
    [Google Scholar]
  66. Li Y. Zhuang P. Shen B. Zhang Y. Shen J. Baicalin promotes neuronal differentiation of neural stem/progenitor cells through modulating p-stat3 and bHLH family protein expression. Brain Res. 2012 1429 36 42 10.1016/j.brainres.2011.10.030 22088824
    [Google Scholar]
  67. Cheng Y. He G. Mu X. Zhang T. Li X. Hu J. Xu B. Du G. Neuroprotective effect of baicalein against MPTP neurotoxicity: Behavioral, biochemical and immunohistochemical profile. Neurosci. Lett. 2008 441 1 16 20 10.1016/j.neulet.2008.05.116 18586394
    [Google Scholar]
  68. Mu X. He G. Cheng Y. Li X. Xu B. Du G. Baicalein exerts neuroprotective effects in 6-hydroxydopamine-induced experimental parkinsonism in vivo and in vitro. Pharmacol. Biochem. Behav. 2009 92 4 642 648 10.1016/j.pbb.2009.03.008 19327378
    [Google Scholar]
  69. Naik S.R. Pilgaonkar V.W. Panda V.S. Evaluation of antioxidant activity of Ginkgo biloba phytosomes in rat brain. Phytother. Res. 2006 20 11 1013 1016 10.1002/ptr.1976 16909446
    [Google Scholar]
  70. Kuang S. Yang L. Rao Z. Zhong Z. Li J. Zhong H. Dai L. Tang X. Effects of Ginkgo biloba extract on A53T α-synuclein transgenic mouse models of parkinson’s disease. Can. J. Neurol. Sci. 2018 45 2 182 187 10.1017/cjn.2017.268 29506601
    [Google Scholar]
  71. Abdel-Salam O.M. Salem N.A. El-Sayed El-Shamarka M. Al-Said Ahmed N. Seid Hussein J. El-Khyat Z.A. Cannabis-induced impairment of learning and memory: Effect of different nootropic drugs. EXCLI J. 2013 12 193 214 26417227
    [Google Scholar]
  72. Noor-E-Tabassum Das R. Lami M.S. Chakraborty A.J. Mitra S. Tallei T.E. Idroes R. Mohamed A.A.R. Hossain M.J. Dhama K. Mostafa-Hedeab G. Emran T.B. Ginkgo biloba: A treasure of functional phytochemicals with multimedicinal applications. Evid. Based Complement. Alternat. Med. 2022 2022 1 30 10.1155/2022/8288818 35265150
    [Google Scholar]
  73. Mythri R.B. Jagatha B. Pradhan N. Andersen J. Bharath M.M.S. Mitochondrial complex I inhibition in parkinson’s disease: How can curcumin protect mitochondria? Antioxid. Redox Signal. 2007 9 3 399 408 10.1089/ars.2006.1479 17184173
    [Google Scholar]
  74. Mythri R.B. Harish G. Dubey S.K. Misra K. Srinivas Bharath M.M. Glutamoyl diester of the dietary polyphenol curcumin offers improved protection against peroxynitrite-mediated nitrosative stress and damage of brain mitochondria in vitro: Implications for Parkinson’s disease. Mol. Cell. Biochem. 2011 347 1-2 135 143 10.1007/s11010‑010‑0621‑4 20972609
    [Google Scholar]
  75. Mythri R.B. Bharath M.M. Curcumin: A potential neuroprotective agent in parkinson’s disease. Curr. Pharm. Des. 2012 18 1 91 99 10.2174/138161212798918995 22211691
    [Google Scholar]
  76. Jagatha B. Mythri R.B. Vali S. Bharath M.M.S. Curcumin treatment alleviates the effects of glutathione depletion in vitro and in vivo: Therapeutic implications for parkinson’s disease explained via in silico studies. Free Radic. Biol. Med. 2008 44 5 907 917 10.1016/j.freeradbiomed.2007.11.011 18166164
    [Google Scholar]
  77. Harish G. Venkateshappa C. Mythri R.B. Dubey S.K. Mishra K. Singh N. Vali S. Bharath M.M.S. Bioconjugates of curcumin display improved protection against glutathione depletion mediated oxidative stress in a dopaminergic neuronal cell line: Implications for parkinson’s disease. Bioorg. Med. Chem. 2010 18 7 2631 2638 10.1016/j.bmc.2010.02.029 20227282
    [Google Scholar]
  78. Marchiani A. Rozzo C. Fadda A. Delogu G. Ruzza P. Curcumin and curcumin-like molecules: From spice to drugs. Curr. Med. Chem. 2013 21 2 204 222 10.2174/092986732102131206115810 23590716
    [Google Scholar]
  79. Alladi P.A. Mahadevan A. Yasha T.C. Raju T.R. Shankar S.K. Muthane U. Absence of age-related changes in nigral dopaminergic neurons of Asian Indians: Relevance to lower incidence of parkinson’s disease. Neuroscience 2009 159 1 236 245 10.1016/j.neuroscience.2008.11.051 19135503
    [Google Scholar]
  80. Wang M.S. Boddapati S. Emadi S. Sierks M.R. Curcumin reduces α-synuclein induced cytotoxicity in parkinson’s disease cell model. BMC Neurosci. 2010 11 1 57 10.1186/1471‑2202‑11‑57 20433710
    [Google Scholar]
  81. Ojha R.P. Rastogi M. Devi B.P. Agrawal A. Dubey G.P. Neuroprotective effect of curcuminoids against inflammation-mediated dopaminergic neurodegeneration in the MPTP model of parkinson’s disease. J. Neuroimmune Pharmacol. 2012 7 3 609 618 10.1007/s11481‑012‑9363‑2 22527634
    [Google Scholar]
  82. Pan J. Li H. Ma J.F. Tan Y.Y. Xiao Q. Ding J.Q. Chen S.D. Curcumin inhibition of JNKs prevents dopaminergic neuronal loss in a mouse model of parkinson’s disease through suppressing mitochondria dysfunction. Transl. Neurodegener. 2012 1 1 16 10.1186/2047‑9158‑1‑16 23210631
    [Google Scholar]
  83. Tripanichkul W. Jaroensuppaperch E. Curcumin protects nigrostriatal dopaminergic neurons and reduces glial activation in 6-hydroxydopamine hemiparkinsonian mice model. Int. J. Neurosci. 2012 122 5 263 270 10.3109/00207454.2011.648760 22176529
    [Google Scholar]
  84. Baum L. Lam C.W.K. Cheung S.K.K. Kwok T. Lui V. Tsoh J. Lam L. Leung V. Hui E. Ng C. Woo J. Chiu H.F.K. Goggins W.B. Zee B.C.Y. Cheng K.F. Fong C.Y.S. Wong A. Mok H. Chow M.S.S. Ho P.C. Ip S.P. Ho C.S. Yu X.W. Lai C.Y.L. Chan M.H. Szeto S. Chan I.H.S. Mok V. Six-month randomized, placebo-controlled, double-blind, pilot clinical trial of curcumin in patients with alzheimer disease. J. Clin. Psychopharmacol. 2008 28 1 110 113 10.1097/jcp.0b013e318160862c 18204357
    [Google Scholar]
  85. Ringman J.M. Frautschy S.A. Teng E. Begum A.N. Bardens J. Beigi M. Gylys K.H. Badmaev V. Heath D.D. Apostolova L.G. Porter V. Vanek Z. Marshall G.A. Hellemann G. Sugar C. Masterman D.L. Montine T.J. Cummings J.L. Cole G.M. Oral curcumin for alzheimer’s disease: Tolerability and efficacy in a 24-week randomized, double blind, placebo-controlled study. Alzheimers Res. Ther. 2012 4 5 43 10.1186/alzrt146 23107780
    [Google Scholar]
  86. Snitz B.E. O’Meara E.S. Carlson M.C. Arnold A.M. Ives D.G. Rapp S.R. Saxton J. Lopez O.L. Dunn L.O. Sink K.M. DeKosky S.T. Ginkgo biloba for preventing cognitive decline in older adults: A randomized trial. JAMA 2009 302 24 2663 2670 10.1001/jama.2009.1913 20040554
    [Google Scholar]
  87. Ghazy E. Rahdar A. Barani M. Kyzas G.Z. Nanomaterials for parkinson disease: Recent progress. J. Mol. Struct. 2021 1231 129698 10.1016/j.molstruc.2020.129698
    [Google Scholar]
  88. Sintov A.C. Velasco-Aguirre C. Gallardo-Toledo E. Araya E. Kogan M.J. Metal nanoparticles as targeted carriers circumventing the blood–brain barrier. Int. Rev. Neurobiol. 2016 130 199 227 10.1016/bs.irn.2016.06.007 27678178
    [Google Scholar]
  89. Cuenca A.G. Jiang H. Hochwald S.N. Delano M. Cance W.G. Grobmyer S.R. Emerging implications of nanotechnology on cancer diagnostics and therapeutics. Cancer 2006 107 3 459 466 10.1002/cncr.22035 16795065
    [Google Scholar]
  90. Razavi S. Jahromi M. Vatankhah E. Seyedebrahimi R. Differential effects of rat ADSCs encapsulation in fibrin matrix and combination delivery of BDNF and Gold nanoparticles on peripheral nerve regeneration. BMC Neurosci. 2021 22 1 50 10.1186/s12868‑021‑00655‑y 34384370
    [Google Scholar]
  91. Cai W. Gao T. Hong H. Sun J. Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol. Sci. Appl. 2008 1 17 32 10.2147/NSA.S3788 24198458
    [Google Scholar]
  92. Huynh N.T. Passirani C. Saulnier P. Benoît J.P. Lipid nanocapsules: A new platform for nanomedicine. Int. J. Pharm. 2009 379 2 201 209 10.1016/j.ijpharm.2009.04.026 19409468
    [Google Scholar]
  93. Patil Y.P. Jadhav S. Novel methods for liposome preparation. Chem. Phys. Lipids 2014 177 8 18 10.1016/j.chemphyslip.2013.10.011 24220497
    [Google Scholar]
  94. Batrakova E.V. Kim M.S. Using exosomes, naturally-equipped nanocarriers, for drug delivery. J. Control. Release 2015 219 396 405 10.1016/j.jconrel.2015.07.030 26241750
    [Google Scholar]
  95. Pardridge W.M. Drug transport across the blood-brain barrier. J. Cereb. Blood Flow Metab. 2012 32 11 1959 1972 10.1038/jcbfm.2012.126 22929442
    [Google Scholar]
  96. Kageyama T. Nakamura M. Matsuo A. Yamasaki Y. Takakura Y. Hashida M. Kanai Y. Naito M. Tsuruo T. Minato N. Shimohama S. The 4F2hc/LAT1 complex transports l-DOPA across the blood–brain barrier. Brain Res. 2000 879 1-2 115 121 10.1016/S0006‑8993(00)02758‑X 11011012
    [Google Scholar]
  97. Kulkarni A.D. Vanjari Y.H. Sancheti K.H. Belgamwar V.S. Surana S.J. Pardeshi C.V. Nanotechnology-mediated nose to brain drug delivery for Parkinson’s disease: A mini review. J. Drug Target. 2015 23 9 775 788 10.3109/1061186X.2015.1020809 25758751
    [Google Scholar]
  98. Md S. Khan R.A. Mustafa G. Chuttani K. Baboota S. Sahni J.K. Ali J. Bromocriptine loaded chitosan nanoparticles intended for direct nose to brain delivery: Pharmacodynamic, Pharmacokinetic and Scintigraphy study in mice model. Eur. J. Pharm. Sci. 2013 48 3 393 405 10.1016/j.ejps.2012.12.007 23266466
    [Google Scholar]
  99. Gendelman H.E. Anantharam V. Bronich T. Ghaisas S. Jin H. Kanthasamy A.G. Liu X. McMillan J. Mosley R.L. Narasimhan B. Mallapragada S.K. Nanoneuromedicines for degenerative, inflammatory, and infectious nervous system diseases. Nanomedicine 2015 11 3 751 767 10.1016/j.nano.2014.12.014 25645958
    [Google Scholar]
  100. Yetisgin A.A. Cetinel S. Zuvin M. Kosar A. Kutlu O. Therapeutic nanoparticles and their targeted delivery applications. Molecules 2020 25 9 2193 10.3390/molecules25092193 32397080
    [Google Scholar]
  101. Niu J.M. Zheng Z.G. Effect of temperature on Fe3O4 magnetic nanoparticles prepared by coprecipitation method. Adv. Mat. Res. 2014 900 172 176
    [Google Scholar]
  102. Kim D.H. Kim T.W. Ultrahigh-luminosity white-light-emitting devices based on edge functionalized graphene quantum dots. Nano Energy 2018 51 199 205 10.1016/j.nanoen.2018.06.064
    [Google Scholar]
  103. Brynskikh A.M. Zhao Y. Mosley R.L. Li S. Boska M.D. Klyachko N.L. Kabanov A.V. Gendelman H.E. Batrakova E.V. Macrophage delivery of therapeutic nanozymes in a murine model of parkinson’s disease. Nanomedicine (Lond.) 2010 5 3 379 396 10.2217/nnm.10.7 20394532
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266314877241105051752
Loading
/content/journals/ctmc/10.2174/0115680266314877241105051752
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test