Skip to content
2000
Volume 24, Issue 23
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Franch. (Ranunculaceae, ), a traditional Chinese medicine (TCM) with thousands of years of clinical use history, also a natural medicine available in many countries, has wide pharmacological mechanisms and significant bioactivity according to its traditional efficacy combined with modern scientific research. The quality marker (Q-marker) of Franch. is predicted in this paper based on the chemical composition and pharmacological effects of the plant, as well as the current system pharmacology, plant relatedness, biosynthetic pathways and quantitative analysis of multi-components (QAMS).

Natural medicine has the advantage of being multi-component, multi-pathway and multi-target. However, there are few reports on safety evaluation. This review predicts the Q-marker of , the safety and efficacy of is provided.

Studies from 1975 to 2023 were reviewed from PubMed, Elsevier, ScienceDirect, Web of Science, SpringerLink, and Google Scholar.

Alkaloids and organic acids are the two main component categories of Q-Markers. The specific alkaloids identified through predictive results include berberine, coptisine, palmatine, epiberberine, jatrorrhizine, columbamine, and berberrubine. Quinic acid and malic acid, due to their influence on the content of alkaloids and their ability to aid in identifying the active components of , are also considered Q-markers.

The research strategy of “exploring chemical components, exploring pharmacological activities, constructing pharmacological mechanism network and locating biosynthetic pathways” was used to accurately screen the quality markers of in this review and summarise the quality evaluation methods and criteria. In addition, we updated the biosynthetic pathway of and refined the specific synthetic pathways of jatrorrhizine (quality markers) and epiberberine (quality markers). Finally, we summarised the quality evaluation methods of , which provide an important reference for resource evaluation and provide a key reference for the discovery of new functional chemical entities for natural medicines.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266305274240723120426
2024-09-01
2025-06-20
Loading full text...

Full text loading...

References

  1. HT.A. Chinese medicinal plants from the Pen Ts’ao Kang Mu, AD 1596.Nature1936138349048410.1038/138484a0
    [Google Scholar]
  2. MaJ.X. Shen Nong 's Herbal Classic.BeijingPeople 's Health Publishing House20134344
    [Google Scholar]
  3. ChangN.C. in vitro antibacterial action of extracts from coptis root.Exp. Biol. Med.194869114114310.3181/00379727‑69‑16644P18889809
    [Google Scholar]
  4. ChenY.X. GaoQ.Y. ZouT.H. WangB.M. LiuS.D. ShengJ.Q. RenJ.L. ZouX.P. LiuZ.J. SongY.Y. XiaoB. SunX.M. DouX.T. CaoH.L. YangX.N. LiN. KangQ. ZhuW. XuH.Z. ChenH.M. CaoX.C. FangJ.Y. Berberine versus placebo for the prevention of recurrence of colorectal adenoma: A multicentre, double-blinded, randomised controlled study.Lancet Gastroenterol. Hepatol.20205326727510.1016/S2468‑1253(19)30409‑131926918
    [Google Scholar]
  5. ZhaoB.L. LiuX.Y. Literatures of rhizoma coptidis.Zhong Yao Cai201336832835
    [Google Scholar]
  6. LiuB.G. XieM. DongY. WuH. SuY.C. PangG.J. BaiM. XuE.P. Research progress on the mechanism of action of Huang-Lian-Jie-Du-Decoction.Acta Chin Med2022370918611868
    [Google Scholar]
  7. MengT.X. LiZ.W. LiQ.Q. YeL.J. ZengH.Q. YuanX.L. Preparation and anti-inflammatory and analgesic effects of compound yanhuanglian paste.Chem. Eng. Equipment2022091516
    [Google Scholar]
  8. LiuQ. LiuS. GaoL. SunS. HuanY. LiC. WangY. GuoN. ShenZ. Anti-diabetic effects and mechanisms of action of a Chinese herbal medicine preparation JQ-R in vitro and in diabetic KK Ay mice.Acta Pharm. Sin. B20177446146910.1016/j.apsb.2017.04.01028752031
    [Google Scholar]
  9. GaoL. LiuQ. LiuS. ChenZ. LiC. LeiL. SunS. LiL. LiuJ. ShenZ. A refined-JinQi-JiangTang tablet ameliorates prediabetes by reducing insulin resistance and improving beta cell function in mice.J. Ethnopharmacol.2014151167568510.1016/j.jep.2013.11.02424286962
    [Google Scholar]
  10. QinR.B. WangJ.X. ChenF.M. Study on the antioxidant activity of flavonoids from Coptis chinensis Franch.Int. Microbiol.20235302236
    [Google Scholar]
  11. CuiL. LiuM. ChangX. SunK. The inhibiting effect of the Coptis chinensis polysaccharide on the type II diabetic mice.Biomed. Pharmacother.20168111111910.1016/j.biopha.2016.03.03827261584
    [Google Scholar]
  12. WangW. LiuS.J. AnF.E. Extraction, purification, identification and hydroxyl radical scavenging capacity of Coptis chinensis polysaccharide.Shandong Med201353107982
    [Google Scholar]
  13. LiY. WangB. LiuC. ZhuX. ZhangP. YuH. LiY. LiZ. LiM. Inhibiting c-Jun N-terminal kinase (JNK)-mediated apoptotic signaling pathway in PC12 cells by a polysaccharide (CCP) from Coptis chinensis against Amyloid-β (Aβ)-induced neurotoxicity.Int. J. Biol. Macromol.201913456557410.1016/j.ijbiomac.2019.05.04131071400
    [Google Scholar]
  14. ChenQ. RenR. ZhangQ. WuJ. ZhangY. XueM. YinD. YangY. Coptis chinensis Franch polysaccharides provide a dynamically regulation on intestinal microenvironment, based on the intestinal flora and mucosal immunity.J. Ethnopharmacol.202126711354210.1016/j.jep.2020.11354233152428
    [Google Scholar]
  15. GuanY.Z. Isolation, purification and immunological activity of polysaccharide from Yalian.Heilongjiang University of Traditional Chinese Medicine 2016.
    [Google Scholar]
  16. XiongX. WangY.P. WangY.F. Study on hypoglycemic activity of Coptis chinensis Franch. polysaccharides.Lishizhen Med Mater Med Res2013241023512353
    [Google Scholar]
  17. WangJ. WangL. LouG.H. ZengH.R. HuJ. HuangQ.W. PengW. YangX.B. Coptidis Rhizoma: A comprehensive review of its traditional uses, botany, phytochemistry, pharmacology and toxicology.Pharm. Biol.201957119322510.1080/13880209.2019.157746630963783
    [Google Scholar]
  18. National Pharmacopoeia Commission.Pharmacopoeia of the People 's Republic of China.Nanjing, Jiangsu, ChinaChina Pharmaceutical Science and Technology Press2020I316318
    [Google Scholar]
  19. ChenH.Y. YeX.L. CuiX.L. HeK. JinY.N. ChenZ. LiX.G. Cytotoxicity and antihyperglycemic effect of minor constituents from Rhizoma Coptis in HepG2 cells.Fitoterapia2012831677310.1016/j.fitote.2011.09.01421968062
    [Google Scholar]
  20. JungH.A. YoonN.Y. BaeH.J. MinB.S. ChoiJ.S. Inhibitory activities of the alkaloids from Coptidis Rhizoma against aldose reductase.Arch. Pharm. Res.200831111405141210.1007/s12272‑001‑2124‑z19023536
    [Google Scholar]
  21. XuH.L. [Studies on alkaloids of Asteropyrum cavaleriei (Lévl. et Vant.) Drumm. et Hutch].Zhongguo Zhongyao Zazhi200025848648812515212
    [Google Scholar]
  22. FuY. HuB.R. TangQ. FuQ. ZhangQ.Y. XiangJ.Z. Isoquinoline alkaloids from the Rhizoma of Coptis chinensis. Chin. J. Nat. Med.20075348350
    [Google Scholar]
  23. SunY.S. SuB.Z. JiangH.Q. WangJ. YuZ.Y. A new alkaloid from Coptis chinensis. Chin Tradi Patent Med2022440411671170
    [Google Scholar]
  24. LiZ.F. WangQ. FengY.L. LuoX.J. FanM.M. YangS.L. [Chemical constituents from Coptis chinensis.].Zhong Yao Cai20123591438144123451500
    [Google Scholar]
  25. TianP.P. ZhangX.X. WangH.P. LiP.L. LiuY.X. LiS.J. Rapid analysis of components in Coptis chinensis franch by ultra-performance liquid chromatography with quadrupole time-of-flight mass spectrometry.Pharmacogn. Mag.2017134917517928216903
    [Google Scholar]
  26. WangL. ZhangS.Y. ChenL. HuangX.J. ZhangQ.W. JiangR.W. YaoF. YeW.C. New enantiomeric isoquinoline alkaloids from Coptis chinensis. Phytochem. Lett.20147899210.1016/j.phytol.2013.10.007
    [Google Scholar]
  27. YangT.C. ChaoH.F. ShiL.S. ChangT.C. LinH.C. ChangW.L. Alkaloids from Coptis chinensis root promote glucose uptake in C2C12 myotubes.Fitoterapia20149323924410.1016/j.fitote.2014.01.00824444890
    [Google Scholar]
  28. MinY.D. YangM.C. LeeK.H. KimK.R. ChoiS.U. LeeK.R. Protoberberine alkaloids and their reversal activity of P-gp expressed multidrug resistance (MDR) from the rhizome ofCoptis japonica Makino.Arch. Pharm. Res.200629975776110.1007/BF0297407617024849
    [Google Scholar]
  29. ZhangJ. LouisetteL.M.O. MassiotG. Isoquinoline alkaloids from Acangelisia gusanlung.Phytochemistry199539243944210.1016/0031‑9422(94)00903‑7
    [Google Scholar]
  30. WangS. Research advances in chinese medicine Coptis chinensis. Asia-Pacific Tradit Med20151194446
    [Google Scholar]
  31. NoguchiM. KuboM. HayashiT. OnoM. Studies on the pharmaceutical quality evaluation of crude drug preparations used in orient medicine “Kampoo”. III. Precipitation reaction of glycyrrhizin with alkaloids or alkaloidal crude drugs in aqueous solution.Chem. Pharm. Bull.197826123652365710.1248/cpb.26.3652747849
    [Google Scholar]
  32. MaH.M. ChenG. PeiY.H. Isolation and identification of chemical constituents from rhizoma of Coptis chinensis and their cytotoxic activities.J. Shenyang Pharm. Univ.20133010759763, 828
    [Google Scholar]
  33. TomitaM. KuraS. Isolation of magnoflorine from Coptis japonica Makino.Yakugaku Zasshi195676121425142610.1248/yakushi1947.76.12_1425
    [Google Scholar]
  34. ZhangY. DengQ. WeiM. ZhangX. Identification of Chemical Constituents in Coptis chinensis Inflorescence by UPLC-Q-Orbitrap HRMS.Chin J Experimental Tradi Med Formulae202127159199
    [Google Scholar]
  35. WeiH.B. DongY. TanB. Advances in the study of chemical composition and pharmacologic action of Coptis chinensis inflorescence.Xiandai Shengwu Yixue Jinzhan2014142753425344
    [Google Scholar]
  36. Zhi-daM. MurataH. MizunoM. KojimaH. TanakaT. IinumaM. KimuraR. Phenolic constituents from seeds of Coptis japonica var. dissecta.Phytochemistry19872672071207410.1016/S0031‑9422(00)81760‑4
    [Google Scholar]
  37. WangW. ZhangQ.W. YeW.C. lsoquinoline alkaloids from the rhizoma of Coptis chinensis.Chin. J. Nat. Med.20072007348350
    [Google Scholar]
  38. MengF. WangL. ZhangJ. YinZ. ZhangQ. YeW. Non-alkaloid chemical constituents from the rhizome of Coptis teeta. Chin Pharm Univ201344307310
    [Google Scholar]
  39. ChenL. WangL. ZhangQ. ZhangS. YeW. [Non-alkaloid chemical constituents from Coptis chinensis.].Zhongguo Zhongyao Zazhi20123791241124422803368
    [Google Scholar]
  40. HaoY.M. HuoJ.H. WangT. Analysis of non-alkaloid components of Coptis coptis by UPLC-Q-TOF/MS technique.J Chin Med Materi2020432354358
    [Google Scholar]
  41. LiX.G. YangL.G. ChenL.X. QiuF. Chemical constituents from the decoction of Coptis chinensis Franch.J. Shenyang Pharm. Univ.201229193198
    [Google Scholar]
  42. YoshikawaK. KinoshitaH. KanY. AriharaS. Neolignans and Phenylpropanoids from the Rhizomes of Coptis japonica var. dissecta.Chem. Pharm. Bull.199543457858110.1248/cpb.43.578
    [Google Scholar]
  43. YoshikawaK. A novel sesquineolignan with a unique spiro skeleton, from the rhizomes of Coptis japonica var.J. Nat. Prod.19976051151310.1021/np9700127
    [Google Scholar]
  44. YuC. YangQ.X. ZhuC.Y. Chemical constituents from the roots of Coptis teeta. Zhongchengyao202143821002105
    [Google Scholar]
  45. LiD.M. ZhouL.L. WangQ.W. Determination of organic acids for quality evaluation in Coptis herbs by ion chromatography.3 Biotech201886285
    [Google Scholar]
  46. ZhaoH.T. LiuW.Y. LiX.G. Chemical constituents from the fibrous roots of Coptis chinensis. Zhongchengyao2022441122126
    [Google Scholar]
  47. YunY.B. YangC.Y. GuoF.Q. Effect of ginger-processed method on contents and components of volatile oil from herbs with cold feature.Inform Tradit Chin Med20193611116
    [Google Scholar]
  48. ZhaoY. HuangX.W. TangQ.Z. Research progress of huang-Lian-Jie-Du-Decoction.Ginseng Res202234044044
    [Google Scholar]
  49. TaoH.J. Supplementary Records of Famous Physicians.BeijingChina Traditional Chinese Medicine Press2013
    [Google Scholar]
  50. TaoH.J. Collective commentaries on classics.BeijingPeople 's Health Publishing House1994
    [Google Scholar]
  51. SuJ. Newly Revised Materia Medica.HefeiAnhui Science and Technology Press1981165
    [Google Scholar]
  52. LiS.Z. Compendium of Materia Medica.BeijingPeople 's Health Publishing House1975
    [Google Scholar]
  53. ZhangJ.Y. Bencao Zheng.BeijingChina Pharmaceutical Science and Technology Press2017509
    [Google Scholar]
  54. LanM. Southern Materia Medica.KunmingYunnan People 's Publishing House197622
    [Google Scholar]
  55. HabtemariamS. Berberine pharmacology and the gut microbiota: A hidden therapeutic link.Pharmacol. Res.202015510472210.1016/j.phrs.2020.10472232105754
    [Google Scholar]
  56. WeiW. ZengQ. WangY. GuoX. FanT. LiY. DengH. ZhaoL. ZhangX. LiuY. ShiY. ZhuJ. MaX. WangY. JiangJ. SongD. Discovery and identification of EIF2AK2 as a direct key target of berberine for anti-inflammatory effects.Acta Pharm. Sin. B20231352138215110.1016/j.apsb.2022.12.00937250154
    [Google Scholar]
  57. FengX. SuredaA. JafariS. MemarianiZ. TewariD. AnnunziataG. BarreaL. HassanS.T.S. ŠmejkalK. MalaníkM. SychrováA. BarrecaD. ZibernaL. MahomoodallyM.F. ZenginG. XuS. NabaviS.M. ShenA.Z. Berberine in cardiovascular and metabolic diseases: From mechanisms to therapeutics.Theranostics2019971923195110.7150/thno.3078731037148
    [Google Scholar]
  58. NingN. WangY.Z. ZouZ.Y. ZhangD.Z. WangD.Z. LiX.G. Pharmacological and safety evaluation of fibrous root of Rhizoma Coptidis.Environ. Toxicol. Pharmacol.2015391536910.1016/j.etap.2014.11.00625434762
    [Google Scholar]
  59. YiJ. YeX. WangD. HeK. YangY. LiuX. LiX. Safety evaluation of main alkaloids from Rhizoma Coptidis.J. Ethnopharmacol.2013145130331010.1016/j.jep.2012.10.06223159469
    [Google Scholar]
  60. ChenC. TaoC. LiuZ. LuM. PanQ. ZhengL. LiQ. SongZ. FichnaJ. A randomized clinical trial of berberine hydrochloride in patients with diarrheapredominant irritable bowel syndrome.Phytother. Res.201529111822182710.1002/ptr.547526400188
    [Google Scholar]
  61. ChenC. LuM. PanQ. FichnaJ. ZhengL. WangK. YuZ. LiY. LiK. SongA. LiuZ. SongZ. KreisM. Berberine improves intestinal motility and visceral pain in the mouse models mimicking diarrhea-predominant irritable bowel syndrome (IBS-D) symptoms in an opioid-receptor dependent manner.PLoS One20151012e014555610.1371/journal.pone.014555626700862
    [Google Scholar]
  62. LiuL. XieX. YangJ. WuT. Clinical observation of berberine combined with aluminum phosphate gel enema in pediatric acute enteritis.Pediatr. Pharm20162242426
    [Google Scholar]
  63. YaoM. FanX. YuanB. TakagiN. LiuS. HanX. RenJ. LiuJ. Berberine inhibits NLRP3 Inflammasome pathway in human triple-negative breast cancer MDA-MB-231 cell.BMC Complement. Altern. Med.201919121610.1186/s12906‑019‑2615‑431412862
    [Google Scholar]
  64. NakoniecznaS. GrabarskaA. GawelK. Wróblewska-ŁuczkaP. CzerwonkaA. StepulakA. Kukula-KochW. Isoquinoline alkaloids from Coptis chinensis Franch: Focus on coptisine as a potential therapeutic candidate against gastric cancer cells.Int. J. Mol. Sci.202223181033010.3390/ijms23181033036142236
    [Google Scholar]
  65. ZhaoZ. ZengJ. GuoQ. PuK. YangY. ChenN. ZhangG. ZhaoM. ZhengQ. TangJ. HuQ. Berberine suppresses stemness and tumorigenicity of colorectal cancer stem-like cells by inhibiting m6A methylation.Front. Oncol.20211177541810.3389/fonc.2021.77541834869024
    [Google Scholar]
  66. WangL. ShengW. TanZ. RenQ. WangR. StoikaR. LiuX. LiuK. ShangX. JinM. Treatment of Parkinson’s disease in Zebrafish model with a berberine derivative capable of crossing blood brain barrier, targeting mitochondria, and convenient for bioimaging experiments.Comp. Biochem. Physiol. C Toxicol. Pharmacol.202124910915110.1016/j.cbpc.2021.10915134343700
    [Google Scholar]
  67. YiL.T. ZhuJ.X. DongS.Q. ChenM. LiC.F. Berberine exerts antidepressant-like effects via regulating miR-34a-synaptotagmin1/Bcl-2 axis.Chin. Herb. Med.202013111612336117760
    [Google Scholar]
  68. KangS. LiZ. YinZ. JiaR. SongX. LiL. ChenZ. PengL. QuJ. HuZ. LaiX. WangG. LiangX. HeC. Yin The antibacterial mechanism of berberine against Actinobacillus pleuropneumoniae.Nat. Prod. Res.201529232203220610.1080/14786419.2014.100138825613587
    [Google Scholar]
  69. WangT.X. LiK. WangS.G. Study on Jatrorrhizine inducing K562 cells apoptosis.Chin Pharm Sci2010452318221826
    [Google Scholar]
  70. ZhouY. WangY. VongC.T. ZhuY. XuB. RuanC.C. WangY. CheangW.S. Jatrorrhizine improves endothelial function in diabetes and obesity through suppression of endoplasmic reticulum stress.Int. J. Mol. Sci.202223201206410.3390/ijms23201206436292919
    [Google Scholar]
  71. WangS. XuC.L. LuoT. WangH.Q. Effects of Jatrorrhizine on inflammatory response induced by H2O2 in microglia by regulating the MAPK/NF-κB/NLRP3 signaling pathway.Mol. Neurobiol.202360105725573710.1007/s12035‑023‑03385‑w37338804
    [Google Scholar]
  72. HeM.F. LiangJ.H. ShenY.N. ZhangC.W. YangK.Y. LiuL.C. XieQ. HuC. SongX. WangY. Coptisine inhibits influenza virus replication by upregulating p21.Molecules20232814539810.3390/molecules2814539837513270
    [Google Scholar]
  73. WuJ. LuoY. JiangQ. LiS. HuangW. XiangL. LiuD. HuY. WangP. LuX. ZhangG. WangF. MengX. Coptisine from Coptis chinensis blocks NLRP3 inflammasome activation by inhibiting caspase-1.Pharmacol. Res.201914710434810.1016/j.phrs.2019.10434831336157
    [Google Scholar]
  74. CaoQ. HongS. LiY. ChenH. ShenY. ShaoK. LuM. DaiH. MaS. DaiG. Coptisine suppresses tumor growth and progression by down-regulating MFG-E8 in colorectal cancer.RSC Advances2018854309373094510.1039/C8RA05806G35548723
    [Google Scholar]
  75. ShiL. JiaW. ZhangL. XuC. ChenX. YinL. WangN. FangL. QiangG. YangX. DuG. Glucose consumption assay discovers coptisine with beneficial effect on diabetic mice.Eur. J. Pharmacol.201985917252310.1016/j.ejphar.2019.17252331279667
    [Google Scholar]
  76. YuX. Main active component of pogostemon cablin or Coptis chinensis protects against dextran sulfate sodium-induced colitis in mice: effect and mechanism research.Guangzhou Univer. Chin. Med201620161123
    [Google Scholar]
  77. MaiC.T. WuM.M. WangC.L. SuZ.R. ChengY.Y. ZhangX.J. Palmatine attenuated dextran sulfate sodium (DSS)-induced colitis via promoting mitophagy-mediated NLRP3 inflammasome inactivation.Mol. Immunol.2019105768510.1016/j.molimm.2018.10.01530496979
    [Google Scholar]
  78. ZhangX.J. YuanZ.W. QuC. YuX.T. HuangT. ChenP.V. SuZ.R. DouY.X. WuJ.Z. ZengH.F. XieY. ChenJ.N. Palmatine ameliorated murine colitis by suppressing tryptophan metabolism and regulating gut microbiota.Pharmacol. Res.2018137344610.1016/j.phrs.2018.09.01030243842
    [Google Scholar]
  79. LeiC. YaoY. ShenB. LiuJ. PanQ. LiuN. LiL. HuangJ. LongZ. ShaoL. Columbamine suppresses the proliferation and malignization of colon cancer cells via abolishing Wnt/β-catenin signaling pathway.Cancer Manag. Res.2019118635864510.2147/CMAR.S20986131572013
    [Google Scholar]
  80. LiC.X. HeQ.Y. LiuJ. Predictive analysis of quality markers of Coptidis Rhizoma based on system pharmacology and multivariate statistical analysis.China J Chin Metaria Medica2021461127182727
    [Google Scholar]
  81. LiuH. TanD. HuangM. ChenP. ZhangW. Mechanism of Coptis chinensis in Treatment of Type 2 Diabetes Mellitus Based on Network Pharmacology and Molecular Docking.Rehabil Med202131648549410.3724/SP.J.1329.2021.06007
    [Google Scholar]
  82. HeT. WangM. KongJ. WangQ. TianY. LiC. WangQ. LiuC. HuangJ. Integrating network pharmacology and non-targeted metabolomics to explore the common mechanism of Coptis Categorized Formula improving T2DM zebrafish.J. Ethnopharmacol.202228411478410.1016/j.jep.2021.11478434718103
    [Google Scholar]
  83. FangY.H. XieY. LiuS.Y. YangS.H. WangR.X. WangY. FangL.Y. ZhangY. Mechanism of Coptidis Rhizoma in treating chronic enteritis, insomnia and depression based on theory of “brain-gut axis” and network pharmacology.Yaowu Pingjia Yanjiu2023461020942103
    [Google Scholar]
  84. WangX. LiangF. DaiZ. FengX. QiuF. Combination of Coptis chinensis polysaccharides and berberine ameliorates ulcerative colitis by regulating gut microbiota and activating AhR/IL-22 pathway.J Ethnopharmacol2024318Pt B117050
    [Google Scholar]
  85. ChenQ.X. HuangA. LiangD.M. Mechanism of Coptidis Rhizoma in the lntervention of Helicobacter pylori Based on network Pharmacology.Zhongguo Xiandai Zhongyao2021230610051012
    [Google Scholar]
  86. QiY. NiS. HengX. QuS. GeP. ZhaoX. YaoZ. GuoR. YangN. ZhangQ. ZhuH. Uncovering the potential mechanisms of Coptis chinensis Franch. for serious mental illness by network pharmacology and pharmacology-based analysis.Drug Des. Devel. Ther.20221632534210.2147/DDDT.S34202835173416
    [Google Scholar]
  87. GaoR. LvY. Characterizing the antitumor effect of Coptis chinensis and mume fructus against colorectal cancer based on pharmacological analysis.Evid. Based Complement. Alternat. Med.2022202211410.1155/2022/906175235783510
    [Google Scholar]
  88. WuX.H. LiuS.N. LiuL. YuL. ChenH.T. Investigation and analysis of ranunculaceae medicinal plant resources in Qing’an country of Heilongjiang Province.Guiding J Trad Chin Med Pharm202026143436
    [Google Scholar]
  89. WangA.Q. YuanQ.J. GuoN. YangB. SunY. [Research progress on medicinal resources of Coptis and its isoquinoline alkaloids].Zhongguo Zhongyao Zazhi202146143504351334402272
    [Google Scholar]
  90. ChenD.X. WangY. ZhangX. PanY. LiL.Y. [Analysis on genetic diversity and genetic relationship of medicinal species in Coptis by SCoT].Zhongguo Zhongyao Zazhi201742347347728952251
    [Google Scholar]
  91. ChangY.B. Studies on RAPD Identification and Genetic Relationship of Medicinal Plants of Coptis genus.SiChuan University, China 2005.
    [Google Scholar]
  92. ChenH. FanG. HeY. Species evolution and quality evaluation of four Coptis herbal medicinal materials in Southwest China.3 Biotech20177162
    [Google Scholar]
  93. LiY. WinzerT. HeZ. GrahamI.A. Over 100 million years of enzyme evolution underpinning the production of morphine in the papaveraceae family of flowering plants.Plant Commun.20201210002910.1016/j.xplc.2020.10002932685922
    [Google Scholar]
  94. GuoL. WinzerT. YangX. LiY. NingZ. HeZ. TeodorR. LuY. BowserT.A. GrahamI.A. YeK. The opium poppy genome and morphinan production.Science2018362641234334710.1126/science.aat409630166436
    [Google Scholar]
  95. XiaoJ. TianB. XieB. YangE. ShiJ. SunZ. Supercritical fluid extraction and identification of isoquinoline alkaloids from leaves of Nelumbo nucifera Gaertn.Eur. Food Res. Technol.2010231340741410.1007/s00217‑010‑1290‑y
    [Google Scholar]
  96. WenH. YuanX. LiC. LiJ. YueH. Two new isoquinoline alkaloids from Hypecoum leptocarpum Hook. f. et Thoms.Nat. Prod. Res.202220221636377743
    [Google Scholar]
  97. ZiauddinS.S. AijazM.A. ShahabM.A. New bisbenzylisoquinoline alkaloid, isolation and structure elucidation from Cocculus pendulus. Nat. Prod. Res.202220221736346369
    [Google Scholar]
  98. CaoZ. ZhuS. XueZ. ZhangF. ZhangL. ZhangY. GuoY. ZhanG. ZhangX. GuoZ. Isoquinoline alkaloids from Hylomecon japonica and their potential anti-breast cancer activities.Phytochemistry202220211332110.1016/j.phytochem.2022.11332135921889
    [Google Scholar]
  99. HeY. HouP. FanG. ArainS. PengC. Comprehensive analyses of molecular phylogeny and main alkaloids for Coptis (Ranunculaceae) species identification.Biochem. Syst. Ecol.201456889410.1016/j.bse.2014.05.002
    [Google Scholar]
  100. WuJ. KuangY.H. Determination of alkaloids content in Coptis deltoidea and Coptis teeta. Zhongguo Xiandai Zhongyao20192104464467
    [Google Scholar]
  101. ZhangB.X. PengF. LuoW.Z. WangC.H. LuoJ.J. YangY. Six alkaloid content in the different origin of Coptis chinensis Franch measurement.Chin J Mod Appl Pharm20112802128133
    [Google Scholar]
  102. LiJ.J. LiuL.Q. WenJ.W. ChenH.T. HeY. Effects of temperature difference and moisture on gene expression of alkaloid synthesis in Coptis chinensis Franch.China Measure Test201948065157
    [Google Scholar]
  103. LiuY. WangB. ShuS. LiZ. SongC. LiuD. NiuY. LiuJ. ZhangJ. LiuH. HuZ. HuangB. LiuX. LiuW. JiangL. AlamiM.M. ZhouY. MaY. HeX. YangY. ZhangT. HuH. BarkerM.S. ChenS. WangX. NieJ. Analysis of the Coptis chinensis genome reveals the diversification of protoberberine-type alkaloids.Nat. Commun.2021121327610.1038/s41467‑021‑23611‑034078898
    [Google Scholar]
  104. LiuW. TianX. FengY. HuJ. WangB. ChenS. LiuD. LiuY. Genome-wide analysis of bHLH gene family in Coptis chinensis provides insights into the regulatory role in benzylisoquinoline alkaloid biosynthesis.Plant Physiol. Biochem.202320110784610.1016/j.plaphy.2023.10784637390693
    [Google Scholar]
  105. HeS.M. LiangY.L. CongK. ChenG. ZhaoX. ZhaoQ.M. ZhangJ.J. WangX. DongY. YangJ.L. ZhangG.H. QianZ.L. FanW. YangS.C. Identification and characterization of genes involved in benzylisoquinoline alkaloid biosynthesis in Coptis Species.Front. Plant Sci.2018973110.3389/fpls.2018.0073129915609
    [Google Scholar]
  106. CongK. Transcriptomic analysis of genes related to synthesis of Coptis chinensis Franch isoquinoline alkaloids and SSR markers.Yunnan Agricultural University2017
    [Google Scholar]
  107. ZhongF. HuangL. QiL. MaY. YanZ. Full-length transcriptome analysis of Coptis deltoidea and identification of putative genes involved in benzylisoquinoline alkaloids biosynthesis based on combined sequencing platforms.Plant Mol. Biol.20201024-547749910.1007/s11103‑019‑00959‑y31902069
    [Google Scholar]
  108. IkezawaN. IwasaK. SatoF. CYP719A subfamily of cytochrome P450 oxygenases and isoquinoline alkaloid biosynthesis in Eschscholzia californica. Plant Cell Rep.200928112313310.1007/s00299‑008‑0624‑818854999
    [Google Scholar]
  109. HuangX. JiaA. HuangT. WangL. YangG. ZhaoW. Genomic profiling of WRKY transcription factors and functional analysis of CcWRKY7, CcWRKY29, and CcWRKY32 related to protoberberine alkaloids biosynthesis in Coptis chinensis Franch.Front. Genet.202314115164510.3389/fgene.2023.115164537035743
    [Google Scholar]
  110. LiscombeD.K. MacLeodB.P. LoukaninaN. NandiO.I. FacchiniP.J. Evidence for the monophyletic evolution of benzylisoquinoline alkaloid biosynthesis in angiosperms.Phytochemistry200566111374139310.1016/j.phytochem.2005.04.02915925393
    [Google Scholar]
  111. LiX. LiQ. JiaoX. TangH. ChengY. MaY. CuiG. TangJ. ChenY. GuoJ. HuangL. Phylogenetic analysis and functional characterization of norcoclaurine synthase involved in benzylisoquinoline alkaloids biosynthesis in Stephania tetrandra.J. Cell. Physiol.20232023jcp.3106510.1002/jcp.3106537357496
    [Google Scholar]
  112. De SousaJ.P.M. OliveiraN.C.S.A. FernandesP.A. Rational Engineering of (S)-Norcoclaurine Synthase for Efficient Benzylisoquinoline Alkaloids Biosynthesis.Molecules20232811426510.3390/molecules2811426537298742
    [Google Scholar]
  113. GalanieS. SmolkeC.D. Optimization of yeast-based production of medicinal protoberberine alkaloids.Microb. Cell Fact.201514114410.1186/s12934‑015‑0332‑326376732
    [Google Scholar]
  114. KotopkaB.J. LiY. SmolkeC.D. Synthetic biology strategies toward heterologous phytochemical production.Nat. Prod. Rep.201835990292010.1039/C8NP00028J29897091
    [Google Scholar]
  115. LiY. LiS. ThodeyK. TrenchardI. CravensA. SmolkeC.D. Complete biosynthesis of noscapine and halogenated alkaloids in yeast.Proc. Natl. Acad. Sci. USA201811517E3922E393110.1073/pnas.172146911529610307
    [Google Scholar]
  116. LinruiWu. A biosynthetic network for protoberberine production in Coptis chinensis.Hortic. Res.20232023uhad259
    [Google Scholar]
  117. SuC. LiC. SunK. LiW. LiuR. Quantitative analysis of bioactive components in walnut leaves by UHPLC-Q-Orbitrap HRMS combined with QAMS.Food Chem.202033112718010.1016/j.foodchem.2020.12718032544651
    [Google Scholar]
  118. WuX.Q. ShiX.D. JiangH.Z. WeY. RenY.Y. TanR. Study on quantitative analysis of multi-index components and establishment of characteristic chromatogram of Chuanhuanglian.Modern Trad Chin Med Materia Materia-World Sci Technol2019210816421648
    [Google Scholar]
  119. WangM.Q. LuoD.Q. LiuH.J. Separation and analysis of characteristic components in Coptis chinensis flower moss and content determination of 4 components.Central South Pharmacy2023210513411346
    [Google Scholar]
  120. YangY. PengJ. LiF. LiuX. DengM. WuH. Determination of alkaloid contents in various tissues of Coptis chinensis Franch. by reversed phase-high performance liquid chromatography and ultraviolet spectrophotometry.J. Chromatogr. Sci.201755555656310.1093/chromsci/bmx00928203760
    [Google Scholar]
  121. HeF. HuangY.F. DaiW. QuX.Y. LuJ.G. LaoC.C. LuoW.H. SunD.M. WeiM. XiaoS.Y. XieY. LiuL. ZhouH. The localization of the alkaloids in Coptis chinensis rhizome by time-of-flight secondary ion mass spectrometry.Front. Plant Sci.202213109264310.3389/fpls.2022.109264336618650
    [Google Scholar]
  122. DongJ. ZhengH. ZengQ. ZhangX. DuL. BaisS. Protective effect of D-(−)-quinic acid as food supplement in modulating AMP-activated protein kinase signalling pathway activation in HFD induced obesity.Hum. Exp. Toxicol.20224110.1177/0960327122111980436006763
    [Google Scholar]
  123. KoriemK.M.M. TharwatH.A.K. Malic Acid improves behavioral, biochemical, and molecular disturbances in the hypothalamus of stressed rats.J. Integr. Neurosci.20232249810.31083/j.jin220409837519180
    [Google Scholar]
  124. ShouJ.W. ShawP.C. Berberine activates PPARδ and promotes gut microbiota-derived butyric acid to suppress hepatocellular carcinoma.Phytomedicine202311515484210.1016/j.phymed.2023.15484237148713
    [Google Scholar]
  125. LiuL. WangZ.B. SongY. YangJ. WuL.J. YangB.Y. WangQ.H. WangL.Q. WangR.X. YangC.J. Simultaneous determination of eight alkaloids in rat plasma by UHPLC-MS/MS after oral administration of Coptis deltoidea C. Y. Cheng et Hsiao and Coptis chinensis Franch.Molecules201621791310.3390/molecules2107091327428938
    [Google Scholar]
  126. de SousaD.P. DamascenoR.O.S. AmoratiR. ElshabrawyH.A. de CastroR.D. BezerraD.P. NunesV.R.V. GomesR.C. LimaT.C. Essential Oils: Chemistry and pharmacological activities.Biomolecules2023137114410.3390/biom1307114437509180
    [Google Scholar]
  127. ZhangM.Y. YuY.Y. WangS.F. ZhangQ. WuH.W. WeiJ.Y. YangW. LiS.Y. YangH.J. Cardiotoxicity evaluation of nine alkaloids from Rhizoma Coptis.Hum. Exp. Toxicol.201837218519510.1177/096032711769563329233041
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266305274240723120426
Loading
/content/journals/ctmc/10.2174/0115680266305274240723120426
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test