Skip to content
2000
Volume 24, Issue 24
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Introduction

This study explores the potential of the endophytic fungus AKW for melanin production and its anticancer activity.

Methods

We report a significant achievement: AKW synthesized 4.89 g/l of melanin in a simple fermentation medium devoid of tyrosine, a precursor typically required for melanin biosynthesis. This suggests a potentially novel pathway for melanin production compared to previous studies relying on complex media and tyrosine. Furthermore, the isolated and characterized melanin exhibited promising selectivity as an anti-cancer agent. It triggered apoptosis in A431 cancer cells, demonstrating some selectivity compared to normal cells. This selectivity was confirmed by IC values and further supported by gene expression changes in A431 cells. Melanin treatment downregulated the anti-apoptotic Bcl2 gene while upregulating pro-apoptotic Bax and p53 genes, indicating its ability to induce programmed cell death in cancer cells.

Results

Our results demonstrate that AKW-derived melanin exhibits cytotoxic effects against A431, HEPG2, and MCF7 cell lines. Interestingly, the present fungal strain synthesized melanin in a simple medium without requiring precursors.

Conclusion

The selective activity of the current melanin towards cancer cells, its ability to induce apoptosis, and its relatively low toxicity towards normal cells warrant further investigation for its development as a novel therapeutic option.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266300091240730111333
2024-10-01
2025-01-22
Loading full text...

Full text loading...

References

  1. SolanoF. Melanins: skin pigments and much more-types, structural models, biological functions and formation routes.New J. Sci.2014201449827610.1155/2014/498276
    [Google Scholar]
  2. ToledoA.V. FrancoM.E.E. Yanil LopezS.M. TroncozoM.I. SaparratM.C.N. BalattiP.A. Melanins in fungi: Types, localization and putative biological roles.Physiol. Mol. Plant Pathol.2017992610.1016/j.pmpp.2017.04.004
    [Google Scholar]
  3. EisenmanH.C. CasadevallA. Synthesis and assembly of fungal melanin.Appl. Microbiol. Biotechnol.201293393194010.1007/s00253‑011‑3777‑222173481
    [Google Scholar]
  4. EnochsW.S. NilgesM.J. SwartzH.M. A standardized test for the identification and characterization of melanins using electron paramagnetic resonance (EPR) spectroscopy.Pigment Cell Res.199362919910.1111/j.1600‑0749.1993.tb00587.x8391699
    [Google Scholar]
  5. El-NaggarN.E.A. SaberW.I.A. Natural melanin: current trends, and future approaches, with especial reference to microbial source.Polymers2022147133910.3390/polym1407133935406213
    [Google Scholar]
  6. KurianN. BhatS.G. Bacterial melanins.Microbial Bioproducts2014197110
    [Google Scholar]
  7. CorderoR.J.B. CasadevallA. Functions of fungal melanin beyond virulence.Fungal Biol. Rev.20173129911210.1016/j.fbr.2016.12.00331649746
    [Google Scholar]
  8. PavanM.E. LópezN.I. PettinariM.J. Melanin biosynthesis in bacteria, regulation and production perspectives.Appl. Microbiol. Biotechnol.202010441357137010.1007/s00253‑019‑10245‑y31811318
    [Google Scholar]
  9. SainiA.S. MeloJ.S. One-pot green synthesis of eumelanin: process optimization and its characterization.RSC Adv.2015559476714768010.1039/C5RA01962A
    [Google Scholar]
  10. MartínezL.M. MartinezA. GossetG. Production of melanins with recombinant microorganisms.Front. Bioeng. Biotechnol.2019728510.3389/fbioe.2019.0028531709247
    [Google Scholar]
  11. ZouY. HuW. MaK. TianM. Fermentative production of melanin by the fungus Auricularia auricula using wheat bran extract as a major nutrient source.Food Sci. Technol. Res.2017231232910.3136/fstr.23.23
    [Google Scholar]
  12. GuoJ. RaoZ. YangT. ManZ. XuM. ZhangX. High-level production of melanin by a novel isolate of Streptomyces kathirae.FEMS Microbiol. Lett.20143571859110.1111/1574‑6968.1249724910146
    [Google Scholar]
  13. ElsayisA. HassanS.W.M. GhanemK.M. KhairyH. Optimization of melanin pigment production from the halotolerant black yeast Hortaea werneckii AS1 isolated from solar salter in Alexandria.BMC Microbiol.20222219210.1186/s12866‑022‑02505‑135395716
    [Google Scholar]
  14. RiberaJ. PanzarasaG. StobbeA. OsypovaA. RupperP. KloseD. SchwarzeF.W.M.R. Scalable biosynthesis of melanin by the basidiomycete Armillariaceplstipes.J. Agric. Food Chem.201967113213910.1021/acs.jafc.8b0507130541276
    [Google Scholar]
  15. Almeida-PaesR. NosanchukJ.D. Zancope-OliveiraR.M. Fungal melanins: Biosynthesis and biological function melanin: Biosynthesis, functions and health effects.HauppaugeNova Science Publishers INC201277107
    [Google Scholar]
  16. GesslerN.N. EgorovaA.S. BelozerskayaT.A. [Melanin pigments of fungi under extreme environmental conditions (review)].Prikl. Biokhim. Mikrobiol.201450212513410.7868/S055510991402009325272728
    [Google Scholar]
  17. CunhaM.M.L. FranzenA.J. SeabraS.H. HerbstM.H. VugmanN.V. BorbaL.P. de SouzaW. RozentalS. Melanin in Fonsecaea pedrosoi: A trap for oxidative radicals.BMC Microbiol.20101018010.1186/1471‑2180‑10‑8020233438
    [Google Scholar]
  18. BoccaA.L. BritoP.P.M.S. FigueiredoF. TostaC.E. Inhibition of nitric oxide production by macrophages in chromoblastomycosis: A role for Fonsecaea pedrosoi melanin.Mycopathologia2006161419520310.1007/s11046‑005‑0228‑616552481
    [Google Scholar]
  19. WangY. AisenP. CasadevallA. Cryptococcus neoformans melanin and virulence: mechanism of action.Infect. Immun.19956383131313610.1128/iai.63.8.3131‑3136.19957622240
    [Google Scholar]
  20. IkedaR. SugitaT. JacobsonE.S. ShinodaT. Effects of melanin upon susceptibility of Cryptococcus to antifungals.Microbiol. Immunol.200347427127710.1111/j.1348‑0421.2003.tb03395.x12801064
    [Google Scholar]
  21. PatelK.R. WymanJ.A. PatelK.A. BurdenB.J. A mutant of Bacillus thuringensis producing a dark-brown pigment with increased Uv resistance and insecticidal activity.J. Invertebr. Pathol.199667212012410.1006/jipa.1996.0018
    [Google Scholar]
  22. NosanchukJ.D. CasadevallA. The contribution of melanin to microbial pathogenesis.Cell. Microbiol.20035420322310.1046/j.1462‑5814.2003.00268.x12675679
    [Google Scholar]
  23. PolapallyR. MansaniM. RajkumarK. BurgulaS. HameedaB. AlhazmiA. BantunF. AlmalkiA.H. HaqueS. El EnshasyH.A. SayyedR.Z. Melanin pigment of Streptomyces puniceus RHPR9 exhibits antibacterial, antioxidant and anticancer activities.PLoS One2022174e026667610.1371/journal.pone.026667635468144
    [Google Scholar]
  24. RashadE.M. ShaheenD.M. Al-AskarA.A. GhoneemK.M. ArishiA.A. HassanE.S.A. SaberW.I.A. Seed endophytic Achromobacter sp. F23KW as a promising growth promoter and biocontrol of Rhizoctonia root rot of fenugreek.Molecules20222717554610.3390/molecules2717554636080312
    [Google Scholar]
  25. SaberW.I.A. Al-AskarA.A. GhoneemK.M. Exclusive biosynthesis of pullulan using taguchi’s approach and decision tree learning algorithm by a novel endophytic Aureobasidium pullulans strain.Polymers2023156141910.3390/polym1506141936987200
    [Google Scholar]
  26. GanieS.A. RatherL.J. LiQ. A review on anticancer applications of pullulan and pullulan derivative nanoparticles.Carbohyd. Poly.Technol. Applic.2021210011510.1016/j.carpta.2021.100115
    [Google Scholar]
  27. Al-AskarA.A. RashadE.M. MoussaZ. GhoneemK.M. MostafaA.A. Al-OtibiF.O. ArishiA.A. SaberW.I.A. A novel endophytic Trichoderma longibrachiatum WKA55 with biologically active metabolites for promoting germination and reducing mycotoxinogenic fungi of peanut.Front. Microbiol.20221377241710.3389/fmicb.2022.77241735401430
    [Google Scholar]
  28. SaberW.I.A. GhoniemA.A. Al-OtibiF.O. El-HershM.S. EldadamonyN.M. MenaaF. ElattarK.M. A comparative study using response surface methodology and artificial neural network towards optimized production of melanin by Aureobasidium pullulans AKW.Sci. Rep.20231311354510.1038/s41598‑023‑40549‑z37598271
    [Google Scholar]
  29. ManitchotpisitP. WatanapoksinR. PriceN.P.J. BischoffK.M. TayehM. TeeraworawitS. KriwongS. LeathersT.D. Aureobasidium pullulans as a source of liamocins (heavy oils) with anticancer activity.World J. Microbiol. Biotechnol.20143082199220410.1007/s11274‑014‑1639‑724659335
    [Google Scholar]
  30. de MenezesGC de MedeirosTD de Oliveira LimaIG da SilvaMB de QueirozAC DuarteAW de OliveiraVM RosaLH BicasJL Pigments produced by fungi and bacteria from extreme environments.Microb. Food. Ind.202319393440
    [Google Scholar]
  31. Al-TayibO.A. ElBadwiS. M. BakhietA.O. Cytotoxicity assay for herbal melanin derived from Nigella sativa seeds using in vitro cell lines.IOSR J. Humanit. Soc. Sci.201722104351
    [Google Scholar]
  32. SecaA. PintoD. Plant secondary metabolites as anticancer agents: successes in clinical trials and therapeutic application.Int. J. Mol. Sci.201819126310.3390/ijms1901026329337925
    [Google Scholar]
  33. MosmannT. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays.J. Immunol. Methods1983651-2556310.1016/0022‑1759(83)90303‑46606682
    [Google Scholar]
  34. DorotaM.O. JanS. AfalC. TomaszA.D. DariuszM. Cell cycle, melanin contents and apoptosis processes in b16 and cloudman s91 mouse melanoma cells after exposure to cytostatic drugs.Acta Pol. Pharm.Drug Res.2007635469478
    [Google Scholar]
  35. Al-ObeedO. El-ObeidA.S. Matou-NasriS. Vaali-MohammedM.A. AlHaidanY. ElwatidyM. Al DosaryH. AlehaidebZ. AlkhayalK. HaseebA. McKerrowJ. AhmadR. AbdullaM.H. Herbal melanin inhibits colorectal cancer cell proliferation by altering redox balance, inducing apoptosis, and modulating MAPK signaling.Cancer Cell Int.202020112610.1186/s12935‑020‑01206‑x32322173
    [Google Scholar]
  36. LeiQ. HeD. DingL. KongF. HeP. HuangJ. GuoJ. BrinkerC.J. LuoG. ZhuW. YuY. microneedle patches integrated with biomineralized melanin nanoparticles for simultaneous skin tumor photothermal therapy and wound healing.Adv. Funct. Mater.20223222211326910.1002/adfm.202113269
    [Google Scholar]
  37. FakhryH. GhoniemA.A. Al-OtibiF.O. HelmyY.A. El HershM.S. ElattarK.M. SaberW.I.A. ElsayedA. A comparative study of Cr(VI) Sorption by Aureobasidium pullulans AKW biomass and its extracellular melanin: Complementary modeling with equilibrium isotherms, kinetic studies, and decision tree modeling.Polymers20231518375410.3390/polym1518375437765609
    [Google Scholar]
  38. WangW. ZhangK. LinC. ZhaoS. GuanJ. ZhouW. RuX. CongH. YangQ. Influence of Cmr1 in the regulation of antioxidant function melanin biosynthesis in Aureobasidium pullulans. Foods20231211213510.3390/foods1211213537297380
    [Google Scholar]
  39. El-GamalM.S. El-BialyH.A. ElsayedM.A. KhalifaM.A. Isolation and characterization of melanized yeast form of Aureobasidium pullulans and physiological studies on the melanization process.J. Nucl. Sci. Technol.2017515772
    [Google Scholar]
  40. MüjdeciG.N. Experimental modeling and optimization of melanin production by Aureobasidium pullulans NBRC 100716 in carrot peel extract.Environ. Prog. Sustain. Energy2022416e1391910.1002/ep.13919
    [Google Scholar]
  41. SegneanuA.E. GozescuI. DabiciA. SfirloagaP. SzabadaiZ. Organic compounds FT-IR spectroscopyRijeka, CroatiaInTechopen2012145
    [Google Scholar]
  42. CabritaE.J. BergerS. DOSY studies of hydrogen bond association: tetramethylsilane as a reference compound for diffusion studies.Magn. Reson. Chem.200139S1S142S14810.1002/mrc.917
    [Google Scholar]
  43. KittsD.D. WijewickremeA.N. HuC. Antioxidant properties of a North American ginseng extract.Mol. Cell. Biochem.20002031/211010.1023/A:100707841463910724326
    [Google Scholar]
  44. ParejoI. CodinaC. PetrakisC. KefalasP. Evaluation of scavenging activity assessed by Co(II)/EDTA-induced luminol chemiluminescence and DPPH· (2,2-diphenyl-1-picrylhydrazyl) free radical assay.J. Pharmacol. Toxicol. Methods200044350751210.1016/S1056‑8719(01)00110‑111395328
    [Google Scholar]
  45. BurnettL.C. LunnG. CoicoR. Biosafety: guidelines for working with pathogenic and infectious microorganisms.Curr. Protoc. Microbiol.2009131110.1002/9780471729259.mc01a01s1319412909
    [Google Scholar]
  46. ZerradA. AnissiJ. GhanamJ. SendideK. HassouniM. Antioxidant and antimicrobial activities of melanin produced by a Pseudomonas balearica strain.J. Biotechnology Lett.20145087094
    [Google Scholar]
  47. CoryG. Scratch-wound assay.Methods Mol Biol20117692530
    [Google Scholar]
  48. ThabrewM.I. HughesR.D. McFarlaneI.G. Screening of hepatoprotective plant components using a HepG2 cell cytotoxicity assay.J. Pharm. Pharmacol.201149111132113510.1111/j.2042‑7158.1997.tb06055.x9401951
    [Google Scholar]
  49. OlsenC.L. HsuP.P. GlienkeJ. RubanyiG.M. BrooksA.R. Hedgehog-interacting protein is highly expressed in endothelial cells but down-regulated during angiogenesis and in several human tumors.BMC Cancer2004414310.1186/1471‑2407‑4‑4315294024
    [Google Scholar]
  50. RamadanM.A. ShawkeyA.E. RabehM.A. AbdellatifA.O. Expression of P53, BAX, and BCL-2 in human malignant melanoma and squamous cell carcinoma cells after tea tree oil treatment in vitro .Cytotechnology201971146147310.1007/s10616‑018‑0287‑430599074
    [Google Scholar]
  51. RamanN.M. ShahP.H. MohanM. RamasamyS. Improved production of melanin from Aspergillus fumigatus AFGRD105 by optimization of media factors.AMB Express2015517210.1186/s13568‑015‑0161‑026597959
    [Google Scholar]
  52. GaddG.M. Melanin production and differentiation in batch cultures of the polymorphic fungus Aureobasidium pullulans.FEMS Microbiol. Lett.19809323724010.1111/j.1574‑6968.1980.tb05644.x
    [Google Scholar]
  53. Tran-LyA.N. ReyesC. SchwarzeF.W.M.R. RiberaJ. Microbial production of melanin and its various applications.World J. Microbiol. Biotechnol.2020361117010.1007/s11274‑020‑02941‑z33043393
    [Google Scholar]
  54. DeepthiS. KM. MishraN. AgsarD. Melanin production by Pseudomonas sp. and in silico comparative analysis of tyrosinase gene sequences.BioTechnologia2021102441142410.5114/bta.2021.11110636605604
    [Google Scholar]
  55. SurwaseS.N. JadhavS.B. PhugareS.S. JadhavJ.P. Optimization of melanin production by Brevundimonas sp. SGJ using response surface methodology.3 Biotech20133318719410.1007/s13205‑012‑0082‑428324367
    [Google Scholar]
  56. JalmiP. BodkeP. WahidullahS. RaghukumarS. The fungus Gliocephalotrichum simplex as a source of abundant, extracellular melanin for biotechnological applications.World J. Microbiol. Biotechnol.201228250551210.1007/s11274‑011‑0841‑022806845
    [Google Scholar]
  57. KogejT. WheelerM.H. Lanisnik RiznerT. Gunde-CimermanN. Evidence for 1,8-dihydroxynaphthalene melanin in three halophilic black yeasts grown under saline and non-saline conditions.FEMS Microbiol. Lett.2004232220320910.1016/S0378‑1097(04)00073‑415033240
    [Google Scholar]
  58. ŚliżewskaW. Struszczyk-ŚwitaK. Marchut-MikołajczykO. Metabolic potential of halophilic filamentous fungi-current perspective.Int. J. Mol. Sci.2022238418910.3390/ijms2308418935457008
    [Google Scholar]
  59. GómezB.L. NosanchukJ.D. Melanin and fungi.Curr. Opin. Infect. Dis.2003162919610.1097/00001432‑200304000‑0000512734441
    [Google Scholar]
  60. TamJ.C.W. LauK.M. LiuC.L. ToM.H. KwokH.F. LaiK.K. LauC.P. KoC.H. LeungP.C. FungK.P. LauC.B.S. The in vivo and in vitro diabetic wound healing effects of a 2-herb formula and its mechanisms of action.J. Ethnopharmacol.2011134383183810.1016/j.jep.2011.01.03221291991
    [Google Scholar]
  61. WakamatsuK. ItoS. Advanced chemical methods in melanin determination.Pigment Cell Res.200215317418310.1034/j.1600‑0749.2002.02017.x12028581
    [Google Scholar]
  62. BayramS. DengizC. GerçekY.C. CetinI. TopculM.R. Bioproduction, structure elucidation and in vitro antiproliferative effect of eumelanin pigment from Streptomyces parvus BSB49.Arch. Microbiol.202020292401240910.1007/s00203‑020‑01956‑232591909
    [Google Scholar]
  63. El-NaggarN.E.A. El-EwasyS.M. Bioproduction, characterization, anticancer and antioxidant activities of extracellular melanin pigment produced by newly isolated microbial cell factories Streptomyces glaucescens NEAE-H.Sci. Rep.2017714212910.1038/srep4212928195138
    [Google Scholar]
  64. CoatesJ. Interpretation of infrared spectra, a practical approach.Encyclopedia of Analytical Chemistry: Applications, Theory, and Instrumentation.Wiley Online Library200612108151083710.1002/9780470027318.a5606
    [Google Scholar]
  65. Pralea I.E. MoldovanR.C. PetracheA.M. IlieșM. HegheșS.C. IelciuI. NicoarăR. MoldovanM. EneM. RaduM. UifăleanA. IugaC.A. From extraction to advanced analytical methods: The challenges of melanin analysis.Int. J. Mol. Sci.20192016394310.3390/ijms2016394331412656
    [Google Scholar]
  66. BertazzoA. CostaC.V.L. AllegriG. FavrettoD. TraldiP. Application of matrix-assisted laser desorption/ionization mass spectrometry to the detection of melanins formed from Dopa and dopamine.J. Mass Spectrom.199934992292910.1002/(SICI)1096‑9888(199909)34:9<922::AID‑JMS851>3.0.CO;2‑F10491588
    [Google Scholar]
  67. UekiR. FukusakiE. ShimmaS. History of hair analysis by mass spectrometry imaging.J. Biosci. Bioeng.20221332899710.1016/j.jbiosc.2021.10.00934840067
    [Google Scholar]
  68. KatritzkyA.R. AkhmedovN.G. DenisenkoS.N. DeniskoO.V. 1H NMR spectroscopic characterization of solutions of Sepia melanin, Sepia melanin free acid and human hair melanin.Pigment Cell Res.2002152939710.1034/j.1600‑0749.2002.1o062.x11936275
    [Google Scholar]
  69. OmotaniH. YasudaM. IshiiR. IkarashiT. FukuuchiT. YamaokaN. MawatariK. KanekoK. NakagomiK. Analysis of l-DOPA-derived melanin and a novel degradation product formed under alkaline conditions.J. Pharm. Biomed. Anal.2016125222610.1016/j.jpba.2016.03.01926999318
    [Google Scholar]
  70. WanP. ZhangG. Proton transfer to photoexcited aromatic compounds in solution.Res. Chem. Intermed.199319211912910.1163/156856793X00037
    [Google Scholar]
  71. TaranginiK. MishraS. Production, characterization and analysis of melanin from isolated marine Pseudomonas sp. using vegetable waste.Res. J. Eng. Sci.201324046
    [Google Scholar]
  72. NofsingerJ.B. ForestS. EibestL.M. GoldK.A. SimonJ.D. Probing the building blocks of eumelanins using scanning electron microscopy.Pigment Cell Res.200013317918410.1034/j.1600‑0749.2000.130310.x10885677
    [Google Scholar]
  73. SchweitzerA.D. HowellR.C. JiangZ. BryanR.A. GerfenG. ChenC.C. MahD. CahillS. CasadevallA. DadachovaE. Physico-chemical evaluation of rationally designed melanins as novel nature-inspired radioprotectors.PLoS One200949e722910.1371/journal.pone.000722919789711
    [Google Scholar]
  74. AmarowiczR. PeggR.B. Rahimi-MoghaddamP. BarlB. WeilJ.A. Free-radical scavenging capacity and antioxidant activity of selected plant species from the Canadian prairies.Food Chem.200484455156210.1016/S0308‑8146(03)00278‑4
    [Google Scholar]
  75. KageyamaH. Waditee-SirisatthaR. Antioxidative, anti-inflammatory, and anti-aging properties of mycosporine-like amino acids: Molecular and cellular mechanisms in the protection of skin-aging.Mar. Drugs201917422210.3390/md1704022231013795
    [Google Scholar]
  76. BarrettoD.A. VootlaS.K. Biological activities of melanin pigment extracted from Bombyx mori gut-associated yeast Cryptococcus rajasthanensis KY627764.World J. Microbiol. Biotechnol.2020361015910.1007/s11274‑020‑02924‑032974753
    [Google Scholar]
  77. RaniM.H.S. RameshT. SubramanianJ. KalaiselvamM. Production and characterization of melanin pigment from halophilic black yeast Hortaea werneckii.Int. J. Pharma Res. Rev.201328917
    [Google Scholar]
  78. PouloseN. SajayanA. RavindranA. SreechithraT.V. VardhanV. SelvinJ. KiranG.S. Photoprotective effect of nanomelanin-seaweed concentrate in formulated cosmetic cream: With improved antioxidant and wound healing properties.J. Photochem. Photobiol. B. Biol.2022205111816
    [Google Scholar]
  79. El-ObeidA. AlajmiH. HarbiM. YahyaW.B. Al-EidiH. AlaujanM. HaseebA. TrivilegioT. AlhallajA. AlghamdiS. AjlouniA.W. Matou-NasriS. Distinct anti-proliferative effects of herbal melanin on human acute monocytic leukemia THP-1 cells and embryonic kidney HEK293 cells.BMC Complement. Med. Therap.202020115410.1186/s12906‑020‑02944‑132448225
    [Google Scholar]
  80. BhatiaS. MillerN.J. LuH. LonginoN.V. IbraniD. ShinoharaM.M. ByrdD.R. ParvathaneniU. Intratumoral G100, a TLR4 agonist, induces anti-tumor immune responses and tumor regression in patients with Merkel cell carcinoma.Clin. Cancer Res.20192541185119510.1158/1078‑0432.CCR‑18‑046930093453
    [Google Scholar]
  81. MarcoviciI. CoricovacD. PinzaruI. MacasoiI.G. PopescuR. ChioibasR. ZupkoI. DeheleanC.A. Melanin and melanin-functionalized nanoparticles as promising tools in cancer research : A review.Cancers2022147183810.3390/cancers1407183835406610
    [Google Scholar]
  82. RajabatharJ.R. Al-LohedanH. ArokiyarajS. MohammedF. Al-DhayanD.M. FaqihiN.A. Al-SaighH. Herbal melanin inhibits real-time cell proliferation, downregulates anti-apoptotic proteins and upregulates pro-apoptotic p53 expression in MDA-MB-231 and HCT-116 cancer cell lines.Medicina20235912206110.3390/medicina5912206138138165
    [Google Scholar]
  83. ZhangD. WuM. ZengY. WuL. WangQ. HanX. LiuX. LiuJ. Chlorin e6 conjugated poly(dopamine) nanospheres as PDT/PTT dual-modal therapeutic agents for enhanced cancer therapy.ACS Appl. Mater. Interfaces20157158176818710.1021/acsami.5b0102725837008
    [Google Scholar]
  84. SlominskiR.M. SarnaT. PłonkaP.M. RamanC. BrożynaA.A. SlominskiA.T. Melanoma, melanin, and melanogenesis: The Yin and Yang relationship.Front. Oncol.20221284249610.3389/fonc.2022.84249635359389
    [Google Scholar]
  85. RózanowskaM. SarnaT. LandE.J. TruscottT.G. Free radical scavenging properties of melanin interaction of eu and pheo-melanin models with reducing and oxidising radicals.Free Radic. Biol. Med.1999265-651852510218640
    [Google Scholar]
  86. RzepkaZ. BuszmanE. BeberokA. WrześniokD. From tyrosine to melanin: Signaling pathways and factors regulating melanogenesis.Postepy Hig. Med. Dosw.201670069570810.5604/17322693.120803327356601
    [Google Scholar]
  87. LiJ. QuB. WangQ. NingX. RenS. LiuC. ZhangR. Hollow manganese-doped calcium phosphate nanoparticles treated with melanin nanoparticles and thalidomide for photothermal and anti-angiogenic cancer therapy.ACS Appl. Nano Mater.2022567733774310.1021/acsanm.2c00483
    [Google Scholar]
  88. LiuS. YoungchimS. Zamith-MirandaD. NosanchukJ.D. Fungal melanin and the mammalian immune system.J. Fungi20217426410.3390/jof704026433807336
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266300091240730111333
Loading
/content/journals/ctmc/10.2174/0115680266300091240730111333
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): Antibacterial; Anticancer; Antiproliferative; Antitumor; Apoptosis; Endophytic
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test