Skip to content
2000
Volume 25, Issue 1
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

This review highlights major developments in the application of green organocatalytic and enzymatic dynamic kinetic resolutions (DKRs) in the total synthesis of biorelevant scaffolds. It illustrates the diversity of useful bioactive products and intermediates that can be synthesized under greener and more economic conditions through the combination of the powerful concept of DKR, which allows the resolution of racemic compounds with up to 100% yield, with either asymmetric organocatalysis or enzymatic catalysis, avoiding the use of toxic and expensive metals. With the need for more ecologic synthetic technologies, this field will undoubtedly expand its scope in the future with the employment of other organocatalysts/enzymes to even more types of transformations, thus allowing powerful greener and more economic strategies to reach other biologically important molecules.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266294434240322043536
2024-03-27
2025-06-28
Loading full text...

Full text loading...

References

  1. RobinsonD.E.J.E. BullS.D. Kinetic resolution strategies using non-enzymatic catalysts.Tetrahedron Asymmetry200314111407144610.1016/S0957‑4166(03)00209‑X
    [Google Scholar]
  2. BreuerM. DitrichK. HabicherT. HauerB. KeßelerM. StürmerR. ZelinskiT. Industrial methods for the production of optically active intermediates.Angew. Chem. Int. Ed.200443778882410.1002/anie.20030059914767950
    [Google Scholar]
  3. VedejsE. JureM. Efficiency in nonenzymatic kinetic resolution.Angew. Chem. Int. Ed.200544263974400110.1002/anie.20046084215942973
    [Google Scholar]
  4. FogassyE. NógrádiM. KozmaD. EgriG. PálovicsE. KissV. Optical resolution methods.Org. Biomol. Chem.20064163011303010.1039/B603058K16886066
    [Google Scholar]
  5. TurnerN.J. Controlling chirality.Curr. Opin. Biotechnol.200314440140610.1016/S0958‑1669(03)00093‑412943849
    [Google Scholar]
  6. TurnerN.J. Directed evolution of enzymes for applied biocatalysis.Trends Biotechnol.2003211147447810.1016/j.tibtech.2003.09.00114573359
    [Google Scholar]
  7. AlexeevaM. CarrR. TurnerN.J. Directed evolution of enzymes: New biocatalysts for asymmetric synthesis.Org. Biomol. Chem.20031234133413710.1039/b311055a14685314
    [Google Scholar]
  8. SchnellB. FaberK. KroutilW. Enzymatic racemization and its application to synthetic biotransformations.Adv. Synth. Catal.20033456-765366610.1002/adsc.200303009
    [Google Scholar]
  9. TurnerN.J. Enzyme catalysed deracemisation and dynamic kinetic resolution reactions.Curr. Opin. Chem. Biol.20048211411910.1016/j.cbpa.2004.02.00115062770
    [Google Scholar]
  10. GadlerP. GlueckS.M. KroutilW. NestlB.M. Larissegger-SchnellB. UeberbacherB.T. WallnerS.R. FaberK. Biocatalytic approaches for the quantitative production of single stereoisomers from racemates.Biochem. Soc. Trans.200634229630010.1042/BST034029616545098
    [Google Scholar]
  11. NoyoriR. TokunagaM. KitamuraM. Stereoselective organic synthesis via dynamic kinetic resolution.Bull. Chem. Soc. Jpn.1995681365510.1246/bcsj.68.36
    [Google Scholar]
  12. WardR.S. Dynamic kinetic resolution.Tetrahedron Asymmetry1995671475149010.1016/0957‑4166(95)00179‑S
    [Google Scholar]
  13. CaddickS. JenkinsK. Dynamic resolutions in asymmetric synthesis.Chem. Soc. Rev.199625644745610.1039/cs9962500447
    [Google Scholar]
  14. StecherH. FaberK. Biocatalytic deracemization techniques: Dynamic resolution and stereoinversions.Synthesis19971997111610.1055/s‑1997‑1515
    [Google Scholar]
  15. HuertaF.F. MinidisA.B.E. BäckvallJ.E. Racemisation in asymmetric synthesis. Dynamic kinetic resolution and related processes in enzyme and metal catalysis.Chem. Soc. Rev.200130632133110.1039/b105464n
    [Google Scholar]
  16. PellissierH. Dynamic kinetic resolution.Tetrahedron200359428291832710.1016/S0040‑4020(03)01022‑6
    [Google Scholar]
  17. BräseC.S. Asymmetric Synthesis: The Essentials.WeinheimWiley-VCH2006
    [Google Scholar]
  18. PellissierH. Recent developments in dynamic kinetic resolution.Tetrahedron20086481563160110.1016/j.tet.2007.10.080
    [Google Scholar]
  19. KamalA. AzharM.A. KrishnajiT. MalikM.S. AzeezaS. Approaches based on enzyme mediated kinetic to dynamic kinetic resolutions: A versatile route for chiral intermediates.Coord. Chem. Rev.20082525-756959210.1016/j.ccr.2007.12.010
    [Google Scholar]
  20. AhnY. KoS.B. KimM.J. ParkJ. Racemization catalysts for the dynamic kinetic resolution of alcohols and amines.Coord. Chem. Rev.20082525-764765810.1016/j.ccr.2007.09.009
    [Google Scholar]
  21. Martin-MatuteB. BäckvallJ-E. Asymmetric Organic Synthesis with Enzymes.WeinheimWiley-VCH20088711310.1002/9783527622481.ch4
    [Google Scholar]
  22. Martin-MatuteB. BäckvallJ-E. Organic Synthesis with Enzymes. Non-aqueousM. WeinheimWiley-VCH2008113144
    [Google Scholar]
  23. KamaruddinA.H. UzirM.H. Aboul-EneinH.Y. HalimH.N.A. Chemoenzymatic and microbial dynamic kinetic resolutions.Chirality200921444946710.1002/chir.2061918655180
    [Google Scholar]
  24. PellissierH. Chirality from Dynamic kinetic resolution.CambridgeRoyal Society of Chemistry201110.1039/9781849732673
    [Google Scholar]
  25. PellissierH. Recent developments in dynamic kinetic resolution.Tetrahedron201167213769380210.1016/j.tet.2011.04.001
    [Google Scholar]
  26. PellissierH. Organocatalyzed dynamic kinetic resolution.Adv. Synth. Catal.2011353565967610.1002/adsc.201000751
    [Google Scholar]
  27. RachwalskiM. VermueN. RutjesF.P.J.T. Recent advances in enzymatic and chemical deracemisation of racemic compounds.Chem. Soc. Rev.201342249268928210.1039/c3cs60175g24061196
    [Google Scholar]
  28. PellissierH. Recent developments in organocatalytic dynamic kinetic resolution.Tetrahedron201672233133315010.1016/j.tet.2016.04.053
    [Google Scholar]
  29. PellissierH. Organocatalytic dynamic kinetic resolution. An update.Eur. J. Org. Chem.202226120169
    [Google Scholar]
  30. PellissierH. Organocatalytic Dynamic kinetic resolution.CambridgeRoyal Society of Chemistry202210.1039/9781839166358
    [Google Scholar]
  31. NoyoriR. Asymmetric catalysts in organic synthesisWiley-VCHNew-York1994
    [Google Scholar]
  32. BellerM. BolmC. Transition Metals for Organic Synthesis.WeinheimWiley-VCH1998Vol. I and II10.1002/9783527619399
    [Google Scholar]
  33. OjimaI. Catalytic Asymmetric SynthesisWiley-VCHNew-York200010.1002/0471721506
    [Google Scholar]
  34. NegishiE. Handbook of organopalladium chemistry for organic synthesis.Hoboken, NJJohn Wiley & Sons, Inc.2002216891705
    [Google Scholar]
  35. BellerM. BolmC. Transition metals for organic synthesis.2nd edWeinheimWiley-VCH200410.1002/9783527619405
    [Google Scholar]
  36. TietzeL.F. IlaH. BellH.P. Enantioselective palladium-catalyzed transformations.Chem. Rev.200410473453351610.1021/cr030700x15250747
    [Google Scholar]
  37. RamónD.J. YusM. In the arena of enantioselective synthesis, titanium complexes wear the laurel wreath.Chem. Rev.200610662126220810.1021/cr040698p16771446
    [Google Scholar]
  38. PellissierH. ClavierH. Enantioselective cobalt-catalyzed transformations.Chem. Rev.201411452775282310.1021/cr400405524428605
    [Google Scholar]
  39. PellissierH. Recent developments in enantioselective scandium catalyzed transformations.Coord. Chem. Rev.201631313710.1016/j.ccr.2016.01.005
    [Google Scholar]
  40. PellissierH. Enantioselective silver-catalyzed transformations.Chem. Rev.201611623148681491710.1021/acs.chemrev.6b0063927960274
    [Google Scholar]
  41. PellissierH. Recent developments in enantioselective lanthanide catalyzed transformations.Coord. Chem. Rev.20173369615110.1016/j.ccr.2017.01.013
    [Google Scholar]
  42. PellissierH. Enantioselective magnesium-catalyzed transformations.Org. Biomol. Chem.201715224750478210.1039/C7OB00903H28513750
    [Google Scholar]
  43. PellissierH. Recent developments in enantioselective cobalt-catalyzed transformations.Coord. Chem. Rev.201836012216810.1016/j.ccr.2018.01.013
    [Google Scholar]
  44. PellissierH. Recent developments in enantioselective iron catalyzed transformations.Coord. Chem. Rev.201938613110.1016/j.ccr.2019.01.011
    [Google Scholar]
  45. PellissierH. Recent developments in enantioselective vanadium catalyzed transformations.Coord. Chem. Rev.202041821339510.1016/j.ccr.2020.213395
    [Google Scholar]
  46. PellissierH. Recent developments in enantioselective zinc catalyzed transformations.Coord. Chem. Rev.202143921392610.1016/j.ccr.2021.213926
    [Google Scholar]
  47. PellissierH. Recent developments in enantioselective titanium catalyzed transformations.Coord. Chem. Rev.202246321453710.1016/j.ccr.2022.214537
    [Google Scholar]
  48. HajosZ.G. ParrishD.R. Asymmetric synthesis of bicyclic intermediates of natural product chemistry.J. Org. Chem.197439121615162110.1021/jo00925a003
    [Google Scholar]
  49. AhrendtK.A. BorthsC.J. MacMillanD.W.C. New strategies for organic catalysis: The first highly enantioselective organocatalytic diels−alder reaction.J. Am. Chem. Soc.2000122174243424410.1021/ja000092s
    [Google Scholar]
  50. ListB. LernerR.A. BarbasC.F. Proline-catalyzed direct asymmetric aldol reactions.J. Am. Chem. Soc.2000122102395239610.1021/ja994280y
    [Google Scholar]
  51. BerkesselA. GrögerH. Asymmetric organocatalysis−from biomimetic concepts to powerful methods for asymmetric synthesis.WeinheimWiley-VCH200510.1002/3527604677
    [Google Scholar]
  52. TaylorM.S. JacobsenE.N. Asymmetric catalysis by chiral hydrogen-bond donors.Angew. Chem. Int. Ed.200645101520154310.1002/anie.20050313216491487
    [Google Scholar]
  53. DalkoP.I. Enantioselective Organocatalysis.WeinheimWiley-VCH200710.1002/9783527610945
    [Google Scholar]
  54. PellissierH. Asymmetric organocatalysis.Tetrahedron200763389267933110.1016/j.tet.2007.06.024
    [Google Scholar]
  55. ListB. Special issue on organocatalysis.Chem. Rev.200710754135883
    [Google Scholar]
  56. DoyleA.G. JacobsenE.N. Small-molecule H-bond donors in asymmetric catalysis.Chem. Rev.2007107125713574310.1021/cr068373r18072808
    [Google Scholar]
  57. DondoniA. MassiA. Asymmetric organocatalysis: From infancy to adolescence.Angew. Chem. Int. Ed.200847254638466010.1002/anie.20070468418421733
    [Google Scholar]
  58. MelchiorreP. MarigoM. CarloneA. BartoliG. Asymmetric aminocatalysis--gold rush in organic chemistry.Angew. Chem. Int. Ed.200847336138617110.1002/anie.20070552318666089
    [Google Scholar]
  59. PellissierH. Recent Developments in Asymmetric Organocatalysis.CambridgeRoyal Society of Chemistry201010.1039/9781849731140
    [Google Scholar]
  60. MahrwaldR. Enantioselective organocatalyzed reactions.BerlinSpringer2011Vol. I and II
    [Google Scholar]
  61. SahooB.M. BanikB.K. Organocatalysis: Trends of drug synthesis in medicinal chemistry.Curr. Organocatal.2019629210510.2174/2213337206666190405144423
    [Google Scholar]
  62. XiangS.H. TanB. Advances in asymmetric organocatalysis over the last 10 years.Nat. Commun.20201113786379110.1038/s41467‑020‑17580‑z32728115
    [Google Scholar]
  63. ZhangY. CaiH. GanX. JinZ. N-Heterocyclic carbene-catalyzed enantioselective (dynamic) kinetic resolutions and desymmetrizations.Sci. China Chem.202467248251110.1007/s11426‑022‑1657‑0
    [Google Scholar]
  64. AhmedM. KellyT. GhanemA. Applications of enzymatic and non-enzymatic methods to access enantiomerically pure compounds using kinetic resolution and racemisation.Tetrahedron201268346781680210.1016/j.tet.2012.05.049
    [Google Scholar]
  65. ApplegateG.A. BerkowitzD.B. Exploiting enzymatic dynamic reductive kinetic resolution (dyrkr) in stereocontrolled synthesis.Adv. Synth. Catal.201535781619163210.1002/adsc.20150031626622223
    [Google Scholar]
  66. Díaz-RodríguezA. LavanderaI. GotorV. Why leave a job half done? recent progress in enzymatic deracemizations.Curr. Green Chem.20152219221110.2174/2213346102666150120221227
    [Google Scholar]
  67. MusaM.M. HollmannF. MuttiF.G. Synthesis of enantiomerically pure alcohols and amines via biocatalytic deracemisation methods.Catal. Sci. Technol.20199205487550310.1039/C9CY01539F33628427
    [Google Scholar]
  68. WardD.E. JheengutV. AkinnusiO.T. Enantioselective direct intermolecular aldol reactions with enantiotopic group selectivity and dynamic kinetic resolution.Org. Lett.2005761181118410.1021/ol050195l15760169
    [Google Scholar]
  69. WardD.E. JheengutV. BeyeG.E. Thiopyran route to polypropionates: An efficient synthesis of serricornin.J. Org. Chem.200671238989899210.1021/jo061747w17081039
    [Google Scholar]
  70. GuercioG. BacchiS. GoodyearM. CarangioA. TinazziF. CurtiS. Synthesis of the NK1 receptor antagonist GW597599. Part 1: Development of a scalable route to a key chirally pure arylpiperazine.Org. Process Res. Dev.20081261188119410.1021/op800146d
    [Google Scholar]
  71. GuercioG. ManzoA.M. GoodyearM. BacchiS. CurtiS. ProveraS. Synthesis of the NK1 receptor antagonist GW597599. Part 2: Development of a scalable route to a key chirally pure arylpiperazine.Org. Process Res. Dev.200913348949310.1021/op8002823
    [Google Scholar]
  72. GuercioG. BacchiS. PerboniA. LeroiC. TinazziF. BientinesiI. HourdinM. GoodyearM. CurtiS. ProveraS. CimarostiZ. Synthesis of the NK1 receptor antagonist GW597599. Part 3: Development of a scalable route to a key chirally pure arylpiperazine urea, a happy end.Org. Process Res. Dev.20091361100111010.1021/op9002032
    [Google Scholar]
  73. BrandsK.M.J. DaviesA.J. Crystallization-induced diastereomer transformations.Chem. Rev.200610672711273310.1021/cr040686416836297
    [Google Scholar]
  74. SonawaneH.R. BellurN.S. AhujaJ.R. KulkarniD.G. Recent developments in the synthesis of optically active α-arylpropanoic acids: An important class of non-steroidal anti-inflammatory agents.Tetrahedron Asymmetry19923216319210.1016/S0957‑4166(00)80186‑X
    [Google Scholar]
  75. ShiinaI. OnoK. NakataK. Non-enzymatic dynamic kinetic resolution of racemic α-arylalkanoic acids: an advanced asymmetric synthesis of chiral nonsteroidal anti-inflammatory drugs (NSAIDs).Catal. Sci. Technol.20122112200220510.1039/c2cy20329d
    [Google Scholar]
  76. OrtizA. BenkovicsT. BeutnerG.L. ShiZ. BultmanM. NyeJ. SfouggatakisC. KronenthalD.R. Scalable synthesis of the potent HIV Inhibitor BMS‐986001 by non‐enzymatic dynamic kinetic asymmetric transformation (DYKAT).Angew. Chem. Int. Ed.201554247185718810.1002/anie.20150229025925234
    [Google Scholar]
  77. VedejsE. ChenX. Kinetic resolution of secondary alcohols. enantioselective acylation mediated by a chiral (dimethylamino)pyridine derivative.J. Am. Chem. Soc.199611871809181010.1021/ja953631f
    [Google Scholar]
  78. SpiveyA.C. MaddafordA. RedgraveA.J. Asymmetric catalysis of acyl transfer by lewis acids and nucleophiles. A review.Org. Prep. Proced. Int.200032433136510.1080/00304940009355935
    [Google Scholar]
  79. DalkoP.I. MoisanL. Enantioselective organocatalysis.Angew. Chem. Int. Ed.200140203726374810.1002/1521‑3773(20011015)40:20<3726::AID‑ANIE3726>3.0.CO;2‑D11668532
    [Google Scholar]
  80. FranceS. GuerinD.J. MillerS.J. LectkaT. Nucleophilic chiral amines as catalysts in asymmetric synthesis.Chem. Rev.200310382985301210.1021/cr020061a12914489
    [Google Scholar]
  81. WurzR.P. Chiral dialkylaminopyridine catalysts in asymmetric synthesis.Chem. Rev.2007107125570559510.1021/cr068370e18072804
    [Google Scholar]
  82. XieM.S. LiN. TianY. WuX.X. DengY. QuG.R. GuoH.M. Dynamic kinetic resolution of carboxylic esters catalyzed by chiral ppy n -oxides: Synthesis of nonsteroidal anti-inflammatory drugs and mechanistic insights.ACS Catal.202111138183819610.1021/acscatal.1c01438
    [Google Scholar]
  83. FordD.D. KamletA.S. LimberakisC. PearsallA. PiotrowskiD.W. QuinnB. RothsteinS. SalanJ. WeiL. XiaoJ. Org. Process Res. Dev.2017211990200010.1021/acs.oprd.7b00304
    [Google Scholar]
  84. PiotrowskiD.W. KamletA.S. Dechert-SchmittA.M.R. YanJ. BrandtT.A. XiaoJ. WeiL. BarrilaM.T. Regio- and enantioselective synthesis of azole hemiaminal esters by lewis base catalyzed dynamic kinetic resolution.J. Am. Chem. Soc.2016138144818482310.1021/jacs.6b0020727003237
    [Google Scholar]
  85. XieM.S. ShanM. LiN. ChenY.G. WangX.B. ChengX. TianY. WuX.X. DengY. QuG-R. GuoH-M. Chiral 4-Aryl-pyridine- N -oxide nucleophilic catalysts: design, synthesis, and application in acylative dynamic kinetic resolution.ACS Catal.202212287789110.1021/acscatal.1c04923
    [Google Scholar]
  86. NugentT.C. SeemayerR. An efficient enantiopure synthesis of a pivotal precursor to substance p antagonists.Org. Process Res. Dev.200610114214810.1021/op050213e
    [Google Scholar]
  87. SchreinerP.R. Metal-free organocatalysis through explicit hydrogen bonding interactions.Chem. Soc. Rev.200332528929610.1039/b107298f14518182
    [Google Scholar]
  88. AkiyamaT. ItohJ. FuchibeK. Recent progress in chiral brønsted acid catalysis.Adv. Synth. Catal.20063489999101010.1002/adsc.200606074
    [Google Scholar]
  89. AkiyamaT. Stronger Brønsted acids.Chem. Rev.2007107125744575810.1021/cr068374j17983247
    [Google Scholar]
  90. KampenD. ReisingerC.M. ListB. Chiral Brønsted acids for asymmetric organocatalysis.Top. Curr. Chem.200929139545610.1007/128_2009_121494945
    [Google Scholar]
  91. AkiyamaT. MoriK. Stronger brønsted acids: Recent progress.Chem. Rev.2015115179277930610.1021/acs.chemrev.5b0004126182163
    [Google Scholar]
  92. RahmanA. LinX. Development and application of chiral spirocyclic phosphoric acids in asymmetric catalysis.Org. Biomol. Chem.201816264753477710.1039/C8OB00900G29893395
    [Google Scholar]
  93. LiuW. YangX. Recent advances in (dynamic) kinetic resolution and desymmetrization catalyzed by chiral phosphoric acids.Asian J. Org. Chem.202110469271010.1002/ajoc.202100091
    [Google Scholar]
  94. TeradaM. Chiral phosphoric acids as versatile catalysts for enantioselective transformations.Synthesis20102010121929198210.1055/s‑0029‑1218801
    [Google Scholar]
  95. ZamfirA. SchenkerS. FreundM. TsogoevaS.B. Chiral BINOL-derived phosphoric acids: privileged Brønsted acid organocatalysts for C–C bond formation reactions.Org. Biomol. Chem.20108235262527610.1039/c0ob00209g20820680
    [Google Scholar]
  96. ZhaoR. ShiL. Promising combination for asymmetric organocatalysis: Brønsted acid‐assisted chiral phosphoric acid catalysis.ChemCatChem20146123309331110.1002/cctc.201402652
    [Google Scholar]
  97. ParmarD. SugionoE. RajaS. RuepingM. Complete field guide to asymmetric BINOL-phosphate derived Brønsted acid and metal catalysis: history and classification by mode of activation; Brønsted acidity, hydrogen bonding, ion pairing, and metal phosphates.Chem. Rev.2014114189047915310.1021/cr500149625203602
    [Google Scholar]
  98. MajiR. MallojjalaS.C. WheelerS.E. Chiral phosphoric acid catalysis: From numbers to insights.Chem. Soc. Rev.20184741142115810.1039/C6CS00475J29355873
    [Google Scholar]
  99. LiX. SongQ. Recent advances in asymmetric reactions catalyzed by chiral phosphoric acids.Chem. Lett.20182911811192
    [Google Scholar]
  100. ZhangY. AoY.F. HuangZ.T. WangD.X. WangM.X. ZhuJ. Chiral phosphoric acid catalyzed asymmetric Ugi reaction by dynamic kinetic resolution of the primary multicomponent adduct.Angew. Chem. Int. Ed.201655175282528510.1002/anie.20160075126997306
    [Google Scholar]
  101. NolanS.P. N-Heterocyclic Carbenes in Synthesis.WeinheimWiley200610.1002/9783527609451
    [Google Scholar]
  102. GrossmannA. EndersD. N-heterocyclic carbene catalyzed domino reactions.Angew. Chem. Int. Ed.201251231432510.1002/anie.20110541522121084
    [Google Scholar]
  103. HopkinsonM.N. RichterC. SchedlerM. GloriusF. An overview of N-heterocyclic carbenes.Nature2014510750648549610.1038/nature1338424965649
    [Google Scholar]
  104. FlaniganD.M. Romanov-MichailidisF. WhiteN.A. RovisT. Organocatalytic reactions enabled by n-heterocyclic carbenes.Chem. Rev.2015115179307938710.1021/acs.chemrev.5b0006025992594
    [Google Scholar]
  105. TietzeL.F. Domino reactions in organic synthesis.Chem. Rev.199696111513610.1021/cr950027e11848746
    [Google Scholar]
  106. TietzeL.F. RackelmannN. Domino reactions in the synthesis of heterocyclic natural products and analogs.Pure Appl. Chem.200476111967198310.1351/pac200476111967
    [Google Scholar]
  107. ZhuJ. BienayméH. Multicomponent Reactions.WeinheimWiley-VCH200510.1002/3527605118
    [Google Scholar]
  108. RamónD.J. YusM. Asymmetric multicomponent reactions (AMCRs): The new frontier.Angew. Chem. Int. Ed.200544111602163410.1002/anie.20046054815719349
    [Google Scholar]
  109. TietzeL.F. BrascheG. GerickeK. Domino Reactions in Organic Synthesis.WeinheimWiley-VCH200610.1002/9783527609925
    [Google Scholar]
  110. PellissierH. Asymmetric domino reactions. Part B: Reactions based on the use of chiral catalysts and biocatalysts.Tetrahedron200662102143217310.1016/j.tet.2005.10.041
    [Google Scholar]
  111. PadwaA. BurS.K. The domino way to heterocycles.Tetrahedron200763255341537810.1016/j.tet.2007.03.15817940591
    [Google Scholar]
  112. TouréB.B. HallD.G. Natural product synthesis using multicomponent reaction strategies.Chem. Rev.200910994439448610.1021/cr800296p19480390
    [Google Scholar]
  113. SorensenE.J. DaviesH.M.L. Special issue on rapid formation of molecular complexity in organic synthesisChem. Soc. Rev.20093829693276
    [Google Scholar]
  114. OrruR.V.A. RuijterE. Synthesis of heterocycles via multicomponent reactions, topics in heterocyclic chemistry.BerlinSpringer2010Vol. I and II
    [Google Scholar]
  115. TietzeL.F. Domino reactions concepts for efficient organic synthesis.WeinheimWiley-VCH201410.1002/9783527671304
    [Google Scholar]
  116. ZhuJ. WangQ. WangM. Multicomponent reactions in organic synthesis.WeinheimWiley201410.1002/9783527678174
    [Google Scholar]
  117. HerreraR.P. Marques-LopezE. Multicomponent reactions: Concepts and applications for design and synthesis.WeinheimWiley201510.1002/9781118863992
    [Google Scholar]
  118. SnyderS.A. Science of synthesis. Applications of domino transformations in organic synthesis.StuttgartThieme Verlag2016Vol. 1-2
    [Google Scholar]
  119. EndersD. GrondalC. HüttlM.R.M. Asymmetric organocatalytic domino reactions.Angew. Chem. Int. Ed.200746101570158110.1002/anie.20060312917225236
    [Google Scholar]
  120. AlbaA.N. CompanyoX. VicianoM. RiosR. Organocatalytic domino reactions.Curr. Org. Chem.200913141432147410.2174/138527209789055054
    [Google Scholar]
  121. de GraaffC. RuijterE. OrruR.V.A. Recent developments in asymmetric multicomponent reactions.Chem. Soc. Rev.201241103969400910.1039/c2cs15361k22546840
    [Google Scholar]
  122. PellissierH. Recent developments in asymmetric organocatalytic domino reactions.Adv. Synth. Catal.20123542-323729410.1002/adsc.201100714
    [Google Scholar]
  123. ClavierH. PellissierH. Recent developments in enantioselective metal‐catalyzed domino reactions.Adv. Synth. Catal.2012354183347340310.1002/adsc.201200254
    [Google Scholar]
  124. PellissierH. Stereocontrolled domino reactions.Chem. Rev.2013113144252410.1021/cr300271k23157479
    [Google Scholar]
  125. PellissierH. Asymmetric Domino Reactions.CambridgeRoyal Society of Chemistry201310.1039/9781849737104
    [Google Scholar]
  126. VollaC.M.R. AtodireseiI. RuepingM. Catalytic C-C bond-forming multi component cascade or domino reactions: pushing the boundaries of complexity in asymmetric organocatalysis.Chem. Rev.201411442390243110.1021/cr400215u24304297
    [Google Scholar]
  127. PellissierH. Recent developments in enantioselective metal‐catalyzed domino reactions.Adv. Synth. Catal.2016358142194225910.1002/adsc.201600462
    [Google Scholar]
  128. ChandaT. ZhaoJ.C.G. Recent progress in organocatalytic asymmetric domino transformations.Adv. Synth. Catal.2018360127910.1002/adsc.201701059
    [Google Scholar]
  129. PellissierH. Recent developments in enantioselective metal-catalyzed domino reactions.Adv. Synth. Catal.201936181733175510.1002/adsc.201801371
    [Google Scholar]
  130. PellissierH. Asymmetric metal catalysis in enantioselective domino reactions.WeinheimWiley201910.1002/9783527822539
    [Google Scholar]
  131. EndersD. BreuerK. RaabeG. RunsinkJ. TelesJ.H. MelderJ.P. EbelK. BrodeS. Preparation, structure, and reactivity of 1,3,4‐Triphenyl‐4,5‐dihydro‐1 H ‐1,2,4‐triazol‐5‐ylidene, a new stable carbene.Angew. Chem. Int. Ed. Engl.19953491021102310.1002/anie.199510211
    [Google Scholar]
  132. KnightR.L. LeeperF.J. Comparison of chiral thiazolium and triazolium salts as asymmetric catalysts for the benzoin condensation.J. Chem. Soc., Perkin Trans. 11998I121891189410.1039/a803635g
    [Google Scholar]
  133. WangZ. PanD. LiT. JinZ. N‐heterocyclic carbene (NHC)‐organocatalyzed kinetic resolutions, dynamic kinetic resolutions, and desymmetrizations.Chem. Asian J.201813172149216310.1002/asia.20180049329900699
    [Google Scholar]
  134. De RisiC. BortoliniO. Di CarmineG. RagnoD. MassiA. Kinetic resolution, dynamic kinetic resolution and asymmetric desymmetrization by n-heterocyclic carbene catalysis.Synthesis20195191871189110.1055/s‑0037‑1612305
    [Google Scholar]
  135. CohenD.T. JohnstonR.C. RossonN.T. CheongP.H.Y. ScheidtK.A. Functionalized cyclopentenes through a tandem NHC-catalyzed dynamic kinetic resolution and ambient temperature decarboxylation: Mechanistic insight and synthetic application.Chem. Commun.201551132690269310.1039/C4CC09308A25575249
    [Google Scholar]
  136. PerveenS. YangS. MengM. XuW. ZhangG. FangX. Asymmetric total synthesis of rotenoids via organocatalyzed dynamic kinetic resolution.Commun. Chem.201921810.1038/s42004‑019‑0110‑y
    [Google Scholar]
  137. SukumaranJ. HanefeldU. Enantioselective C-C bond synthesis catalysed by enzymes.Chem. Soc. Rev.200534653054210.1039/b412490a16137165
    [Google Scholar]
  138. PatelR.N. Synthesis of chiral pharmaceutical intermediates by biocatalysis.Coord. Chem. Rev.20082525-765970110.1016/j.ccr.2007.10.031
    [Google Scholar]
  139. HauerB. Embracing nature’s catalysts: A viewpoint on the future of biocatalysis.ACS Catal.202010158418842710.1021/acscatal.0c01708
    [Google Scholar]
  140. HallM. Enzymatic strategies for asymmetric synthesis.RSC Chemical Biology20212495898910.1039/D1CB00080B34458820
    [Google Scholar]
  141. WuS. SnajdrovaR. MooreJ.C. BaldeniusK. BornscheuerU.T. Biocatalysis: Enzymatic synthesis for industrial applications.Angew. Chem. Int. Ed.20216018811910.1002/anie.20200664832558088
    [Google Scholar]
  142. BlaskovichM.A.T. Unusual amino acids in medicinal chemistry.J. Med. Chem.20165924108071083610.1021/acs.jmedchem.6b0031927589349
    [Google Scholar]
  143. MayO. VerseckS. BommariusA. DrauzK. Development of dynamic kinetic resolution processes for biocatalytic production of natural and nonnatural l -amino acids.Org. Process Res. Dev.20026445245710.1021/op020009g
    [Google Scholar]
  144. ServiS. TessaroD. Pedrocchi-FantoniG. Chemo-enzymatic deracemization methods for the preparation of enantiopure non natural α-amino acids.Coord. Chem. Rev.20082525-771572610.1016/j.ccr.2007.09.012
    [Google Scholar]
  145. KimC. ParkJ. KimM-J. In: Comprehensive chirality.Elsevier2012156180
    [Google Scholar]
  146. HenninotA. CollinsJ.C. NussJ.M. The current state of peptide drug discovery: Back to the future?J. Med. Chem.20186141382141410.1021/acs.jmedchem.7b0031828737935
    [Google Scholar]
  147. KambourakisS. RozzellJ.D. Chemo‐enzymatic method for the synthesis of statine, phenylstatine and analogues.Adv. Synth. Catal.20033456-769970510.1002/adsc.200303048
    [Google Scholar]
  148. XueY.P. CaoC.H. ZhengY.G. Enzymatic asymmetric synthesis of chiral amino acids.Chem. Soc. Rev.20184741516156110.1039/C7CS00253J29362736
    [Google Scholar]
  149. LiF. YangL.C. ZhangJ. ChenJ.S. RenataH. Stereoselective synthesis of β‐branched aromatic α‐amino acids by biocatalytic dynamic kinetic resolution.Angew. Chem. Int. Ed.20216032176801768510.1002/anie.20210565634056805
    [Google Scholar]
  150. ToyookaN. YoshidaY. YotsuiY. MomoseT. 2-piperidone type of chiral building block for 3-piperidinol alkaloid synthesis.J. Org. Chem.199964134914491910.1021/jo990397t11674570
    [Google Scholar]
  151. ToyookaN. YoshidaY. MomoseT. Enantio- and diastereodivergent synthesis of all four diastereomers of the 2,6-disubstituted 3-piperidinol chiral building block.Tetrahedron Lett.199536213715371810.1016/0040‑4039(95)00661‑U
    [Google Scholar]
  152. PestiJ.A. YinJ. ZhangL. AnzaloneL. WaltermireR.E. MaP. GorkoE. ConfaloneP.N. FortunakJ. SilvermanC. BlackwellJ. ChungJ.C. HrytsakM.D. CookeM. PowellL. RayC. Efficient preparation of a key intermediate in the synthesis of roxifiban by enzymatic dynamic kinetic resolution on large scale.Org. Process Res. Dev.200481222710.1021/op0300239
    [Google Scholar]
  153. WangL.W. ChengY.C. TsaiS.W. Process modeling of the lipase-catalyzed dynamic kinetic resolution of (R, S)-suprofen 2,2,2-trifluoroethyl thioester in a hollow-fiber membrane.Bioprocess Biosyst. Eng.2004271394910.1007/s00449‑004‑0379‑815645310
    [Google Scholar]
  154. FazlenaH. KamaruddinA.H. ZulkaliM.M.D. Dynamic kinetic resolution: Alternative approach in optimizing S-ibuprofen production.Bioprocess Biosyst. Eng.200628422723310.1007/s00449‑005‑0024‑116215728
    [Google Scholar]
  155. ChaplinD.A. FoxM.E. KrollS.H.B. Dynamic kinetic resolution of dehydrocoronamic acid.Chem. Commun.201450445858586010.1039/C4CC01125B24740527
    [Google Scholar]
  156. KalaitzakisD. SmonouI. Chemoenzymatic synthesis of stegobinone and stegobiol, components of the natural sex pheromone of the drugstore beetle ( Stegobium paniceum L. ).Eur. J. Org. Chem.201220121434610.1002/ejoc.201101319
    [Google Scholar]
  157. HuL. SchaufelbergerF. ZhangY. RamströmO. Efficient asymmetric synthesis of lamivudine via enzymatic dynamic kinetic resolution.Chem. Commun.20134988103761037810.1039/C3CC45551C24071972
    [Google Scholar]
  158. ArndtS. GrillB. SchwabH. SteinkellnerG. PogorevčnikU. WeisD. NauthA.M. GruberK. OpatzT. DonsbachK. WaldvogelS.R. WinklerM. The sustainable synthesis of levetiracetam by an enzymatic dynamic kinetic resolution and an ex-cell anodic oxidation.Green Chem.202123138839510.1039/D0GC03358H
    [Google Scholar]
  159. MatsumaeH. DounoH. YamadaS. NishidaT. OzakiY. ShibataniT. TosaT. Microbial asymmetric reduction of (RS)-2-(4-methoxyphenyl)-1,5-benzothiazepin-3,4(2H,5H)-dione, the key intermediate in the synthesis of diltiazem hydrochloride.J. Ferment. Bioeng.1995791283210.1016/0922‑338X(95)92739‑Y
    [Google Scholar]
  160. ToyookaN. YotsuiY. YoshidaY. MomoseT. Enantioselective total synthesis of the marine alkaloid clavepictines A and B.J. Org. Chem.199661154882488310.1021/jo9608174
    [Google Scholar]
  161. ToyookaN. OkumuraM. TakahataH. Enantioselective total synthesis of the marine alkaloid lepadin B.J. Org. Chem.19996472182218310.1021/jo990141n
    [Google Scholar]
  162. ToyookaN. OkumuraM. TakahataH. NemotoH. Construction of 4a,8a-cis-octahydroquinolin-7-one core using an intramolecular aldol type of cyclization: An application to enantioselective total synthesis of lepadin B.Tetrahedron19995535106731068410.1016/S0040‑4020(99)00603‑1
    [Google Scholar]
  163. LinH.Y. TsaiS.W. Dynamic kinetic resolution of (R, S)-naproxen 2,2,2-trifluoroethyl ester via lipase-catalyzed hydrolysis in micro-aqueous isooctane.J. Mol. Catal., B Enzym.200324-2511112010.1016/S1381‑1177(03)00145‑0
    [Google Scholar]
  164. WenW.Y. NgI.S. TsaiS.W. Lipase‐catalyzed dynamic hydrolytic resolution of ( R,S )‐2,2,2‐trifluoroethyl α‐chlorophenyl acetate in water‐saturated isooctane.J. Chem. Technol. Biotechnol.200681101715172110.1002/jctb.1601
    [Google Scholar]
  165. PietruszkaJ. SimonR.C. KruskaF. BraunM. Dynamic enzymatic kinetic resolution of methyl 2,3‐Dihydro‐1 H ‐indene‐1‐carboxylate.Eur. J. Org. Chem.20092009356217622410.1002/ejoc.200901025
    [Google Scholar]
  166. ClausR. DorerM. BunckA. DeignerH. Inhibition of sphingomyelin hydrolysis: Targeting the lipid mediator ceramide as a key regulator of cellular fate.Curr. Med. Chem.200916161978200010.2174/09298670978868218219519377
    [Google Scholar]
  167. HoyeT.R. JeffreyC.S. NelsonD.P. Dynamic kinetic resolution during a vinylogous Payne rearrangement: A concise synthesis of the polar pharmacophoric subunit of (+)-scyphostatin.Org. Lett.2010121525510.1021/ol902459z19968321
    [Google Scholar]
  168. FriestJ.A. MaezatoY. BroussyS. BlumP. BerkowitzD.B. Use of a robust dehydrogenase from an archael hyperthermophile in asymmetric catalysis-dynamic reductive kinetic resolution entry into (S)-profens.J. Am. Chem. Soc.2010132175930593110.1021/ja910778p20377222
    [Google Scholar]
  169. PengZ. WongJ.W. HansenE.C. Puchlopek-DermenciA.L.A. ClarkeH.J. Development of a concise, asymmetric synthesis of a smoothened receptor (SMO) inhibitor: enzymatic transamination of a 4-piperidinone with dynamic kinetic resolution.Org. Lett.201416386086310.1021/ol403630g24502520
    [Google Scholar]
  170. ChungC.K. BulgerP.G. KosjekB. BelykK.M. RiveraN. ScottM.E. HumphreyG.R. LimantoJ. BachertD.C. EmersonK.M. Process development of C–N cross-coupling and enantioselective biocatalytic reactions for the asymmetric synthesis of niraparib.Org. Process Res. Dev.201418121522710.1021/op400233z
    [Google Scholar]
  171. ZhanZ. XuZ. YuS. FengJ. LiuF. YaoP. WuQ. ZhuD. Stereocomplementary synthesis of a key intermediate for tofacitinib via enzymatic dynamic kinetic resolution‐reductive amination.Adv. Synth. Catal.2022364142380238610.1002/adsc.202200361
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266294434240322043536
Loading
/content/journals/ctmc/10.2174/0115680266294434240322043536
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test