Skip to content
2000
Volume 4, Issue 1
  • ISSN: 2950-4023
  • E-ISSN: 2950-4031

Abstract

Profitable interest in the pervasive packaging of ionic liquids has continued to increase due to its several advantages and environmentally pleasant nature. Fabric enterprise is stated to be the most important enterprise as a result of a rapid increase in the populace across the globe. Certain ionic beverages can dissolve textile fibers. Therefore, ionic liquids are doubtlessly appropriate for material production and recycling. The dyeing of fabric substances involves numerous financial and ecological risks, resulting in an excessive intake of water, power, and chemicals. Ionic liquids surpass through their extraordinarily low vapor pressure, which enables them to deal with commonly used natural solvents. Moreover, ionic liquids display excessive temperature-associated dielectric constants, consequently displaying top-notch solvent strength for distinct fabric-associated substances, inclusive of silicones, keratin, and cellulose. This article provides a brief review of the pertinent literature that focuses on historical patterns and practical commercial applications of ionic liquids before moving on to current developments in ionic liquids and the fabric industry.

Loading

Article metrics loading...

/content/journals/ctc/10.2174/0126660016287413240306115111
2024-03-18
2024-11-22
Loading full text...

Full text loading...

References

  1. SausW. KnittelD. SchollmeyerE. Dyeing of textiles in supercritical carbon dioxide.Text. Res. J.199363313514210.1177/004051759306300302
    [Google Scholar]
  2. KnittelD. SchollmeyerE. Disperse dyeing of synthetic fibers in supercritical medium.DE43440211995
    [Google Scholar]
  3. BerthodA. Ruiz-ÁngelM.J. Carda-BrochS. Ionic liquids in separation techniques.J. Chromatogr. A200811841-261810.1016/j.chroma.2007.11.10918155711
    [Google Scholar]
  4. DupontJ. FloresF.R. Organometallic chemistry in ionic liquids.Comp. Orga. Chem. III20071847882
    [Google Scholar]
  5. ArmandM. EndresF. MacFarlaneD.R. OhnoH. ScrosatiB. Ionic-liquid materials for the electrochemical challenges of the future.Nat. Mater.20098862162910.1038/nmat244819629083
    [Google Scholar]
  6. TavanaieM.A. Ionic liquids as new solvents for textile fiber formation and modification.Chem. Eng. Technol.201336111823183710.1002/ceat.201300146
    [Google Scholar]
  7. WasserscheidtP. WeltonT. Ionic Liquids in Synthesis.WeinheimWiley-VCH2003
    [Google Scholar]
  8. WintertonN. Solubilization of polymers by ionic liquids.J. Mater. Chem.200616444281429310.1039/b610143g
    [Google Scholar]
  9. OhnoH. Design of ion conductive polymers based on ionic liquids.Macromol. Symp.2007249-250155155610.1002/masy.200750435
    [Google Scholar]
  10. KöhlerS. LiebertT. SchobitzM. SchallerJ. MeisterF. GuntherW. HeinzeT. Interaction of ionic liquids with polysaccharides.Macromol. Rapid Commun.20072823112317
    [Google Scholar]
  11. CuissinatC. NavardP. HeinzeT. Swelling and dissolution of cellulose, Part V: Cellulose derivatives fibres in aqueous systems and ionic liquids.Cellulose2008151758010.1007/s10570‑007‑9159‑3
    [Google Scholar]
  12. KnittelD. SchollmeyerE. Ionic liquids for textile finishing.Dyeing of textiles2007885456
    [Google Scholar]
  13. TokudaH. HayamizuK. IshiiK. SusanM.A.B.H. WatanabeM. Physicochemical properties and structures of room temperature ionic liquids. 1. variation of anionic species.J. Phys. Chem. B200410842165931660010.1021/jp047480r
    [Google Scholar]
  14. TokudaH. HayamizuK. IshiiK. SusanM.A.B.H. WatanabeM. Physicochemical properties and structures of room temperature ionic liquids. 2. Variation of alkyl chain length in imidazolium cation.J. Phys. Chem. B2005109136103611010.1021/jp044626d16851672
    [Google Scholar]
  15. JiangG. HuangW. ZhuT. ZhangC. KumiA.K. ZhangY. WangH. HuL. Diffusion dynamics of 1-Butyl-3-methylimidazolium chloride from cellulose filament during coagulation process.Cellulose201118492192810.1007/s10570‑011‑9551‑x
    [Google Scholar]
  16. BianchiniR. CevascoG. ChiappeC. PomelliC.S. Rodríguez DoutonM.J. Ionic liquids can significantly improve textile dyeing: An innovative application assuring economic and environmental benefits.ACS Sustain. Chem.& Eng.2015392303230810.1021/acssuschemeng.5b00578
    [Google Scholar]
  17. HinaS. ZhangY. WangH. Rev. Adv. Mater. Sci.201540215
    [Google Scholar]
  18. SwatloskiR.P. SpearS.K. HolbreyJ.D. RogersR.D. Dissolution of cellulose with ionic liquids.J. Am. Chem. Soc.2002124184974497510.1021/ja025790m11982358
    [Google Scholar]
  19. AsaadiS. HummelM. HellstenS. HärkäsalmiT. MaY. MichudA. SixtaH. Renewable high-performance fibers from the chemical recycling of cotton waste utilizing an ionic liquid.ChemSusChem20169223250325810.1002/cssc.20160068027796085
    [Google Scholar]
  20. KantouchA. KhalilE.M. MowafiS. El-SayedH. Antimicrobial finishing of wool fabric using ionic liquids.J. Textil. Inst.2013104436336910.1080/00405000.2012.727586
    [Google Scholar]
  21. LiangZ. ZhouZ. LiJ. ZhangS. DongB. ZhaoL. WuC. YangH. ChenF. WangS. Multi-functional silk fibers/fabrics with a negligible impact on comfortable and wearability properties for fiber bulk.Chem. Eng. J.202141512898010.1016/j.cej.2021.128980
    [Google Scholar]
  22. VyasS.K. ShuklaS.R. Degumming of eri silk using ionic liquids and optimization through response surface methodology.J. Textil. Inst.201610791096111110.1080/00405000.2015.1086196
    [Google Scholar]
  23. ShuklaS.R. HaradA.M. JawaleL.S. Recycling of waste PET into useful textile auxiliaries.Waste Manag.2008281515610.1016/j.wasman.2006.11.00217207616
    [Google Scholar]
  24. RouetteH.K. Encyclopedia of Textile Finishing.Berlin, GermanySpringer200110.1007/978‑3‑642‑85271‑8
    [Google Scholar]
  25. PhillipsD.M. DrummyL.F. NaikR.R. LongH.C.D. FoxD.M. TruloveP.C. MantzR.A. Regenerated silk fiber wet spinning from an ionic liquid solution.J. Mater. Chem.200515394206420810.1039/b510069k
    [Google Scholar]
  26. KantouchA. El-SayedA.A. SalamaM. El-KheirA.A. MowafiS. Salicylic acid and some of its derivatives as antibacterial agents for viscose fabric.Int. J. Biol. Macromol.201362November60360710.1016/j.ijbiomac.2013.09.02124076193
    [Google Scholar]
  27. PawarS.S. AthalyeA. AdivarekarR.V. Solvent assisted dyeing of silk fabric using deep eutectic solvent as a swelling agent.Fibers Polym.202122240541110.1007/s12221‑021‑0142‑7
    [Google Scholar]
  28. OpwisK. BenkenR. KnittelD. GutmannJ.S. Dyeing of PET Fibers in Ionic Liquids.Intern. J. New Techno. Res.2017311101108[IJNTR].
    [Google Scholar]
  29. PadhiR.B.S. Pollution due to synthetic dyes: Toxicity, carcinogenicity studies, and remediation.Int. J. Environ. Sci.20123940
    [Google Scholar]
  30. VermaY. Acute toxicity assessment of textile dyes and textile and dye industrial effluents using Daphnia magna bioassay.Toxicol. Ind. Health200824749150010.1177/074823370809576919028775
    [Google Scholar]
  31. VermaY. Toxicity assessment of dye containing industrial effluents by acute toxicity test using Daphnia magna.Toxicol. Ind. Health2011271414910.1177/074823371038021820823054
    [Google Scholar]
  32. Villegas-NavarroA. Ramírez-MY. Salvador-SM.S. GallardoJ.M. Determination of wastewater LC50 of the different process stages of the textile industry.Ecotoxicol. Environ. Saf.2001481566110.1006/eesa.2000.198611161678
    [Google Scholar]
  33. de Campos Ventura-CamargoB. Marin-MoralesM.A. Azo dyes: Characterization and toxicity: A review.Text. Light Ind. Sci. Techno.2013285
    [Google Scholar]
  34. KallialaE.M. NousiainenP. Environmental profile of cotton and polyester-cotton fabrics.AUTEX Res. J.1999182010.1515/aut‑1999‑010102
    [Google Scholar]
  35. PatilH. AthalyeA. Valorization of corn husk waste for textile applications.J. Nat. Fibers2023201215601710.1080/15440478.2022.2156017
    [Google Scholar]
  36. FakinD. OjstršekA. BenkovičS.Č. The impact of corona modified fibres’ chemical changes on wool dyeing.J. Mater. Process. Technol.2009209158458910.1016/j.jmatprotec.2008.02.034
    [Google Scholar]
  37. KlemmD. HeubleinB. FinkH.P. BohnA. Cellulose: Fascinating biopolymer and sustainable raw material.Angew. Chem. Int. Ed.200544223358339310.1002/anie.20046058715861454
    [Google Scholar]
  38. LinL. TsuchiiK. Dissolution behavior of cellulose in a novel cellulose solvent.Carbohydr. Res.202251110849010.1016/j.carres.2021.10849034952277
    [Google Scholar]
  39. ChenL. WangL. WuX. DingX. A process-level water conservation and pollution control performance evaluation tool of cleaner production technology in textile industry.J. Clean. Prod.20171431137114310.1016/j.jclepro.2016.12.006
    [Google Scholar]
  40. ReigelE.R. KentJ.A. Riegel’s Handbook of Industrial Chemistry.10th edNew York, NY, USASpringer Publishing2003896904
    [Google Scholar]
  41. BroadbentA.D. Basic Principles of Textile Coloration. Society of Dyers and Colorists.Kent, West Yorkshire, EnglandThanet Press Ltd2001322331
    [Google Scholar]
  42. LaiC.C. ChenK.M. Dyeing properties of modified gemini surfactants on a disperse dye-polyester system.Text. Res. J.200878538238910.1177/0040517507087676
    [Google Scholar]
  43. RenZ. QinC. TangaR.C. ChenG. Study on the dyeing properties of hemicyanine dyes. II. Cationic dyeable polyester.J. Soc. Dyers Colour.2012128147152
    [Google Scholar]
  44. GebertK. The dyeing of polyester textile fabric in perchloroethylene: The exhaust process.Exhaust Dyeing of Polyester in Perchloroethylene1971509513
    [Google Scholar]
  45. MilićevićB. The use of non-aqueous solvents in coloration and textile processing: Literature Survey.Rev. Prog. Color. Relat. Top.196711495210.1111/j.1478‑4408.1967.tb00169.x
    [Google Scholar]
  46. WangY. LeeC. TangY. KanC. Dyeing cotton in alkane solvent using polyethylene glycol-based reverse micelle as reactive dye carrier.Cellulose201623196598010.1007/s10570‑015‑0831‑8
    [Google Scholar]
  47. YuanJ. WangQ. FanX. Dyeing behaviors of ionic liquid treated wool.J. Appl. Polym. Sci.201011742278228310.1002/app.32020
    [Google Scholar]
  48. OpwisK. CelikB. BenkenR. KnittelD. GutmannJ.S. Dyeing of m-aramid fibers in ionic liquids.Polymers2020128182410.3390/polym1208182432824007
    [Google Scholar]
  49. AndreausJ. SidouL.F. Comment on sustainable cotton dyeing in nonaqueous medium applying protic ionic liquids.ACS Sustain. Chem.& Eng.2019797999800010.1021/acssuschemeng.9b01112
    [Google Scholar]
  50. ParvathiC. MaruthavananT. PrakashC. Environmental impacts of textile industries.Indian Textile Journal20092226
    [Google Scholar]
  51. ParaschivD. TudorC. PetrariuR. The textile industry and sustainable development: A Holt-Winters forecasting investigation for the Eastern European area.Sustainability2015721280129110.3390/su7021280
    [Google Scholar]
  52. HolkarC.R. JadhavA.J. PinjariD.V. MahamuniN.M. PanditA.B. A critical review on textile wastewater treatments: Possible approaches.J. Environ. Manage.201618235136610.1016/j.jenvman.2016.07.09027497312
    [Google Scholar]
  53. AntalB. KukiÁ. NagyL. NagyT. ZsugaM. KékiS. Rapid detection of hazardous chemicals in textiles by direct analysis in real-time mass spectrometry (DART-MS).Anal. Bioanal. Chem.2016408195189519810.1007/s00216‑016‑9603‑z27236310
    [Google Scholar]
  54. MaoX. ZhongY. XuH. ZhangL. SuiX. A novel low add-on technology of dyeing cotton fabric with reactive dyestuff.Textile Research2018881210.1177/0040517517700195
    [Google Scholar]
  55. AndradeR.S. TorresD. RibeiroF.R. Chiari-AndréoB.G. OshiroJ.A. Junior; Iglesias, M. Sustainable cotton dyeing in nonaqueous medium applying protic ionic liquids.ACS Sustain. Chem.& Eng.20175108756876510.1021/acssuschemeng.7b01555
    [Google Scholar]
  56. JiménezA.E. AvilésM.D. PamiesR. BermúdezM.D. Carrión-VilchesF.J. SanesJ. Ecofriendly protic ionic liquid lubricants for Ti6Al4V.Lubricants2022111510.3390/lubricants11010005
    [Google Scholar]
  57. LeeC.H. TangY.L. WangY. KanC. Dyeing of cotton fabric in decamethylcyclopentasiloxane using alkyl polyglucoside-based reverse micelle as reactive dye carrier.Fibers Polym.202223110711810.1007/s12221‑021‑0382‑6
    [Google Scholar]
  58. ShangD. ZhangX. ZengS. JiangK. GaoH. DongH. YangQ. ZhangS. Protic ionic liquid [Bim][NTf 2] with strong hydrogen bond donating ability for highly efficient ammonia absorption.Green Chem.201719493794510.1039/C6GC03026B
    [Google Scholar]
  59. Jiugang Yuan Qiang Wang Xuerong Fan Ping Wang Enhancing dye adsorption of wool fibers with 1-butyl-3-methylimidazolium chloride ionic liquid processing.Text. Res. J.201080181898190410.1177/0040517510371865
    [Google Scholar]
  60. GadiloharB.L. ShankarlingG.S. Choline based ionic liquids and their applications in organic transformation.J. Mol. Liq.201722723426110.1016/j.molliq.2016.11.136
    [Google Scholar]
  61. MamunM.A.A. RahmanM. AyatullahA.K.M. SarkarP. Effects of dyeing parameters on color strength and fastness properties of cotton knitted fabric dyed with direct dyes.Intern. J. Curr. Eng. Techno.201442
    [Google Scholar]
  62. Di CarmineG. AbbottA.P. D’AgostinoC. Deep eutectic solvents: Alternative reaction media for organic oxidation reactions.React. Chem. Eng.20216458259810.1039/D0RE00458H
    [Google Scholar]
  63. ParkJ.H. OhK.W. ChoiH.M. Preparation and characterization of cotton fabrics with antibacterial properties treated by crosslinkable benzophenone derivative in choline chloride-based deep eutectic solvents.Cellulose20132042101211410.1007/s10570‑013‑9957‑8
    [Google Scholar]
  64. SilvaF.P. Eco-friendly natural dyeing using choline-based deep eutectic solvents.J. Clean. Prod.2020266121916
    [Google Scholar]
  65. MiaoJ. ZhangX. WeiZ. LiuJ. Dyeing of cotton with disperse dyes using protic ionic liquids.J. Appl. Polym. Sci.20181351646002
    [Google Scholar]
  66. WangW. WangQ. SunJ. ZhangW. LiX. Protic ionic liquids: A novel strategy for enhancing the flame retardancy of cotton fabrics.J. Hazard. Mater.2020389122098
    [Google Scholar]
  67. HuangJ. LiY. WangJ. ChenY. Protic ionic liquids for wool dyeing with acid dyes.J. Mol. Liq.2016220454460
    [Google Scholar]
  68. KuangQ.L. ZhaoJ.C. NiuY.H. ZhangJ. WangZ.G. Celluloses in an ionic liquid: the rheological properties of the solutions spanning the dilute and semidilute regimes.J. Phys. Chem. B200811233102341024010.1021/jp804167n18661932
    [Google Scholar]
  69. IsikM. SardonH. MecerreyesD. Ionic liquids and cellulose: Dissolution, chemical modification and preparation of new cellulosic materials.Int. J. Mol. Sci.2014157119221194010.3390/ijms15071192225000264
    [Google Scholar]
  70. ZhangJ. WuJ. YuJ. ZhangX. HeJ. ZhangJ. Application of ionic liquids for dissolving cellulose and fabricating cellulose-based materials: State of the art and future trends.Mater. Chem. Front.2017171273129010.1039/C6QM00348F
    [Google Scholar]
  71. WendlerF. TodiL.N. MeisterF. Thermostability of imidazolium ionic liquids as direct solvents for cellulose.Thermochim. Acta2012528768410.1016/j.tca.2011.11.015
    [Google Scholar]
  72. ZhangY. MaoY. ZhangJ. HuL. Molecular mechanism of ionic liquid-assisted cellulose dissolution: Insight from molecular dynamics simulations.ACS Sustain. Chem.& Eng.20197171494514953
    [Google Scholar]
  73. SiC. ZhangY. ZhangJ. HuL. The dissolution mechanism of cellulose in ionic liquids: An update review.Carbohydr. Polym.2021256117506
    [Google Scholar]
  74. LopesR. AlmeidaA. RoseiroL.B. PadrãoJ. FerreiraF.C. VilelaC. Sustainable textiles based on ionic liquids.ACS Sustain. Chem.& Eng.202081868266837
    [Google Scholar]
  75. PinkertA. MarshK.N. PangS. StaigerM.P. Ionic liquids and their interaction with cellulose.Chem. Rev.2009109126712672810.1021/cr900194719757807
    [Google Scholar]
  76. LisboaM.J. Maciel FilhoD.R. FreireM.G. Ionic liquids as solvents for cellulose: Fundamentals and applications.Green Chem.20202234323458
    [Google Scholar]
  77. HayesR. WarrG.G. AtkinR. Factors affecting the dissolution of cellulose in ionic liquids and their practical implications.Green Chem.2015172756774
    [Google Scholar]
  78. ZhangY. XuA. LuB. LiZ. WangJ. Dissolution of cellulose in 1-allyl-3-methylimizodalium carboxylates at room temperature: A structure–property relationship study.Carbohydr. Polym.201511766667210.1016/j.carbpol.2014.08.10125498686
    [Google Scholar]
  79. MinnickD.L. FloresR.A. DeStefanoM.R. ScurtoA.M. Cellulose solubility in ionic liquid mixtures: Temperature, cosolvent, and antisolvent effects.J. Phys. Chem. B2016120327906791910.1021/acs.jpcb.6b0430927447741
    [Google Scholar]
  80. AndansonJ.M. PáduaA.A.H. Costa GomesM.F. Thermodynamics of cellulose dissolution in an imidazolium acetate ionic liquid.Chem. Commun.201551214485448710.1039/C4CC10249E25683335
    [Google Scholar]
  81. VitzJ. ErdmengerT. HaenschC. SchubertU.S. Extended dissolution studies of cellulose in imidazolium based ionic liquids.Green Chem.200911341710.1039/b818061j
    [Google Scholar]
  82. JiangJ. WuJ. ChenY. XuJ. HuangC. CaiY. WangX. Choline-based ionic liquids as solvents for cellulose and silk: Effects of cation alkyl chain length and anion type.ACS Sustain. Chem.& Eng.202192276567667
    [Google Scholar]
  83. SharmaA. SinghB. BhartiA. KumarV. Ionic liquids as novel solvents for cotton: Impact of alkyl chain length on triethylammonium-based ionic liquids.Cellulose202128210331048
    [Google Scholar]
  84. SalasC. Electrospun nanofibers.Solution electrospinning of nanofibers.Woodhead Publishing Series in Textiles20177310810.1016/B978‑0‑08‑100907‑9.00004‑0
    [Google Scholar]
  85. Ul-HaqN. NasirH. Cleaner production technologies in desizing of cotton fabric. The J.Text. Inst.20121033304310
    [Google Scholar]
  86. CanettaE. MontielK. AdyaA.K. Morphological changes in textile fibres exposed to environmental stresses: Atomic force microscopic examination.Forensic Sci. Int.20091911-361410.1016/j.forsciint.2009.05.02219570629
    [Google Scholar]
  87. ÜtebayB. ÇelikP. ÇayA. Textile Wastes: Status and Perspectives.Waste in Textile and Leather Sectors, IntechOpen2020
    [Google Scholar]
  88. YamanM. LuP. VasanthanN. Crystal-to-crystal transition and the structure development of electrospun poly(ethylene 2,6 naphthalate) (PEN) nanofibers from solution.J. Phys. Chem. B2019123275954596110.1021/acs.jpcb.9b0427831250640
    [Google Scholar]
  89. LoumJ. ByamukamaR. WanyamaP.A.G. Efficient extraction of natural dyes from selected plant species.Chem. Africa20214367768910.1007/s42250‑021‑00248‑6
    [Google Scholar]
  90. MadhavS. AhamadA. SinghP. MishraP.K. A review of textile industry: Wet processing, environmental impacts, and effluent treatment methods.Environ. Qual. Manage.2018273314110.1002/tqem.21538
    [Google Scholar]
  91. AghmihK. BouftouA. El BouchtiM. BoukhrissA. GmouhS. MajidS. Synthesis and application of functionalized ionic liquids-based imidazolium as solvent for cotton fibre cellulose dissolution.Cellulose20233031467148110.1007/s10570‑022‑04974‑z
    [Google Scholar]
  92. SinghaA.S. ThakurV.K. Mechanical properties of natural fibre reinforced polymer composites.Bull. Mater. Sci.200831579179910.1007/s12034‑008‑0126‑x
    [Google Scholar]
  93. GeyerR. JambeckJ.R. LawK.L. Production, use, and fate of all plastics ever made.Sci. Adv.201737e170078210.1126/sciadv.170078228776036
    [Google Scholar]
  94. KahoushM. KadiN. Towards sustainable textile sector: Fractionation and separation of cotton/polyester fibers from blended textile waste.Sustainable Materials and Technologies202234e00513
    [Google Scholar]
/content/journals/ctc/10.2174/0126660016287413240306115111
Loading
/content/journals/ctc/10.2174/0126660016287413240306115111
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): cellulose; cotton; dyeing; fabric recycling; Ionic liquids; polyester; wastewater
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test