Skip to content
2000
Volume 4, Issue 1
  • ISSN: 2950-4023
  • E-ISSN: 2950-4031

Abstract

Aims

This study aimed to employ sustainable green methods in the synthesis of bis-fused cycles incorporating pyrido[2,3-]pyrimidine moiety using a green catalyst nano ZnO catalyst by one-pot, multicomponent reaction among 2,2'-(propane-1,3-diylbis(sulfanediyl)) bis(6-aminopyrimidin-4(3)-one) , 1-indene-1,3(2)-dione , and aromatic aldehydes .

Methods

The reactions proceeded with both conventional and microwave (MW) irradiation methods.

Results

The microwave-assisted method carried out the reaction in 10 min and had high yields (89-95%).

Conclusion

A molecular docking simulation study was conducted using human serum albumin (PDB: ID (2XVQ)). The study revealed that compounds strongly fit into the active sites of the target protein.

Loading

Article metrics loading...

/content/journals/ctc/10.2174/0126660016263316240610065901
2024-06-15
2024-11-26
Loading full text...

Full text loading...

References

  1. Harvard Extension SchoolSustainability Master’s Degree Program.Available From: https://extension.harvard.edu/blog/green-chemistry-and-the-future-of-sustainability/
  2. UNEPGreen and sustainable chemistry.Available From: https://www.unep.org/explore-topics/chemicals-waste/what-wedo/policy-and-governance/green-and-sustainable-chemistry 2024
  3. BajpaiS. RazaS. AzadI. KhanT. Green Chemistry: Making chemistry environment-friendly.Med. Environ. Chem.: Exp. Adv. Simul.2021Part I22024310.2174/9789814998277121010013
    [Google Scholar]
  4. GhoshS. MukhopadhyayC. Microwave syntheses: A modern day approach towards sustainable chemistry.Curr. Microw. Chem.20184410.2174/2213335604666170830122722
    [Google Scholar]
  5. KhanT. KhanA.R. RazaS. AzadI. LawrenceA.J. Eds.; Medicinal and Environmental Chemistry: Experimental Advances and Simulations (Part I).NetherlandsBentham Books202110.2174/97898149982771210101
    [Google Scholar]
  6. BhatA.R. DongreR.S. NaikooG.A. HassanI.U. AraT. Proficient synthesis of bioactive annulated pyrimidine derivatives: A review.J. Taibah Univ. Sci.20171161047106910.1016/j.jtusci.2017.05.005
    [Google Scholar]
  7. MamaghaniM. TabatabaeianK. AraghiR. FallahA. Hossein NiaR. An efficient, clean, and catalyst-free synthesis of fused pyrimidines using sonochemistry.Org. Chem. Int.201420141910.1155/2014/406869
    [Google Scholar]
  8. WangS. YuanX.H. WangS.Q. ZhaoW. ChenX.B. YuB. FDA-approved pyrimidine-fused bicyclic heterocycles for cancer therapy: Synthesis and clinical application.Eur. J. Med. Chem.202121411321810.1016/j.ejmech.2021.11321833540357
    [Google Scholar]
  9. ShamroukhA.H. RashadA.E. AbdelmegeidF.M.E. The chemistry of pyrido[2,3-d]pyrimidines and their applications.J. Chem. Pharm. Res.201683734772
    [Google Scholar]
  10. JubeteG. Puig de la BellacasaR. Estrada-TejedorR. TeixidóJ. BorrellJ.I. Pyrido[2,3-d]pyrimidin-7(8H)-ones: Synthesis and biomedical applications.Molecules20192422416110.3390/molecules2422416131744155
    [Google Scholar]
  11. AjaniO.O. IsaacJ.T. OwoeyeT.F. AkinsikuA.A. Exploration of the chemistry and biological properties of pyrimidine as a privilege pharmacophore in therapeutics.Int. J. Biol. Chem.20159414817710.3923/ijbc.2015.148.177
    [Google Scholar]
  12. FaresM. Abou-SeriS.M. Abdel-AzizH.A. AbbasS.E.S. YoussefM.M. EladwyR.A. Synthesis and antitumor activity of pyrido[2,3-d]pyrimidine and pyrido[2,3-d][1,2,4]triazolo[4,3-a]pyrimidine derivatives that induce apoptosis through G1 cell-cycle arrest.Eur. J. Med. Chem.20148315516610.1016/j.ejmech.2014.06.02724956552
    [Google Scholar]
  13. BazgirA. KhanaposhtaniM.M. SoorkiA.A. One-pot synthesis and antibacterial activities of pyrazolo[4′,3′:5,6]pyrido[2,3-d]pyrimidine-dione derivatives.Bioorg. Med. Chem. Lett.200818215800580310.1016/j.bmcl.2008.09.05718842404
    [Google Scholar]
  14. SowmyaH.B.V. Suresha KumaraT.H. NagendrappaG. JasinskiJ.P. MillikanS.P. JoseG. R, D.; Sujan Ganapathy, P.S. Solvent free synthesis, crystal studies, docking studies and antibacterial properties of some novel fluorinated pyridazinone derivatives.J. Mol. Struct.20131054-105517918710.1016/j.molstruc.2013.09.046
    [Google Scholar]
  15. El-GazzarA.R.B.A. HafezH.N. Synthesis of 4-substituted pyrido[2,3-d]pyrimidin-4(1H)-one as analgesic and anti-inflammatory agents.Bioorg. Med. Chem. Lett.200919133392339710.1016/j.bmcl.2009.05.04419481936
    [Google Scholar]
  16. MohamedN.R. AbdelhalimM.M. KhadrawyY.A. ElmegeedG.A. Abdel-SalamO.M.E. One-pot three-component synthesis of novel heterocyclic steroids as a central antioxidant and anti-inflammatory agents.Steroids201277131469147610.1016/j.steroids.2012.09.00122999991
    [Google Scholar]
  17. AbdallahM.A. GomhaS.M. MoradM.A. ElaasserM.M. Synthesis of pyridotriazolopyrimidines as antitumor agents.J. Heterocycl. Chem.20175421242125110.1002/jhet.2699
    [Google Scholar]
  18. LuJ. Palbociclib: A first-in-class CDK4/CDK6 inhibitor for the treatment of hormone-receptor positive advanced breast cancer.J. Hematol. Oncol.2015819810.1186/s13045‑015‑0194‑526264704
    [Google Scholar]
  19. MillerS.M. GouletD.R. JohnsonG.L. Targeting the breast cancer kinome.J. Cell. Physiol.20172321536010.1002/jcp.2542727186656
    [Google Scholar]
  20. ElansaryA.K. MoneerA.A. KadryH.H. GedawyE.M. Synthesis and anticancer activity of some novel fused pyridine ring system.Arch. Pharm. Res.201235111909191710.1007/s12272‑012‑1107‑623212632
    [Google Scholar]
  21. ReddyM.V.R. AkulaB. CosenzaS.C. AthuluridivakarS. MallireddigariM.R. PallelaV.R. BillaV.K. SubbaiahD.R.C.V. BharathiE.V. Vasquez-Del CarpioR. PadgaonkarA. BakerS.J. ReddyE.P. Discovery of 8-Cyclopentyl-2-[4-(4-methyl-piperazin-1-yl)-phenylamino]-7-oxo-7,8-dihydro-pyrido[2,3- d]pyrimidine-6-carbonitrile (7x) as a Potent Inhibitor of Cyclin-Dependent Kinase 4 (CDK4) and AMPK-Related Kinase 5 (ARK5).J. Med. Chem.201457357859910.1021/jm401073p24417566
    [Google Scholar]
  22. AbbasS.E.S. GeorgeR.F. SamirE.M. ArefM.M.A. Abdel-AzizH.A. Synthesis and anticancer activity of some pyrido[2,3-d]pyrimidine derivatives as apoptosis inducers and cyclin-dependent kinase inhibitors.Future Med. Chem.201911182395241410.4155/fmc‑2019‑005031544523
    [Google Scholar]
  23. VanderWelS.N. HarveyP.J. McNamaraD.J. RepineJ.T. KellerP.R. QuinJ.III BoothR.J. ElliottW.L. DobrusinE.M. FryD.W. ToogoodP.L. Pyrido[2,3-d]pyrimidin-7-ones as specific inhibitors of cyclin-dependent kinase 4.J. Med. Chem.20054872371238710.1021/jm049355+15801830
    [Google Scholar]
  24. PevarelloP. BischoffJ.R. MercurioC. Targeting cyclin-dependent kinases with small molecule inhibitors. Checkpoint Controls and Targets in Cancer Therapy.Totowa, NJHumana Press201023524410.1007/978‑1‑60761‑178‑3_15
    [Google Scholar]
  25. HoriuchiT. NagataM. KitagawaM. AkahaneK. UotoK. Discovery of novel thieno[2,3-d]pyrimidin-4-yl hydrazone-based inhibitors of Cyclin D1-CDK4: Synthesis, biological evaluation and structure–activity relationships. Part 2.Bioorg. Med. Chem.200917237850786010.1016/j.bmc.2009.10.03919889545
    [Google Scholar]
  26. ZhangJ. ChenP. DuanY. XiongH. LiH. ZengY. LiangG. TangQ. WuD. Design, synthesis and biological evaluation of 7H-pyrrolo[2,3-d]pyrimidine derivatives containing 1,8-naphthyridine-4-one fragment.Eur. J. Med. Chem.2021215Feb11327310.1016/j.ejmech.2021.11327333601310
    [Google Scholar]
  27. ElzahabiH.S.A. NossierE.S. KhalifaN.M. AlasfouryR.A. El-ManawatyM.A. Anticancer evaluation and molecular modeling of multi-targeted kinase inhibitors based pyrido[2,3- d]pyrimidine scaffold.J. Enzyme Inhib. Med. Chem.201833154655710.1080/14756366.2018.143772929482389
    [Google Scholar]
  28. Le BrazidecJ.Y. PasisA. TamB. BoykinC. BlackC. WangD. ClaassenG. ChongJ.H. ChaoJ. FanJ. NguyenK. SilvianL. LingL. ZhangL. ChoiM. TengM. PathanN. ZhaoS. LiT. TaverasA. Synthesis, SAR and biological evaluation of 1,6-disubstituted-1H-pyrazolo[3,4-d]pyrimidines as dual inhibitors of Aurora kinases and CDK1.Bioorg. Med. Chem. Lett.20122252070207410.1016/j.bmcl.2012.01.01922326168
    [Google Scholar]
  29. EidE.M. HassaneenM.M. Molecular docking studies and synthesis of novel hybrid molecules containing thiazolopyrimidine/pyrido-pyrimidothiazine. Int J Sci.Res. Multidis. Stud.202175813
    [Google Scholar]
  30. EidE.M. HassaneenH.M.E. AbdelhamidI.A. ElwahyA.H.M. Facile one‐pot, three‐component synthesis of novel bis(heterocycles) incorporating thieno[2,3‐ b]thiophenes via Michael addition reaction.J. Heterocycl. Chem.20205752243225510.1002/jhet.3945
    [Google Scholar]
  31. NiaR.H. MamaghaniM. TabatabaeianK. ShiriniF. RassaM. A rapid one-pot synthesis of pyrido[2,3-d]pyrimidine derivatives using Brønsted-acidic ionic liquid as catalyst.Acta Chim. Slov.201360488989524362994
    [Google Scholar]
  32. Mohammadi ZiaraniG. Hosseini NasabN. RahimifardM. Abolhasani SoorkiA. One-pot synthesis of pyrido[2,3-d]pyrimidine derivatives using sulfonic acid functionalized SBA-15 and the study on their antimicrobial activities.J. Saudi Chem. Soc.201519667668110.1016/j.jscs.2014.06.007
    [Google Scholar]
  33. BhattacharyyaP. PaulS. DasA.R. Facile synthesis of pyridopyrimidine and coumarin fused pyridine libraries over a Lewis base-surfactant-combined catalyst TEOA in aqueous medium.RSC Advances2013310320310.1039/c3ra23254a
    [Google Scholar]
  34. JainS. PaliwalP.K. Neelaiah BabuG. BhatewaraA. DABCO promoted one-pot synthesis of dihydropyrano(c)chromene and pyrano[2,3-d]pyrimidine derivatives and their biological activities.J. Saudi Chem. Soc.201418553554010.1016/j.jscs.2011.10.023
    [Google Scholar]
  35. RiadiY. MassipS. LegerJ.M. JarryC. LazarS. GuillaumetG. Convenient synthesis of 2,4-disubstituted pyrido[2,3-d]pyrimidines via regioselective palladium-catalyzed reactions.Tetrahedron201268255018502410.1016/j.tet.2012.04.051
    [Google Scholar]
  36. SamaiS. Chandra NandiG. ChowdhuryS. SinghM.S. l-Proline catalyzed synthesis of densely functionalized pyrido[2,3-d]pyrimidines via three-component one-pot domino Knoevenagel aza-Diels–Alder reaction.Tetrahedron201167335935594110.1016/j.tet.2011.06.051
    [Google Scholar]
  37. AbdolmohammadiS. AfsharpourM. Facile one-pot synthesis of pyrido[2,3-d]pyrimidine derivatives over ZrO2 nanoparticles catalyst.Chin. Chem. Lett.201223325726010.1016/j.cclet.2012.01.001
    [Google Scholar]
  38. MohsenimehrM. MamaghaniM. ShiriniF. SheykhanM. MoghaddamF.A. One-pot synthesis of novel pyrido[2,3-d]pyrimidines using HAp-encapsulated-γ-Fe2O3 supported sulfonic acid nanocatalyst under solvent-free conditions.Chin. Chem. Lett.201425101387139110.1016/j.cclet.2014.04.025
    [Google Scholar]
  39. MalekiN. ShakaramiZ. JamshidianS. NazariM. Clean synthesis of pyrano[2,3- D]pyrimidines using ZnO nano-powders.Acta Chemica Iasi2016241202810.1515/achi‑2016‑0002
    [Google Scholar]
  40. ParreyI.R. HashmiA.A. One-pot synthesis of new Pyrido[2,3-d] Pyrimidine derivatives under ultrasonic irradiation using organo catalyst 4-Dimethylaminopyridine (DMAP).Catal. Sustain. Energy2016311610.1515/cse‑2016‑0002
    [Google Scholar]
  41. EidE.M. Sustainable green synthesis of pyrimidine derivatives: Review on multicomponent synthesis, catalysts and techniques.Curr. Org. Synth.202421212713910.2174/1570179420666230330081211
    [Google Scholar]
  42. EidE.M. HassaneenH.M.E. LoutfyS.A. SalaheldinT. Preparation of pyrimido[4,5- b][1,6]naphthyridin-4(1H)-one derivatives using a zeolite–nanogold catalyst and their in vitro evaluation as anticancer agent.J. Chem. Res.2021457-867968610.1177/1747519820988806
    [Google Scholar]
  43. TuS. WuS. HanZ. HaoW. An efficient microwave‐assisted synthesis of pyrido[2,3‐ d]pyrimidine derivatives.Chin. J. Chem.20092761148115210.1002/cjoc.200990192
    [Google Scholar]
  44. GaoY. TuS. LiT. ZhangX. ZhuS. FangF. ShiD. Effective synthesis of 7‐Amino‐6‐cyano‐5‐aryl‐5 H ‐pyrano[2,3‐ d]pyrimidine‐2,4(1 H, 3 H)‐diones Under Microwave Irradiation.Synth. Commun.20043471295129910.1081/SCC‑120030318
    [Google Scholar]
  45. DeviI. KumarB.S.D. BhuyanP.J. A novel three-component one-pot synthesis of pyrano[2,3-d]pyrimidines and pyrido[2,3-d]pyrimidines using microwave heating in the solid state.Tetrahedron Lett.200344458307831010.1016/j.tetlet.2003.09.063
    [Google Scholar]
  46. PolshettiwarV. VarmaR.S. Microwave-assisted organic synthesis and transformations using benign reaction media.Acc. Chem. Res.200841562963910.1021/ar700238s18419142
    [Google Scholar]
  47. Chemical Computing Group ULCMolecular Operating Environment (MOE).Available From: https://www.chemcomp.com/Products.htm 2021
  48. PDB2XVQ: Human serum albumin complexed with dansyl-L-sarcosine.Available From: https://www.rcsb.org/structure/2XVQ 2010
  49. Kjell UndheimT.B. Pyrimidines and their Benzo DerivativesComprehensive Heterocyclic Chemistry IIElsevier LtdAmsterdam1996693231
    [Google Scholar]
  50. BoraeiA.T.A. El AshryE.S.H. DuerkopA. DuerkopA. El AshryE.S.H. DuerkopA. Regioselectivity of the alkylation of S-substituted 1,2,4-triazoles with dihaloalkanes.Chem. Cent. J.20161012210.1186/s13065‑016‑0165‑027127538
    [Google Scholar]
  51. GaafarA. AlyA. Abu-ZiedK.M. Abdel-RahmanA.E. HelmyM. Chemical Synthesis of Some Novel 6-Aminouracil-2-Thiones and Their Glycoside Analogues.Egypt. J. Chem.201659577979710.21608/ejchem.2016.1449
    [Google Scholar]
  52. SakaiT. YamasakiK. SakoT. Kragh-HansenU. SuenagaA. OtagiriM. Interaction mechanism between indoxyl sulfate, a typical uremic toxin bound to site II, and ligands bound to site I of human serum albumin.Pharm. Res.200118452052410.1023/A:101101462955111451040
    [Google Scholar]
  53. YamasakiK. MaruyamaT. YoshimotoK. TsutsumiY. NarazakiR. FukuharaA. Kragh-HansenU. OtagiriM. Interactive binding to the two principal ligand binding sites of human serum albumin: Effect of the neutral-to-base transition.Biochim. Biophys. Acta Protein Struct. Mol. Enzymol.19991432231332310.1016/S0167‑4838(99)00098‑910407153
    [Google Scholar]
  54. YamasakiK. HyodoS. TaguchiK. NishiK. YamaotsuN. HironoS. ChuangV.T.G. SeoH. MaruyamaT. OtagiriM. Long chain fatty acids alter the interactive binding of ligands to the two principal drug binding sites of human serum albumin.PLoS One2017126e018040410.1371/journal.pone.018040428662200
    [Google Scholar]
  55. YamasakiK. NishiK. AnrakuM. TaguchiK. MaruyamaT. OtagiriM. Metal-catalyzed oxidation of human serum albumin does not alter the interactive binding to the two principal drug binding sites.Biochem. Biophys. Rep.20181415516010.1016/j.bbrep.2018.05.00229872747
    [Google Scholar]
  56. RyanA.J. GhumanJ. ZunszainP.A. ChungC. CurryS. Structural basis of binding of fluorescent, site-specific dansylated amino acids to human serum albumin.J. Struct. Biol.20111741849110.1016/j.jsb.2010.10.00420940056
    [Google Scholar]
  57. BadshahS. NaeemA. Bioactive thiazine and benzothiazine derivatives: Green synthesis methods and their medicinal importance.Molecules2016218105410.3390/molecules2108105427537865
    [Google Scholar]
  58. Fatemeh BavafaK.A.D. Synthesis and thermal analysis of new bis-1, 2, 4-triazoles.The 22nd Iranian Seminar of Organic Chemistry19-21 August 2014Tabriz, Iran2014
    [Google Scholar]
  59. SeverinaH.I. SkupaO.O. VoloshchukN.I. KhairulinA.R. GeorgiyantsV.A. Design, synthesis, in vivo and in silico anticonvulsant activity studies of derivatives of 6-amino-4-hydroxy-2-thio-pyrimidine.ACTA Pharmaceut. Sci.202058337110.23893/1307‑2080.APS.05821
    [Google Scholar]
  60. EidE.M. COVID-19 Main Protease Molecular Docking Simulation against Synthesised Bis Imidazo[4,5-b] Indole using Nano Au-Zeolite.Ann. Clin Pharmacol. Toxicol.2021221020
    [Google Scholar]
  61. AhadiS. KamranifardT. ArmaghanM. KhavasiH.R. BazgirA. Domino Knoevenagel condensation–Michael addition–cyclization for the diastereoselective synthesis of dihydrofuropyrido[2,3-d]pyrimidines via pyridinium ylides in water.RSC Adv.20144147296730010.1039/c3ra45795h
    [Google Scholar]
/content/journals/ctc/10.2174/0126660016263316240610065901
Loading
/content/journals/ctc/10.2174/0126660016263316240610065901
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test