Skip to content
2000
Volume 5, Issue 2
  • ISSN: 2405-4658
  • E-ISSN: 2405-4666

Abstract

Background: Acoustic power transfer is a method for wireless energy transfer to implanted medical devices that permits a greater range of separation between transmitter and receiver than is possible with inductive power transfer. In some cases, short-distance ultrasonic power transfer may be employed; consequently, their operation may be complicated by the near-field aspects of piezoelectric acoustic energy transfer. Methods: A piezoelectric energy transfer system consisting of two lead zirconate titanate (PZT) transducers was analyzed in this work using a combination of experimental measurements and computer simulations. Results: Simulations using the COMSOL Software package showed good agreement with measured output voltage as a function of the distance between and alignment of the transmitter and receiver with water as a medium. We also simulated how operating frequency affects power transfer efficiency at various distances between the transmitter and receiver and found reasonable agreement with experiments. We report model predictions for power transfer efficiency as a function of the thickness and diameter of the transmitter and receiver. Conclusion: The results show that with proper choice of parameters, piezoelectric systems can provide high power transfer efficiency in the near-field region.

Loading

Article metrics loading...

/content/journals/csm/10.2174/2405465805666210709152527
2021-09-01
2024-11-26
Loading full text...

Full text loading...

/content/journals/csm/10.2174/2405465805666210709152527
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test