Skip to content
2000
Volume 12, Issue 2
  • ISSN: 2213-2759
  • E-ISSN: 1874-4796

Abstract

Background: Social media texts are often highly unstructured in accordance with the presence of hashtags, emojis and URLs occurring in abundance. Thus, a sentiment or emotion analysis on these kinds of texts becomes very difficult. The difficulty increases even more when such texts are in local languages like Arabic. Methods: This work utilizes novel deep learning architectures in the form of character-level Convolutional Neural Network (CNN) module and the word-level Recurrent Neural Network (RNN) module to produce a hybrid architecture that makes use of the character level analysis and the word level analysis to obtain state-of-the-art results on a totally new Arabic Emotions dataset. Results: The proposed method works the best among the traditional bag-of-words and Term Frequency and Inverse Document Frequency methods for emotion analysis. It also outperforms the state-of-the-art deep learning methods which are known to perform very well in an English corpus. Conclusion: The proposed deep end-to-end architecture utilizes the character level information from a text through the Character CNN Module and the word level information from a text through the Word-Level RNN Module.

Loading

Article metrics loading...

/content/journals/cseng/10.2174/2213275911666181119112645
2019-05-01
2025-05-25
Loading full text...

Full text loading...

/content/journals/cseng/10.2174/2213275911666181119112645
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test