Skip to content
2000
Volume 16, Issue 4
  • ISSN: 1574-888X
  • E-ISSN: 2212-3946

Abstract

Diseases, trauma, and injuries are highly prevalent conditions that lead to many critical tissue defects. Tissue engineering has great potentials to develop functional scaffolds that mimic natural tissue structures to improve or replace biological functions. In many kinds of technologies, electrospinning has received widespread attention for its outstanding functions, which is capable of producing nanofibre structures similar to the natural extracellular matrix. Amongst the available biopolymers for electrospinning, poly (caprolactone) (PCL) has shown favorable outcomes for tissue regeneration applications. According to the characteristics of different tissues, PCL can be modified by altering the functional groups or combining with other materials, such as synthetic polymers, natural polymers, and metal materials, to improve its physicochemical, mechanical, and biological properties, making the electrospun scaffolds meet the requirements of different tissue engineering and regenerative medicine. Moreover, efforts have been made to modify nanofibres with several bioactive substances to provide cells with the necessary chemical cues and a more in vivo like environment. In this review, some recent developments in both the design and utility of electrospun PCL-based scaffolds in the fields of bone, cartilage, skin, tendon, ligament, and nerve are highlighted, along with their potential impact on future research and clinical applications.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/1574888X15666201014145703
2021-05-01
2025-05-01
Loading full text...

Full text loading...

/content/journals/cscr/10.2174/1574888X15666201014145703
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test