Skip to content
2000
Volume 15, Issue 5
  • ISSN: 1574-888X
  • E-ISSN: 2212-3946

Abstract

Differentiation of stem cells, a crucial step in the process of tissue development, repair and regeneration, can be regulated by a variety of mechanical factors such as the stiffness of extracellular matrix. In this review article, the effects of stiffness on the differentiation of stem cells, including bone marrow-derived stem cells, adipose-derived stem cells and neural stem cells, are briefly summarized. Compared to two-dimensional (2D) surfaces, three-dimensional (3D) hydrogel systems better resemble the native environment in the body. Hence, the studies which explore the effects of stiffness on stem cell differentiation in 3D environments are specifically introduced. Integrin is a well-known transmembrane molecule, which plays an important role in the mechanotransduction process. In this review, several integrin-associated signaling molecules, including caveolin, piezo and Yes-associated protein (YAP), are also introduced. In addition, as stiffness-mediated cell differentiation may be affected by other factors, the combined effects of matrix stiffness and viscoelasticity, surface topography, chemical composition, and external mechanical stimuli on cell differentiation are also summarized.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/1574888X15666200408114632
2020-07-01
2025-05-04
Loading full text...

Full text loading...

/content/journals/cscr/10.2174/1574888X15666200408114632
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test