Skip to content
2000
image of Efficacy of Human Dental-Pulp MSCs Modified by Double-genes on Wound Healing in Diabetic-Foot Model

Abstract

Objectives

Diabetic foot (DF) poses a great challenge to us due to its poor therapeutic effect. To seek a new cure, the human dental pulp mesenchymal stem cells (hDP-MSCs) were modified by vascular endothelial growth factor A (VEGFA) and basic fibroblast growth factor (bFGF) (hEDP-MSCs) to investigate their curative effect on DF wound in animal models.

Methods

Forty-eight rats with DF constructed with streptozotocin and ligation of femoral arteries, were randomly divided into six equal groups, which respectively received an intramuscular injection of normal saline (Control group), hDP-MSCs, VEGFA-modified hDP-MSCs, bFGF-modified hDP-MSCs, hEDP-MSCs, and Ad.VEGF.FGF (Ad.FV). The tissues around DF wound were collected to investigate the level of CD31, alpha-smooth muscle actin (α-SMA), and cytokines. The expression of Notch1, Hes1, and CD105 were assessed Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) after administration.

Results

The hEDP-MSCs increased capillaries and decreased wound area (%). QRT-PCR showed that hEDP-MSCs over-expressed the mRNA of Notch1, hairy and enhancer of split 1 and CD105 in peri-wound tissue post-treatment. Meanwhile, the hEDP-MSCs expressed more CD31 and α-SMA than other groups. The hEDP-MSCs expressed more VEGFA and bFGF than hDP-MSCs, and yet less than Ad.FV. Compared with hDP-MSCs, the hEDP-MSCs down-regulated the expressions of interleukin-1 beta (IL-1β), interleukin (IL-6), and tissue necrosis factor α (TNF-a) post-treatment.

Conclusion

This study highlights the curative effect of hEDP-MSCs in the wound healing process, and demonstrates the decisive function of hEDP-MSCs in promoting angiogenesis and reducing inflammation.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X363143250221015057
2025-02-28
2025-05-03
Loading full text...

Full text loading...

References

  1. Zhang P. Lu J. Jing Y. Tang S. Zhu D. Bi Y. Global epidemiology of diabetic foot ulceration: A systematic review and meta-analysis. Ann. Med. 2017 49 2 106 116 10.1080/07853890.2016.1231932 27585063
    [Google Scholar]
  2. Yamada Y. Nakamura-Yamada S. Kusano K. Baba S. Clinical potential and current progress of dental pulp stem cells for various systemic diseases in regenerative medicine: A concise review. Int. J. Mol. Sci. 2019 20 5 1132 10.3390/ijms20051132 30845639
    [Google Scholar]
  3. Marco M. Valentina I. Daniele M. Valerio D.R. Andrea P. Roberto G. Laura G. Luigi U. Peripheral arterial disease in persons with diabetic foot ulceration: A current comprehensive overview. Curr. Diabetes Rev. 2021 17 4 474 485 10.2174/1573399816999201001203111 33023453
    [Google Scholar]
  4. Lebreton O. Fels A. Compagnon A. Lazareth I. Ghaffari P. Chatellier G. Emmerich J. Michon-Pasturel U. Priollet P. Yannoutsos A. Amputation-free survival in the long-term follow-up and gender-related characteristics in patients revascularized for critical limb ischemia. J. Med. Vasc. 2023 48 3-4 105 115 10.1016/j.jdmv.2023.10.002 37914455
    [Google Scholar]
  5. Cho N.H. Shaw J.E. Karuranga S. Huang Y. da Rocha Fernandes J.D. Ohlrogge A.W. Malanda B. IDF diabetes atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract. 2018 138 271 281 10.1016/j.diabres.2018.02.023 29496507
    [Google Scholar]
  6. Wang A. Lv G. Cheng X. Ma X. Wang W. Gui J. Hu J. Lu M. Chu G. Chen J. Zhang H. Jiang Y. Chen Y. Yang W. Jiang L. Geng H. Zheng R. Li Y. Feng W. Johnson B. Wang W. Zhu D. Hu Y. Guidelines on multidisciplinary approaches for the prevention and management of diabetic foot disease (2020 edition). Burns Trauma 2020 8 tkaa017 10.1093/burnst/tkaa017 32685563
    [Google Scholar]
  7. Driver V.R. Fabbi M. Lavery L.A. Gibbons G. The costs of diabetic foot: The economic case for the limb salvage team. J. Vasc. Surg. 2010 52 3 Suppl. 17S 22S 10.1016/j.jvs.2010.06.003 20804928
    [Google Scholar]
  8. Wang L.H. Gao S.Z. Bai X.L. Chen Z.L. Yang F. An up-to-date overview of dental tissue regeneration using dental origin mesenchymal stem cells: Challenges and road ahead. Front. Bioeng. Biotechnol. 2022 10 855396 10.3389/fbioe.2022.855396 35497335
    [Google Scholar]
  9. Zhang S.Y. Ren J.Y. Yang B. Priming strategies for controlling stem cell fate: Applications and challenges in dental tissue regeneration. World J. Stem Cells 2021 13 11 1625 1646 10.4252/wjsc.v13.i11.1625 34909115
    [Google Scholar]
  10. Goushki M.A. Kharat Z. Kehtari M. Sohi A.N. Ahvaz H.H. Rad I. HosseinZadeh S. Kouhkan F. Kabiri M. Applications of extraembryonic tissue-derived cells in vascular tissue regeneration. Stem Cell Res. Ther. 2024 15 1 205 10.1186/s13287‑024‑03784‑3 38982541
    [Google Scholar]
  11. Shekatkar M. Kheur S. Deshpande S. Sanap A. Kharat A. Navalakha S. Gupta A. Kheur M. Bhonde R. Merchant Y.P. Angiogenic potential of various oral cavity–derived mesenchymal stem cells and cell-derived secretome: A systematic review and meta-analysis. Eur. J. Dent. 2024 18 3 712 742 10.1055/s‑0043‑1776315 37995732
    [Google Scholar]
  12. Shahani P. Kaushal A. Waghmare G. Datta I. Biodistribution of intramuscularly-transplanted human dental pulp stem cells in immunocompetent healthy rats through NIR imaging. Cells Tissues Organs 2020 209 4-6 215 226 10.1159/000511569 33333518
    [Google Scholar]
  13. Geng P. Zhang Y. Zhang H. Dong X. Yang Y. Zhu X. Wu C.T. Wang H. HGF-modified dental pulp stem cells mitigate the inflammatory and fibrotic responses in paraquat-induced acute respiratory distress syndrome. Stem Cells Int. 2021 2021 1 15 10.1155/2021/6662831 33747095
    [Google Scholar]
  14. Shekatkar M.R. Kheur S.M. Kharat A.H. Deshpande S.S. Sanap A.P. Kheur M.G. Bhonde R.R. Assessment of angiogenic potential of mesenchymal stem cells derived conditioned medium from various oral sources. J. Clin. Transl. Res. 2022 8 4 323 338 36090765
    [Google Scholar]
  15. Maksimova N.V. Michenko A.V. Krasilnikova O.A. Klabukov I.D. Gadaev I.Y. Krasheninnikov M.E. Belkov P.A. Lyundup A.V. Mesenchymal stromal cell therapy alone does not lead to complete restoration of skin parameters in diabetic foot patients within a 3-year follow-up period. Bioimpacts 2022 12 1 51 55 35087716
    [Google Scholar]
  16. Nalisa D.L. Moneruzzaman M. Changwe G.J. Mobet Y. Li L.P. Ma Y.J. Jiang H.W. Stem cell therapy for diabetic foot ulcers: Theory and practice. J. Diabetes Res. 2022 2022 1 12 10.1155/2022/6028743 36524153
    [Google Scholar]
  17. Kim S. Lee S. Jung H.S. Kim S.Y. Shin S.J. Kang M.K. Kim E. Evaluation of the biodistribution of human dental pulp stem cells transplanted into mice. J. Endod. 2018 44 4 592 598 10.1016/j.joen.2017.12.007 29370943
    [Google Scholar]
  18. Viaña-Mendieta P. Sánchez M.L. Benavides J. Rational selection of bioactive principles for wound healing applications: Growth factors and antioxidants. Int. Wound J. 2022 19 1 100 113 10.1111/iwj.13602 33951280
    [Google Scholar]
  19. Yuce K. The application of mesenchymal stem cells in different cardiovascular disorders: Ways of administration, and the effectors. Stem Cell Rev. Rep. 2024 20 7 1671 1691 10.1007/s12015‑024‑10765‑9 39023739
    [Google Scholar]
  20. Maeta N. Iwai R. Takemitsu H. Akashi N. Miyabe M. Funayama-Iwai M. Nakayama Y. Evaluation of skin wound healing with biosheets containing somatic stem cells in a dog model: A pilot study. Bioengineering 2024 11 5 435 10.3390/bioengineering11050435 38790301
    [Google Scholar]
  21. Huang X. Yang J. Zhang R. Ye L. Li M. Chen W. Phloroglucinol derivative carbomer hydrogel accelerates MRSA-infected wounds’ healing. Int. J. Mol. Sci. 2022 23 15 8682 10.3390/ijms23158682 35955816
    [Google Scholar]
  22. Li J. Zhai D. Lv F. Yu Q. Ma H. Yin J. Yi Z. Liu M. Chang J. Wu C. Preparation of copper-containing bioactive glass/eggshell membrane nanocomposites for improving angiogenesis, antibacterial activity and wound healing. Acta Biomater. 2016 36 254 266 10.1016/j.actbio.2016.03.011 26965395
    [Google Scholar]
  23. Derhambakhsh S. Mohammadi J. Shokrgozar M.A. Rabbani H. Sadeghi N. Nekounam H. Mohammadi S. Lee K.B. Khakbiz M. Investigation of electrical stimulation on phenotypic vascular smooth muscle cells differentiation in tissue-engineered small-diameter vascular graft. Tissue Cell 2023 81 101996 10.1016/j.tice.2022.101996 36657256
    [Google Scholar]
  24. Spanholtz T.A. Theodorou P. Holzbach T. Wutzler S. Giunta R.E. Machens H.G. Vascular endothelial growth factor (VEGF165) plus basic fibroblast growth factor (bFGF) producing cells induce a mature and stable vascular network--a future therapy for ischemically challenged tissue. J. Surg. Res. 2011 171 1 329 338 10.1016/j.jss.2010.03.033 20605609
    [Google Scholar]
  25. Jiang T. Liu Q. Xu E.C. He S.Y. Liu H.Y. Tian C. Zhang L.F. Yang Z.L. Fibroblasts/three-dimensional scaffolds complexes promote wound healing in rats with skin defects. Tissue Barriers 2024 2334544 10.1080/21688370.2024.2334544 38544287
    [Google Scholar]
  26. Zhang Y. Zhao X. Guo C. Zhang Y. Zeng F. Yin Q. Li Z. Shao L. Zhou D. Liu L. The circadian system is essential for the crosstalk of VEGF-notch-mediated endothelial angiogenesis in ischemic stroke. Neurosci. Bull. 2023 39 9 1375 1395 10.1007/s12264‑023‑01042‑9 36862341
    [Google Scholar]
  27. Wang H. Fang F. Zhang M. Xu C. Liu J. Gao L. Zhao C. Wang Z. Zhong Y. Wang X. Nuclear receptor 4A1 ameliorates renal fibrosis by inhibiting vascular endothelial growth factor A induced angiogenesis in UUO rats. Biochim. Biophys. Acta Mol. Cell Res. 2024 1871 7 119813 10.1016/j.bbamcr.2024.119813 39142522
    [Google Scholar]
  28. Wang H. Pei S. Fang S. Jin S. Deng S. Zhao Y. Feng Y. Irisin restores high glucose-induced cell injury in vascular endothelial cells by activating Notch pathway via Notch receptor 1. Biosci. Biotechnol. Biochem. 2021 85 10 2093 2102 10.1093/bbb/zbab137 34329390
    [Google Scholar]
  29. Kume T. Novel insights into the differential functions of Notch ligands in vascular formation. J. Angiogenes. Res. 2009 1 1 8 10.1186/2040‑2384‑1‑8 20016694
    [Google Scholar]
  30. Gerhardt H. Golding M. Fruttiger M. Ruhrberg C. Lundkvist A. Abramsson A. Jeltsch M. Mitchell C. Alitalo K. Shima D. Betsholtz C. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol. 2003 161 6 1163 1177 10.1083/jcb.200302047 12810700
    [Google Scholar]
  31. Roca C. Adams R.H. Regulation of vascular morphogenesis by Notch signaling. Genes Dev. 2007 21 20 2511 2524 10.1101/gad.1589207 17938237
    [Google Scholar]
  32. Shao F. Liu R. Tan X. Zhang Q. Ye L. Yan B. Zhuang Y. Xu J. MSC transplantation attenuates inflammation, prevents endothelial damage and enhances the angiogenic potency of endogenous MSCs in a model of pulmonary arterial hypertension. J. Inflamm. Res. 2022 15 2087 2101 10.2147/JIR.S355479 35386223
    [Google Scholar]
  33. Wei S.T. Huang Y.C. Hsieh M.L. Lin Y.J. Shyu W.C. Chen H.C. Hsieh C.H. Atypical chemokine receptor ACKR3/CXCR7 controls postnatal vasculogenesis and arterial specification by mesenchymal stem cells via Notch signaling. Cell Death Dis. 2020 11 5 307 10.1038/s41419‑020‑2512‑2 32366833
    [Google Scholar]
  34. Cañedo-Dorantes L. Cañedo-Ayala M. Skin acute wound healing: A comprehensive review. Int. J. Inflamm. 2019 2019 1 15 10.1155/2019/3706315 31275545
    [Google Scholar]
  35. Chen J.C. He M.Q. Inhibition of CYP1A1 expression enhances diabetic wound healing by modulating inflammation and oxidative stress in a rat model. Tissue Cell 2024 90 102483 10.1016/j.tice.2024.102483 39059132
    [Google Scholar]
  36. Wang K.Y. Lu J.S. Song C.Y. Qiao M. Chang M.H. Li Y. Li J.K. Tang Z.L. Bao H.D. Qiu Y. Qian B.P. Role of intercellular adhesion molecule-1 in adhesion and migration of mesenchymal stem cells in ankylosing spondylitis and its mechanisms. Zhonghua Yi Xue Za Zhi 2024 104 25 2350 2358 38951108
    [Google Scholar]
  37. Jianzhen J. Xin Z. Zhenguo L. Chengguo S.U. Haiyan Z. Yuqing J. Xianjun X. Yunfei C. Jun Z. Efficacy of electroacupuncture stimulating Zusanli (ST36) and Xuanzhong (GB39) on synovial angiogenesis in rats with adjuvant arthritis. J. Tradit. Chin. Med. 2023 43 5 955 962 37679983
    [Google Scholar]
  38. Lobov I.B. Renard R.A. Papadopoulos N. Gale N.W. Thurston G. Yancopoulos G.D. Wiegand S.J. Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proc. Natl. Acad. Sci. USA 2007 104 9 3219 3224 10.1073/pnas.0611206104 17296940
    [Google Scholar]
  39. Harrington L.S. Sainson R.C.A. Williams C.K. Taylor J.M. Shi W. Li J.L. Harris A.L. Regulation of multiple angiogenic pathways by Dll4 and Notch in human umbilical vein endothelial cells. Microvasc. Res. 2008 75 2 144 154 10.1016/j.mvr.2007.06.006 17692341
    [Google Scholar]
  40. Lobov I. Mikhailova N. The role of Dll4/Notch signaling in normal and pathological ocular angiogenesis: Dll4 controls blood vessel sprouting and vessel remodeling in normal and pathological conditions. J. Ophthalmol. 2018 2018 1 8 10.1155/2018/3565292 30116629
    [Google Scholar]
  41. Zhou Q. Li B. Li J. DLL4-Notch signalling in acute-on-chronic liver failure: State of the art and perspectives. Life Sci. 2023 317 121438 10.1016/j.lfs.2023.121438 36709913
    [Google Scholar]
  42. Pajula J. Lähteenvuo J. Lähteenvuo M. Honkonen K. Halonen P. Hätinen O.P. Kuivanen A. Heikkilä M. Nurro J. Hartikainen J. Ylä-Herttuala S. Adenoviral VEGF-DΔN ΔC gene therapy for myocardial ischemia. Front. Bioeng. Biotechnol. 2022 10 999226 10.3389/fbioe.2022.999226 36619378
    [Google Scholar]
  43. Yamashita M. Niisato M. Kawasaki Y. Karaman S. Robciuc M.R. Shibata Y. Ishida Y. Nishio R. Masuda T. Sugai T. Ono M. Tuder R.M. Alitalo K. Yamauchi K. VEGF-C/VEGFR-3 signalling in macrophages ameliorates acute lung injury. Eur. Respir. J. 2022 59 4 2100880 10.1183/13993003.00880‑2021 34446463
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X363143250221015057
Loading
/content/journals/cscr/10.2174/011574888X363143250221015057
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test