Skip to content
2000
image of Aerobic Training Alleviates Muscle Atrophy by Promoting the Proliferation of Skeletal Muscle Satellite Cells in Myotonic Dystrophy Type 1 by Inhibiting Glycolysis via the Upregulation of MBNL1

Abstract

Background

Skeletal muscle atrophy in myotonic dystrophy type 1 (DM1) is caused by abnormal skeletal muscle satellite cell (SSC) proliferation due to increased glycolysis, which impairs muscle regeneration. In DM1, RNA foci sequester muscleblind-like protein 1 (MBNL1) in the nucleus, inhibiting its role in regulating SSC proliferation. Aerobic training reduces glycolysis and increases SSC proliferation and muscle fiber volume. This study aimed to investigate whether aerobic training prevents muscle atrophy in DM1 through the regulation of glycolysis MBNL1.

Methods

In this study, we used the HSALR transgenic mice (DM1 mice model) to investigate the effects of aerobic training on skeletal muscle atrophy and its molecular mechanisms. HSALR mice were subjected to 4 weeks of aerobic training. After aerobic training, hindlimb grip, and myofiber mean cross-sectional area (CSA) detected by haematoxylin and eosin (HE) staining were performed. In DM1 primary SSCs, cell proliferation was assessed using Pax7 and MyoD immunofluorescence and CCK-8 assays, RNA foci were detected by RNA fluorescence in situ hybridization, and total MBNL1 expression was measured by western blot. We also used lentivirus to knock down MBNL1 in DM1 primary SSCs and performed RNA sequencing and extracellular acidification rate (ECAR). Furthermore, glycolysis detected by ECAR and oxygen consumption rate (OCR) assays were performed in WT, Sedentary, and Training group SSCs. Glycolysis was inhibited with shikonin, a glycolysis inhibitor, and the proliferation of DM1 SSCs was subsequently evaluated. Finally, we engineered an adeno-associated virus specifically targeting MBNL1 to knock down MBNL1 in DM1 mice. Subsequently, we assessed hindlimb grip strength and CSA , as well as the glycolytic capacity and proliferative capacity of DM1 SSCs .

Results

Aerobic training increased hindlimb grip strength and the average myofiber CSA in DM1 mice. Additionally, aerobic training reduced RNA foci, upregulated MBNL1, and promoted SSC proliferation. Gene-set enrichment analysis (GSEA) indicated that glycolytic processes were enriched following the knockdown of MBNL1. Furthermore, ECAR showed glycolysis was enhanced after the knockdown of MBNL1. Aerobic training reduced elevated glycolysis in DM1 mice and primary SSCs. Treatment with shikonin promoted DM1 SSC proliferation. However, MBNL1 knockdown was shown to abolish the reduced glycolysis and increased proliferation capability of SSCs due to aerobic training.

Conclusion

Taken together, aerobic training suppresses glycolysis in SSCs the upregulation of MBNL1, thereby enhancing SSC proliferation and alleviating muscle atrophy.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X360503241214045130
2024-12-20
2025-01-22
Loading full text...

Full text loading...

References

  1. Hartman J. Patki T. Johnson N.E. Diagnosis and management of myotonic dystrophy type 1. JAMA 2024 331 14 1227 1228 10.1001/jama.2024.2511 38466298
    [Google Scholar]
  2. Udd B. Krahe R. The myotonic dystrophies: Mmolecular, clinical, and therapeutic challenges. Lancet Neurol. 2012 11 10 891 905 10.1016/S1474‑4422(12)70204‑1 22995693
    [Google Scholar]
  3. Heatwole C. Bode R. Johnson N. Quinn C. Martens W. McDermott M.P. Rothrock N. Thornton C. Vickrey B. Victorson D. Moxley R. III Patient-reported impact of symptoms in myotonic dystrophy type 1 (PRISM-1). Neurology 2012 79 4 348 357 10.1212/WNL.0b013e318260cbe6 22786587
    [Google Scholar]
  4. Mahadevan M.S. Yadava R.S. Mandal M. Cardiac pathology in myotonic dystrophy type 1. Int. J. Mol. Sci. 2021 22 21 11874 10.3390/ijms222111874 34769305
    [Google Scholar]
  5. Thornton C.A. Myotonic dystrophy. Neurol. Clin. 2014 32 3 705 719, viii 10.1016/j.ncl.2014.04.011 25037086
    [Google Scholar]
  6. Mikhail A.I. Nagy P.L. Manta K. Rouse N. Manta A. Ng S.Y. Nagy M.F. Smith P. Lu J.Q. Nederveen J.P. Ljubicic V. Tarnopolsky M.A. Aerobic exercise elicits clinical adaptations in myotonic dystrophy type 1 patients independently of pathophysiological changes. J. Clin. Invest. 2022 132 10 e156125 10.1172/JCI156125 35316212
    [Google Scholar]
  7. Sousa-Victor P. García-Prat L. Muñoz-Cánoves P. Control of satellite cell function in muscle regeneration and its disruption in ageing. Nat. Rev. Mol. Cell Biol. 2022 23 3 204 226 10.1038/s41580‑021‑00421‑2 34663964
    [Google Scholar]
  8. Laule S. Bornemann A. Ultrastructural findings at the satellite cell-myofiber border in normal and diseased human muscle biopsy specimens. Acta Neuropathol. 2001 101 5 435 439 10.1007/s004010000302 11484814
    [Google Scholar]
  9. Bhagavati S. Stem cell based therapy for skeletal muscle diseases. Curr. Stem Cell Res. Ther. 2008 3 3 219 228 10.2174/157488808785740343 18782004
    [Google Scholar]
  10. Thornell L.E. Lindstöm M. Renault V. Klein A. Mouly V. Ansved T. Butler-Browne G. Furling D. Satellite cell dysfunction contributes to the progressive muscle atrophy in myotonic dystrophy type 1. Neuropathol. Appl. Neurobiol. 2009 35 6 603 613 10.1111/j.1365‑2990.2009.01014.x 19207265
    [Google Scholar]
  11. Chen Z. Li L. Wu W. Liu Z. Huang Y. Yang L. Luo Q. Chen J. Hou Y. Song G. Exercise protects proliferative muscle satellite cells against exhaustion via the Igfbp7-Akt-mTOR axis. Theranostics 2020 10 14 6448 6466 10.7150/thno.43577 32483463
    [Google Scholar]
  12. Gao Z. Cooper T.A. Reexpression of pyruvate kinase M2 in type 1 myofibers correlates with altered glucose metabolism in myotonic dystrophy. Proc. Natl. Acad. Sci. USA 2013 110 33 13570 13575 10.1073/pnas.1308806110 23901116
    [Google Scholar]
  13. Liu D. Xiao Y. Zhou B. Gao S. Li L. Zhao L. Chen W. Dai B. Li Q. Duan H. Zuo X. Luo H. Zhu H. PKM2-dependent glycolysis promotes skeletal muscle cell pyroptosis by activating the NLRP3 inflammasome in dermatomyositis/polymyositis. Rheumatology 2021 60 5 2177 2189 10.1093/rheumatology/keaa473 33165604
    [Google Scholar]
  14. Koopman R. Ly C.H. Ryall J.G. A metabolic link to skeletal muscle wasting and regeneration. Front. Physiol. 2014 5 32 10.3389/fphys.2014.00032 24567722
    [Google Scholar]
  15. Yeo R.X. Dijkstra P.J. De Carvalho F.G. Yi F. Pino M.F. Smith S.R. Sparks L.M. Aerobic training increases mitochondrial respiratory capacity in human skeletal muscle stem cells from sedentary individuals. Am. J. Physiol. Cell Physiol. 2022 323 2 C606 C616 10.1152/ajpcell.00146.2022 35785986
    [Google Scholar]
  16. Piasecka A. Szcześniak M.W. Sekrecki M. Kajdasz A. Sznajder Ł.J. Baud A. Sobczak K. MBNL splicing factors regulate the microtranscriptome of skeletal muscles. Nucleic Acids Res. 2024 52 19 12055 12073 10.1093/nar/gkae774 39258536
    [Google Scholar]
  17. Ellis J.A. Hale M.A. Cleary J.D. Wang E.T. Andrew Berglund J. Alternative splicing outcomes across an RNA-binding protein concentration gradient. J. Mol. Biol. 2023 435 15 168156 10.1016/j.jmb.2023.168156 37230319
    [Google Scholar]
  18. González À.L. Fernández-Remacha D. Borrell J.I. Teixidó J. Estrada-Tejedor R. Cognate RNA-binding modes by the alternative-splicing regulator MBNL1 inferred from molecular dynamics. Int. J. Mol. Sci. 2022 23 24 16147 10.3390/ijms232416147 36555788
    [Google Scholar]
  19. Denis J.A. Gauthier M. Rachdi L. Aubert S. Giraud-Triboult K. Poydenot P. Benchoua A. Champon B. Maury Y. Baldeschi C. Scharfmann R. Piétu G. Peschanski M. Martinat C. mTOR-dependent proliferation defect in human ES-derived neural stem cells affected by myotonic dystrophy type1. J. Cell Sci. 2013 126 Pt 8 jcs.116285 10.1242/jcs.116285 23444380
    [Google Scholar]
  20. Wang P.Y. Chang K.T. Lin Y.M. Kuo T.Y. Wang G.S. Ubiquitination of MBNL1 is required for its cytoplasmic localization and function in promoting neurite outgrowth. Cell Rep. 2018 22 9 2294 2306 10.1016/j.celrep.2018.02.025 29490267
    [Google Scholar]
  21. Song K.Y. Guo X.M. Wang H.Q. Zhang L. Huang S.Y. Huo Y.C. Zhang G. Feng J.Z. Zhang R.R. Ma Y. Hu Q.Z. Qin X.Y. MBNL1 reverses the proliferation defect of skeletal muscle satellite cells in myotonic dystrophy type 1 by inhibiting autophagy via the mTOR pathway. Cell Death Dis. 2020 11 7 545 10.1038/s41419‑020‑02756‑8 32683410
    [Google Scholar]
  22. Ozimski L.L. Sabater-Arcis M. Bargiela A. Artero R. The hallmarks of myotonic dystrophy type 1 muscle dysfunction. Biol. Rev. Camb. Philos. Soc. 2021 96 2 716 730 10.1111/brv.12674 33269537
    [Google Scholar]
  23. Louis J.M. Frias J.A. Schroader J.H. Jones L.A. Davey E.E. Lennon C.D. Chacko J. Cleary J.D. Berglund J.A. Reddy K. Expression levels of core spliceosomal proteins modulate the MBNL-mediated spliceopathy in DM1. Hum. Mol. Genet. 2024 33 21 1873 1886 10.1093/hmg/ddae125 39180495
    [Google Scholar]
  24. Yokoyama S. Ohno Y. Egawa T. Ohashi K. Ito R. Ortuste Quiroga H.P. Yamashita T. Goto K. MBNL1-associated mitochondrial dysfunction and apoptosis in C2C12 myotubes and mouse skeletal muscle. Int. J. Mol. Sci. 2020 21 17 6376 10.3390/ijms21176376 32887414
    [Google Scholar]
  25. Zhao Y. Song J. Dong W. Liu X. Yang C. Wang D. Xue Y. Ruan X. Liu L. Wang P. Zhang M. Liu Y. The MBNL1/circNTRK2/PAX5 pathway regulates aerobic glycolysis in glioblastoma cells by encoding a novel protein NTRK2-243aa. Cell Death Dis. 2022 13 9 767 10.1038/s41419‑022‑05219‑4 36064939
    [Google Scholar]
  26. Manta A. Stouth D.W. Xhuti D. Chi L. Rebalka I.A. Kalmar J.M. Hawke T.J. Ljubicic V. Chronic exercise mitigates disease mechanisms and improves muscle function in myotonic dystrophy type 1 mice. J. Physiol. 2019 597 5 1361 1381 10.1113/JP277123 30628727
    [Google Scholar]
  27. Cerro-Herreros E. González-Martínez I. Moreno-Cervera N. Overby S. Pérez-Alonso M. Llamusí B. Artero R. Therapeutic potential of antagomir-23b for treating myotonic dystrophy. Mol. Ther. Nucleic Acids 2020 21 837 849 10.1016/j.omtn.2020.07.021 32805487
    [Google Scholar]
  28. Blum J.E. Gheller B.J. Benvie A. Field M.S. Panizza E. Vacanti N.M. Berry D. Thalacker-Mercer A. Pyruvate kinase M2 supports muscle progenitor cell proliferation but is dispensable for skeletal muscle regeneration after injury. J. Nutr. 2021 151 11 3313 3328 10.1093/jn/nxab251 34383048
    [Google Scholar]
  29. Li X. Sun B. Li J. Ye W. Li M. Guan F. Wu S. Luo X. Feng J. Jia J. Liu X. Li T. Liu L. Sepsis leads to impaired mitochondrial calcium uptake and skeletal muscle weakness by reducing the MICU1:MCU protein ratio. Shock 2023 60 5 698 706 10.1097/SHK.0000000000002221 37695737
    [Google Scholar]
  30. Evans P.L. McMillin S.L. Weyrauch L.A. Witczak C.A. Regulation of skeletal muscle glucose transport and glucose metabolism by exercise training. Nutrients 2019 11 10 2432 10.3390/nu11102432 31614762
    [Google Scholar]
  31. Henriksson J. Effects of physical training on the metabolism of skeletal muscle. Diabetes Care 1992 15 11 1701 1711 10.2337/diacare.15.11.1701 1468304
    [Google Scholar]
  32. Ouyang S. Wang X. Chen Y. Deng L. Yang X. Hu S. Wu S. Swimming training combined with fecal microbial transplantation protects motor functions in rats with spinal cord injury by improving the intestinal system. Neurosci. Lett. 2023 799 137104 10.1016/j.neulet.2023.137104 36758789
    [Google Scholar]
  33. Turner C. Hilton-Jones D. The myotonic dystrophies: Diagnosis and management. J. Neurol. Neurosurg. Psychiatry 2010 81 4 358 367 10.1136/jnnp.2008.158261 20176601
    [Google Scholar]
  34. Núñez-Espinosa C. Ferreira I. Ríos-Kristjánsson J. Rizo-Roca D. García Godoy M. Rico L. Rubi-Sans G. Torrella J. Pagès T. Petriz J. Viscor G. Effects of intermittent hypoxia and light aerobic exercise on circulating stem cells and side population, after strenuous eccentric exercise in trained rats. Curr. Stem Cell Res. Ther. 2015 10 2 132 139 10.2174/1574888X09666140930130048 25266982
    [Google Scholar]
  35. Huang K. Wang D.D. Hu W.B. Zeng W.Q. Xu X. Li Q.X. Bi F.F. Yang H. Qiu J. Calcitriol increases MBNL1 expression and alleviates myotonic dystrophy phenotypes in HSALR mouse models. J. Transl. Med. 2022 20 1 588 10.1186/s12967‑022‑03806‑9 36510245
    [Google Scholar]
  36. Chandel N.S. Glycolysis. Cold Spring Harb. Perspect. Biol. 2021 13 5 a040535 10.1101/cshperspect.a040535 33941515
    [Google Scholar]
  37. Ohno Y. Ando K. Ito T. Suda Y. Matsui Y. Oyama A. Kaneko H. Yokoyama S. Egawa T. Goto K. Lactate stimulates a potential for hypertrophy and regeneration of mouse skeletal muscle. Nutrients 2019 11 4 869 10.3390/nu11040869 30999708
    [Google Scholar]
  38. Willkomm L. Schubert S. Jung R. Elsen M. Borde J. Gehlert S. Suhr F. Bloch W. Lactate regulates myogenesis in C2C12 myoblasts in vitro. Stem Cell Res. 2014 12 3 742 753 10.1016/j.scr.2014.03.004 24735950
    [Google Scholar]
  39. Fischer K. Hoffmann P. Voelkl S. Meidenbauer N. Ammer J. Edinger M. Gottfried E. Schwarz S. Rothe G. Hoves S. Renner K. Timischl B. Mackensen A. Kunz-Schughart L. Andreesen R. Krause S.W. Kreutz M. Inhibitory effect of tumor cell–derived lactic acid on human T cells. Blood 2007 109 9 3812 3819 10.1182/blood‑2006‑07‑035972 17255361
    [Google Scholar]
  40. Gottfried E. Lang S.A. Renner K. Bosserhoff A. Gronwald W. Rehli M. Einhell S. Gedig I. Singer K. Seilbeck A. Mackensen A. Grauer O. Hau P. Dettmer K. Andreesen R. Oefner P.J. Kreutz M. New aspects of an old drug--diclofenac targets MYC and glucose metabolism in tumor cells. PLoS One 2013 8 7 e66987 10.1371/journal.pone.0066987 23874405
    [Google Scholar]
  41. Sun Q. Gong T. Liu M. Ren S. Yang H. Zeng S. Zhao H. Chen L. Ming T. Meng X. Xu H. Shikonin, a naphthalene ingredient: Therapeutic actions, pharmacokinetics, toxicology, clinical trials and pharmaceutical researches. Phytomedicine 2022 94 153805 10.1016/j.phymed.2021.153805 34749177
    [Google Scholar]
  42. Wu C. Zheng C. Chen S. He Z. Hua H. Sun C. Yu C. FOXQ1 promotes pancreatic cancer cell proliferation, tumor stemness, invasion and metastasis through regulation of LDHA-mediated aerobic glycolysis. Cell Death Dis. 2023 14 10 699 10.1038/s41419‑023‑06207‑y 37875474
    [Google Scholar]
  43. Manosalva C. Quiroga J. Hidalgo A.I. Alarcón P. Anseoleaga N. Hidalgo M.A. Burgos R.A. Role of lactate in inflammatory processes: Friend or foe. Front. Immunol. 2022 12 808799 10.3389/fimmu.2021.808799 35095895
    [Google Scholar]
  44. Rogatzki M.J. Ferguson B.S. Goodwin M.L. Gladden L.B. Lactate is always the end product of glycolysis. Front. Neurosci. 2015 9 22 10.3389/fnins.2015.00022 25774123
    [Google Scholar]
  45. Khan A.A. Allemailem K.S. Alhumaydhi F.A. Gowder S.J.T. Rahmani A.H. The biochemical and clinical perspectives of lactate dehydrogenase: An enzyme of active metabolism. Endocr. Metab. Immune Disord. Drug Targets 2020 20 6 855 868 10.2174/1871530320666191230141110 31886754
    [Google Scholar]
  46. Sun W. Jia M. Feng Y. Cheng X. Lactate is a bridge linking glycolysis and autophagy through lactylation. Autophagy 2023 19 12 3240 3241 10.1080/15548627.2023.2246356 37565742
    [Google Scholar]
  47. Li T. Han J. Jia L. Hu X. Chen L. Wang Y. PKM2 coordinates glycolysis with mitochondrial fusion and oxidative phosphorylation. Protein Cell 2019 10 8 583 594 10.1007/s13238‑019‑0618‑z 30887444
    [Google Scholar]
  48. Zhang Z. Deng X. Liu Y. Liu Y. Sun L. Chen F. PKM2, function and expression and regulation. Cell Biosci. 2019 9 1 52 10.1186/s13578‑019‑0317‑8 31391918
    [Google Scholar]
  49. Li M. Zhuang Y. Batra R. Thomas J.D. Li M. Nutter C.A. Scotti M.M. Carter H.A. Wang Z.J. Huang X.S. Pu C.Q. Swanson M.S. Xie W. HNRNPA1-induced spliceopathy in a transgenic mouse model of myotonic dystrophy. Proc. Natl. Acad. Sci. USA 2020 117 10 5472 5477 10.1073/pnas.1907297117 32086392
    [Google Scholar]
  50. Cox D.C. Guan X. Xia Z. Cooper T.A. Increased nuclear but not cytoplasmic activities of CELF1 protein leads to muscle wasting. Hum. Mol. Genet. 2020 29 10 1729 1744 10.1093/hmg/ddaa095 32412585
    [Google Scholar]
  51. Kim Y.K. Mandal M. Yadava R.S. Paillard L. Mahadevan M.S. Evaluating the effects of CELF1 deficiency in a mouse model of RNA toxicity. Hum. Mol. Genet. 2014 23 2 293 302 10.1093/hmg/ddt419 24001600
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X360503241214045130
Loading
/content/journals/cscr/10.2174/011574888X360503241214045130
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test