Skip to content
2000
Volume 20, Issue 4
  • ISSN: 1574-888X
  • E-ISSN: 2212-3946

Abstract

Background

Skeletal muscle atrophy in myotonic dystrophy type 1 (DM1) is caused by abnormal skeletal muscle satellite cell (SSC) proliferation due to increased glycolysis, which impairs muscle regeneration. In DM1, RNA foci sequester muscleblind-like protein 1 (MBNL1) in the nucleus, inhibiting its role in regulating SSC proliferation. Aerobic training reduces glycolysis and increases SSC proliferation and muscle fiber volume. This study aimed to investigate whether aerobic training prevents muscle atrophy in DM1 through the regulation of glycolysis MBNL1.

Methods

In this study, we used the HSALR transgenic mice (DM1 mice model) to investigate the effects of aerobic training on skeletal muscle atrophy and its molecular mechanisms. HSALR mice were subjected to 4 weeks of aerobic training. After aerobic training, hindlimb grip, and myofiber mean cross-sectional area (CSA) detected by haematoxylin and eosin (HE) staining were performed. In DM1 primary SSCs, cell proliferation was assessed using Pax7 and MyoD immunofluorescence and CCK-8 assays, RNA foci were detected by RNA fluorescence in situ hybridization, and total MBNL1 expression was measured by western blot. We also used lentivirus to knock down MBNL1 in DM1 primary SSCs and performed RNA sequencing and extracellular acidification rate (ECAR). Furthermore, glycolysis detected by ECAR and oxygen consumption rate (OCR) assays were performed in WT, Sedentary, and Training group SSCs. Glycolysis was inhibited with shikonin, a glycolysis inhibitor, and the proliferation of DM1 SSCs was subsequently evaluated. Finally, we engineered an adeno-associated virus specifically targeting MBNL1 to knock down MBNL1 in DM1 mice. Subsequently, we assessed hindlimb grip strength and CSA , as well as the glycolytic capacity and proliferative capacity of DM1 SSCs .

Results

Aerobic training increased hindlimb grip strength and the average myofiber CSA in DM1 mice. Additionally, aerobic training reduced RNA foci, upregulated MBNL1, and promoted SSC proliferation. Gene set enrichment analysis (GSEA) indicated that glycolytic processes were enriched following the knockdown of MBNL1. Furthermore, ECAR showed glycolysis was enhanced after the knockdown of MBNL1. Aerobic training reduced elevated glycolysis in DM1 mice and primary SSCs. Treatment with shikonin promoted DM1 SSC proliferation. However, MBNL1 knockdown was shown to abolish the reduced glycolysis and increased proliferation capability of SSCs due to aerobic training.

Conclusion

Taken together, aerobic training suppresses glycolysis in SSCs the upregulation of MBNL1, thereby enhancing SSC proliferation and alleviating muscle atrophy.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X360503241214045130
2024-12-20
2025-05-29
Loading full text...

Full text loading...

References

  1. HartmanJ. PatkiT. JohnsonN.E. Diagnosis and management of myotonic dystrophy type 1.JAMA2024331141227122810.1001/jama.2024.251138466298
    [Google Scholar]
  2. UddB. KraheR. The myotonic dystrophies: Mmolecular, clinical, and therapeutic challenges.Lancet Neurol.2012111089190510.1016/S1474‑4422(12)70204‑122995693
    [Google Scholar]
  3. HeatwoleC. BodeR. JohnsonN. QuinnC. MartensW. McDermottM.P. RothrockN. ThorntonC. VickreyB. VictorsonD. MoxleyR.III Patient-reported impact of symptoms in myotonic dystrophy type 1 (PRISM-1).Neurology201279434835710.1212/WNL.0b013e318260cbe622786587
    [Google Scholar]
  4. MahadevanM.S. YadavaR.S. MandalM. Cardiac pathology in myotonic dystrophy type 1.Int. J. Mol. Sci.202122211187410.3390/ijms22211187434769305
    [Google Scholar]
  5. ThorntonC.A. Myotonic dystrophy.Neurol. Clin.2014323705719, viii10.1016/j.ncl.2014.04.01125037086
    [Google Scholar]
  6. MikhailA.I. NagyP.L. MantaK. RouseN. MantaA. NgS.Y. NagyM.F. SmithP. LuJ.Q. NederveenJ.P. LjubicicV. TarnopolskyM.A. Aerobic exercise elicits clinical adaptations in myotonic dystrophy type 1 patients independently of pathophysiological changes.J. Clin. Invest.202213210e15612510.1172/JCI15612535316212
    [Google Scholar]
  7. Sousa-VictorP. García-PratL. Muñoz-CánovesP. Control of satellite cell function in muscle regeneration and its disruption in ageing.Nat. Rev. Mol. Cell Biol.202223320422610.1038/s41580‑021‑00421‑234663964
    [Google Scholar]
  8. LauleS. BornemannA. Ultrastructural findings at the satellite cell-myofiber border in normal and diseased human muscle biopsy specimens.Acta Neuropathol.2001101543543910.1007/s00401000030211484814
    [Google Scholar]
  9. BhagavatiS. Stem cell based therapy for skeletal muscle diseases.Curr. Stem Cell Res. Ther.20083321922810.2174/15748880878574034318782004
    [Google Scholar]
  10. ThornellL.E. LindstömM. RenaultV. KleinA. MoulyV. AnsvedT. Butler-BrowneG. FurlingD. Satellite cell dysfunction contributes to the progressive muscle atrophy in myotonic dystrophy type 1.Neuropathol. Appl. Neurobiol.200935660361310.1111/j.1365‑2990.2009.01014.x19207265
    [Google Scholar]
  11. ChenZ. LiL. WuW. LiuZ. HuangY. YangL. LuoQ. ChenJ. HouY. SongG. Exercise protects proliferative muscle satellite cells against exhaustion via the Igfbp7-Akt-mTOR axis.Theranostics202010146448646610.7150/thno.4357732483463
    [Google Scholar]
  12. GaoZ. CooperT.A. Reexpression of pyruvate kinase M2 in type 1 myofibers correlates with altered glucose metabolism in myotonic dystrophy.Proc. Natl. Acad. Sci. USA201311033135701357510.1073/pnas.130880611023901116
    [Google Scholar]
  13. LiuD. XiaoY. ZhouB. GaoS. LiL. ZhaoL. ChenW. DaiB. LiQ. DuanH. ZuoX. LuoH. ZhuH. PKM2-dependent glycolysis promotes skeletal muscle cell pyroptosis by activating the NLRP3 inflammasome in dermatomyositis/polymyositis.Rheumatology20216052177218910.1093/rheumatology/keaa47333165604
    [Google Scholar]
  14. KoopmanR. LyC.H. RyallJ.G. A metabolic link to skeletal muscle wasting and regeneration.Front. Physiol.201453210.3389/fphys.2014.0003224567722
    [Google Scholar]
  15. YeoR.X. DijkstraP.J. De CarvalhoF.G. YiF. PinoM.F. SmithS.R. SparksL.M. Aerobic training increases mitochondrial respiratory capacity in human skeletal muscle stem cells from sedentary individuals.Am. J. Physiol. Cell Physiol.20223232C606C61610.1152/ajpcell.00146.202235785986
    [Google Scholar]
  16. PiaseckaA. SzcześniakM.W. SekreckiM. KajdaszA. SznajderŁ.J. BaudA. SobczakK. MBNL splicing factors regulate the microtranscriptome of skeletal muscles.Nucleic Acids Res.20245219120551207310.1093/nar/gkae77439258536
    [Google Scholar]
  17. EllisJ.A. HaleM.A. ClearyJ.D. WangE.T. Andrew BerglundJ. Alternative splicing outcomes across an RNA-binding protein concentration gradient.J. Mol. Biol.20234351516815610.1016/j.jmb.2023.16815637230319
    [Google Scholar]
  18. GonzálezÀ.L. Fernández-RemachaD. BorrellJ.I. TeixidóJ. Estrada-TejedorR. Cognate RNA-binding modes by the alternative-splicing regulator MBNL1 inferred from molecular dynamics.Int. J. Mol. Sci.202223241614710.3390/ijms23241614736555788
    [Google Scholar]
  19. DenisJ.A. GauthierM. RachdiL. AubertS. Giraud-TriboultK. PoydenotP. BenchouaA. ChamponB. MauryY. BaldeschiC. ScharfmannR. PiétuG. PeschanskiM. MartinatC. mTOR-dependent proliferation defect in human ES-derived neural stem cells affected by myotonic dystrophy type1.J. Cell Sci.2013126Pt 8jcs.11628510.1242/jcs.11628523444380
    [Google Scholar]
  20. WangP.Y. ChangK.T. LinY.M. KuoT.Y. WangG.S. Ubiquitination of MBNL1 is required for its cytoplasmic localization and function in promoting neurite outgrowth.Cell Rep.20182292294230610.1016/j.celrep.2018.02.02529490267
    [Google Scholar]
  21. SongK.Y. GuoX.M. WangH.Q. ZhangL. HuangS.Y. HuoY.C. ZhangG. FengJ.Z. ZhangR.R. MaY. HuQ.Z. QinX.Y. MBNL1 reverses the proliferation defect of skeletal muscle satellite cells in myotonic dystrophy type 1 by inhibiting autophagy via the mTOR pathway.Cell Death Dis.202011754510.1038/s41419‑020‑02756‑832683410
    [Google Scholar]
  22. OzimskiL.L. Sabater-ArcisM. BargielaA. ArteroR. The hallmarks of myotonic dystrophy type 1 muscle dysfunction.Biol. Rev. Camb. Philos. Soc.202196271673010.1111/brv.1267433269537
    [Google Scholar]
  23. LouisJ.M. FriasJ.A. SchroaderJ.H. JonesL.A. DaveyE.E. LennonC.D. ChackoJ. ClearyJ.D. BerglundJ.A. ReddyK. Expression levels of core spliceosomal proteins modulate the MBNL-mediated spliceopathy in DM1.Hum. Mol. Genet.202433211873188610.1093/hmg/ddae12539180495
    [Google Scholar]
  24. YokoyamaS. OhnoY. EgawaT. OhashiK. ItoR. Ortuste QuirogaH.P. YamashitaT. GotoK. MBNL1-associated mitochondrial dysfunction and apoptosis in C2C12 myotubes and mouse skeletal muscle.Int. J. Mol. Sci.20202117637610.3390/ijms2117637632887414
    [Google Scholar]
  25. ZhaoY. SongJ. DongW. LiuX. YangC. WangD. XueY. RuanX. LiuL. WangP. ZhangM. LiuY. The MBNL1/circNTRK2/PAX5 pathway regulates aerobic glycolysis in glioblastoma cells by encoding a novel protein NTRK2-243aa.Cell Death Dis.202213976710.1038/s41419‑022‑05219‑436064939
    [Google Scholar]
  26. MantaA. StouthD.W. XhutiD. ChiL. RebalkaI.A. KalmarJ.M. HawkeT.J. LjubicicV. Chronic exercise mitigates disease mechanisms and improves muscle function in myotonic dystrophy type 1 mice.J. Physiol.201959751361138110.1113/JP27712330628727
    [Google Scholar]
  27. Cerro-HerrerosE. González-MartínezI. Moreno-CerveraN. OverbyS. Pérez-AlonsoM. LlamusíB. ArteroR. Therapeutic potential of antagomir-23b for treating myotonic dystrophy.Mol. Ther. Nucleic Acids20202183784910.1016/j.omtn.2020.07.02132805487
    [Google Scholar]
  28. BlumJ.E. GhellerB.J. BenvieA. FieldM.S. PanizzaE. VacantiN.M. BerryD. Thalacker-MercerA. Pyruvate kinase M2 supports muscle progenitor cell proliferation but is dispensable for skeletal muscle regeneration after injury.J. Nutr.2021151113313332810.1093/jn/nxab25134383048
    [Google Scholar]
  29. LiX. SunB. LiJ. YeW. LiM. GuanF. WuS. LuoX. FengJ. JiaJ. LiuX. LiT. LiuL. Sepsis leads to impaired mitochondrial calcium uptake and skeletal muscle weakness by reducing the MICU1:MCU protein ratio.Shock202360569870610.1097/SHK.000000000000222137695737
    [Google Scholar]
  30. EvansP.L. McMillinS.L. WeyrauchL.A. WitczakC.A. Regulation of skeletal muscle glucose transport and glucose metabolism by exercise training.Nutrients20191110243210.3390/nu1110243231614762
    [Google Scholar]
  31. HenrikssonJ. Effects of physical training on the metabolism of skeletal muscle.Diabetes Care199215111701171110.2337/diacare.15.11.17011468304
    [Google Scholar]
  32. OuyangS. WangX. ChenY. DengL. YangX. HuS. WuS. Swimming training combined with fecal microbial transplantation protects motor functions in rats with spinal cord injury by improving the intestinal system.Neurosci. Lett.202379913710410.1016/j.neulet.2023.13710436758789
    [Google Scholar]
  33. TurnerC. Hilton-JonesD. The myotonic dystrophies: Diagnosis and management.J. Neurol. Neurosurg. Psychiatry201081435836710.1136/jnnp.2008.15826120176601
    [Google Scholar]
  34. Núñez-EspinosaC. FerreiraI. Ríos-KristjánssonJ. Rizo-RocaD. García GodoyM. RicoL. Rubi-SansG. TorrellaJ. PagèsT. PetrizJ. ViscorG. Effects of intermittent hypoxia and light aerobic exercise on circulating stem cells and side population, after strenuous eccentric exercise in trained rats.Curr. Stem Cell Res. Ther.201510213213910.2174/1574888X0966614093013004825266982
    [Google Scholar]
  35. HuangK. WangD.D. HuW.B. ZengW.Q. XuX. LiQ.X. BiF.F. YangH. QiuJ. Calcitriol increases MBNL1 expression and alleviates myotonic dystrophy phenotypes in HSALR mouse models.J. Transl. Med.202220158810.1186/s12967‑022‑03806‑936510245
    [Google Scholar]
  36. ChandelN.S. Glycolysis.Cold Spring Harb. Perspect. Biol.2021135a04053510.1101/cshperspect.a04053533941515
    [Google Scholar]
  37. OhnoY. AndoK. ItoT. SudaY. MatsuiY. OyamaA. KanekoH. YokoyamaS. EgawaT. GotoK. Lactate stimulates a potential for hypertrophy and regeneration of mouse skeletal muscle.Nutrients201911486910.3390/nu1104086930999708
    [Google Scholar]
  38. WillkommL. SchubertS. JungR. ElsenM. BordeJ. GehlertS. SuhrF. BlochW. Lactate regulates myogenesis in C2C12 myoblasts in vitro.Stem Cell Res.201412374275310.1016/j.scr.2014.03.00424735950
    [Google Scholar]
  39. FischerK. HoffmannP. VoelklS. MeidenbauerN. AmmerJ. EdingerM. GottfriedE. SchwarzS. RotheG. HovesS. RennerK. TimischlB. MackensenA. Kunz-SchughartL. AndreesenR. KrauseS.W. KreutzM. Inhibitory effect of tumor cell–derived lactic acid on human T cells.Blood200710993812381910.1182/blood‑2006‑07‑03597217255361
    [Google Scholar]
  40. GottfriedE. LangS.A. RennerK. BosserhoffA. GronwaldW. RehliM. EinhellS. GedigI. SingerK. SeilbeckA. MackensenA. GrauerO. HauP. DettmerK. AndreesenR. OefnerP.J. KreutzM. New aspects of an old drug-diclofenac targets MYC and glucose metabolism in tumor cells.PLoS One201387e6698710.1371/journal.pone.006698723874405
    [Google Scholar]
  41. SunQ. GongT. LiuM. RenS. YangH. ZengS. ZhaoH. ChenL. MingT. MengX. XuH. Shikonin, a naphthalene ingredient: Therapeutic actions, pharmacokinetics, toxicology, clinical trials and pharmaceutical researches.Phytomedicine20229415380510.1016/j.phymed.2021.15380534749177
    [Google Scholar]
  42. WuC. ZhengC. ChenS. HeZ. HuaH. SunC. YuC. FOXQ1 promotes pancreatic cancer cell proliferation, tumor stemness, invasion and metastasis through regulation of LDHA-mediated aerobic glycolysis.Cell Death Dis.2023141069910.1038/s41419‑023‑06207‑y37875474
    [Google Scholar]
  43. ManosalvaC. QuirogaJ. HidalgoA.I. AlarcónP. AnseoleagaN. HidalgoM.A. BurgosR.A. Role of lactate in inflammatory processes: Friend or foe.Front. Immunol.20221280879910.3389/fimmu.2021.80879935095895
    [Google Scholar]
  44. RogatzkiM.J. FergusonB.S. GoodwinM.L. GladdenL.B. Lactate is always the end product of glycolysis.Front. Neurosci.201592210.3389/fnins.2015.0002225774123
    [Google Scholar]
  45. KhanA.A. AllemailemK.S. AlhumaydhiF.A. GowderS.J.T. RahmaniA.H. The biochemical and clinical perspectives of lactate dehydrogenase: An enzyme of active metabolism.Endocr. Metab. Immune Disord. Drug Targets202020685586810.2174/187153032066619123014111031886754
    [Google Scholar]
  46. SunW. JiaM. FengY. ChengX. Lactate is a bridge linking glycolysis and autophagy through lactylation.Autophagy202319123240324110.1080/15548627.2023.224635637565742
    [Google Scholar]
  47. LiT. HanJ. JiaL. HuX. ChenL. WangY. PKM2 coordinates glycolysis with mitochondrial fusion and oxidative phosphorylation.Protein Cell201910858359410.1007/s13238‑019‑0618‑z30887444
    [Google Scholar]
  48. ZhangZ. DengX. LiuY. LiuY. SunL. ChenF. PKM2, function and expression and regulation.Cell Biosci.2019915210.1186/s13578‑019‑0317‑831391918
    [Google Scholar]
  49. LiM. ZhuangY. BatraR. ThomasJ.D. LiM. NutterC.A. ScottiM.M. CarterH.A. WangZ.J. HuangX.S. PuC.Q. SwansonM.S. XieW. HNRNPA1-induced spliceopathy in a transgenic mouse model of myotonic dystrophy.Proc. Natl. Acad. Sci. USA2020117105472547710.1073/pnas.190729711732086392
    [Google Scholar]
  50. CoxD.C. GuanX. XiaZ. CooperT.A. Increased nuclear but not cytoplasmic activities of CELF1 protein leads to muscle wasting.Hum. Mol. Genet.202029101729174410.1093/hmg/ddaa09532412585
    [Google Scholar]
  51. KimY.K. MandalM. YadavaR.S. PaillardL. MahadevanM.S. Evaluating the effects of CELF1 deficiency in a mouse model of RNA toxicity.Hum. Mol. Genet.201423229330210.1093/hmg/ddt41924001600
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X360503241214045130
Loading
/content/journals/cscr/10.2174/011574888X360503241214045130
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test