Skip to content
2000
image of Inducing Neural Fate: The Impact of Phenylacetate and Calcium on Human
Adipose-Derived Mesenchymal Stem Cells Differentiation

Abstract

Introduction

Human adipose-derived stem cells (hADSCs) are considered a promising source for cell replacement therapy in degenerative and traumatic conditions. This study explores the effects of phenylacetate and calcium on the neural differentiation of hADSCs for regenerative medicine. We assessed cell viability and cytotoxicity using the MTT assay, revealing that treatment with 1μM phenylacetate significantly enhanced cell viability compared to control groups over five days, while higher concentrations resulted in cytotoxic effects.

Method

Additionally, qualitative analysis through Acridine orange/ethidium bromide (AO/EB) staining indicated normal cellular characteristics at lower phenylacetate concentrations, whereas higher doses led to observable cell death. A subsequent evaluation of intracellular calcium levels demonstrated a significant increase when hADSCs were treated with both phenylacetate and calcium.

Results

The neural differentiation potential was further assessed through the relative quantification of neuronal-specific genes, showing marked upregulation of , , , and in all treatment groups compared to controls. Immunohistochemistry confirmed elevated protein expression of neural markers in cultures supplemented with phenylacetate and calcium.

Conclusion

These findings suggest that phenylacetate, particularly in conjunction with calcium, enhances the neural differentiation of hADSCs, highlighting its potential utility in regenerative medicine strategies targeting neurodegenerative conditions.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X355333241203114713
2024-12-13
2025-01-11
Loading full text...

Full text loading...

References

  1. Ferres L. Evangelisti L. Maris A. Melandri S. Caminati W. Stahl W. Nguyen H.V.L. Skeletal torsion tunneling and methyl internal rotation: The coupled large amplitude motions in phenyl acetate. Molecules 2022 27 9 2730 10.3390/molecules27092730 35566082
    [Google Scholar]
  2. Horner P.J. Gage F.H. Regenerating the damaged central nervous system. Nature 2000 407 6807 963 970 10.1038/35039559 11069169
    [Google Scholar]
  3. Han Y. Li X. Zhang Y. Han Y. Chang F. Ding J. Mesenchymal stem cells for regenerative medicine. Cells 2019 8 8 886 10.3390/cells8080886 31412678
    [Google Scholar]
  4. Fitzsimmons RE Mazurek MS Soos A Simmons CA Mesenchymal stromal/stem cells in regenerative medicine and tissue engineering. Stem Cells Int 2018 2018 8031718
    [Google Scholar]
  5. Margiana R. Markov A. Zekiy A.O. Hamza M.U. Al-Dabbagh K.A. Al-Zubaidi S.H. Hameed N.M. Ahmad I. Sivaraman R. Kzar H.H. Al-Gazally M.E. Mustafa Y.F. Siahmansouri H. Clinical application of mesenchymal stem cell in regenerative medicine: A narrative review. Stem Cell Res. Ther. 2022 13 1 366 10.1186/s13287‑022‑03054‑0 35902958
    [Google Scholar]
  6. Ghiasi M. Hashemi M. Salimi A. Jadidi K. Tavallaie M. Aghamollaei H. Combination of natural scaffolds and conditional medium to induce the differentiation of adipose-derived mesenchymal stem cells into keratocyte-like cells and its safety evaluation in the animal cornea. Tissue Cell 2023 82 102117 10.1016/j.tice.2023.102117 37267821
    [Google Scholar]
  7. Norouz F. Poormoghadam D. Halabian R. Ghiasi M. Monfaredi M. Salimi A. A novel nanocomposite scaffold based on polyurethane (PU) containing cobalt nanoparticles (CoNPs) for bone tissue engineering applications. Curr. Stem Cell Res. Ther. 2023 18 8 1120 1132 10.2174/1574888X18666230216085615 36797606
    [Google Scholar]
  8. Hoseinian M.S. Poormoghadam D. Kheirollahzadeh F. Mojtahedi A. Salimi A. Halabian R. Improved neural differentiation of human-induced pluripotent stem cell [hiPSCs] on a novel polyurethane-based scaffold containing iron oxide nanoparticles [Fe 2 O 3 NPs]. Curr. Stem Cell Res. Ther. 2023 18 7 993 1000 10.2174/1574888X17666220630090418 35786193
    [Google Scholar]
  9. Ghiasi M. Kheirandish Zarandi P. Dayani A. Salimi A. Shokri E. Potential therapeutic effects and nano-based delivery systems of mesenchymal stem cells and their isolated exosomes to alleviate acute respiratory distress syndrome caused by COVID-19. Regen. Ther. 2024 27 319 328 10.1016/j.reth.2024.03.015 38650667
    [Google Scholar]
  10. Dayani A. Ghiasi M. New methods in cardiac regenerative medicine: The use of induced pluripotent stem cells, exosomes, and cardiac patch technology. J. Mazandaran Univ. Med. Sci. 2024 34 236 158 176
    [Google Scholar]
  11. Zuk P.A. Zhu M. Mizuno H. Huang J. Futrell J.W. Katz A.J. Benhaim P. Lorenz H.P. Hedrick M.H. Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng. 2001 7 2 211 228 10.1089/107632701300062859 11304456
    [Google Scholar]
  12. Frese L. Dijkman P.E. Hoerstrup S.P. Adipose tissue-derived stem cells in regenerative medicine. Transfus. Med. Hemother. 2016 43 4 268 274 10.1159/000448180 27721702
    [Google Scholar]
  13. Jahanbazi Jahan-Abad A. Sahab Negah S. Hosseini Ravandi H. Ghasemi S. Borhani-Haghighi M. Stummer W. Gorji A. Khaleghi Ghadiri M. Human neural stem/progenitor cells derived from epileptic human brain in a self-assembling peptide nanoscaffold improve traumatic brain injury in rats. Mol. Neurobiol. 2018 55 12 9122 9138 10.1007/s12035‑018‑1050‑8 29651746
    [Google Scholar]
  14. Cheng Y-B. Ren C. Geng D-Q. Zhang R-C. Du W-Q. Zhang J-Y. Yu S-X. Lu F-Z. Ding H-M. Mesenchymal stem cell treatment for peripheral nerve injury: A narrative review. Neural Regen. Res. 2021 16 11 2170 2176 10.4103/1673‑5374.310941 33818489
    [Google Scholar]
  15. Wightman F. Lighty D.L. Identification of phenylacetic acid as a natural auxin in the shoots of higher plants. Physiol. Plant. 1982 55 1 17 24 10.1111/j.1399‑3054.1982.tb00278.x
    [Google Scholar]
  16. Sandler M. Ruthven C.R. Goodwin B.L. Lees A. Stern G.M. Phenylacetic acid in human body fluids: High correlation between plasma and cerebrospinal fluid concentration values. J. Neurol. Neurosurg. Psychiatry 1982 45 4 366 368 10.1136/jnnp.45.4.366 7077347
    [Google Scholar]
  17. Samid D. Hudgins W.R. Shack S. Liu L. Prasanna P. Myers C.E. Phenylacetate and phenylbutyrate as novel, nontoxic differentiation inducers. Adv. Exp. Med. Biol. 1997 400 501 505 10.1007/978‑1‑4615‑5325‑0_67 9547596
    [Google Scholar]
  18. Brusilow S.W. Danney M. Waber L.J. Batshaw M. Burton B. Levitsky L. Roth K. McKeethren C. Ward J. Treatment of episodic hyperammonemia in children with inborn errors of urea synthesis. N. Engl. J. Med. 1984 310 25 1630 1634 10.1056/NEJM198406213102503 6427608
    [Google Scholar]
  19. Simell O. Sipilä I. Rajantie J. Valle D.L. Brusilow S.W. Waste nitrogen excretion via amino acid acylation: Benzoate and phenylacetate in lysinuric protein intolerance. Pediatr. Res. 1986 20 11 1117 1121 10.1203/00006450‑198611000‑00011 3099249
    [Google Scholar]
  20. Heydari S.F. Ghollasi M. Ghiasi M. Behzadi P. Evaluation of the effect of curcumin on the expression of matrix metalloproteinase genes in RAW264. 7 cell line treated with diethylhexyl phthalate. Journal of Applied Biotechnology Reports. 2023 10 1 926 933
    [Google Scholar]
  21. Masoumi N. Ghollasi M. Raheleh Halabian Eftekhari E. Ghiasi M. Carbachol, along with calcium, indicates new strategy in neural differentiation of human adipose tissue-derived mesenchymal stem cells in vitro. Regen. Ther. 2023 23 60 66 10.1016/j.reth.2023.04.001 37122359
    [Google Scholar]
  22. Salimi A. Nadri S. Ghollasi M. Khajeh K. Soleimani M. Comparison of different protocols for neural differentiation of human induced pluripotent stem cells. Mol. Biol. Rep. 2014 41 3 1713 1721 10.1007/s11033‑014‑3020‑1 24469709
    [Google Scholar]
  23. Eftekhari E. Ghollasi M. Halabian R. Soltanyzadeh M. Enderami S.E. Nisin and non-essential amino acids: New perspective in differentiation of neural progenitors from human-induced pluripotent stem cells in vitro. Hum. Cell 2021 34 4 1142 1152 10.1007/s13577‑021‑00537‑9 33899160
    [Google Scholar]
  24. Ghiasi M. Jadidi K. Hashemi M. Zare H. Salimi A. Aghamollaei H. Application of mesenchymal stem cells in corneal regeneration. Tissue Cell 2021 73 101600 10.1016/j.tice.2021.101600 34371292
    [Google Scholar]
  25. Shirkoohi F.J. Ghollasi M. Halabian R. Eftekhari E. Ghiasi M. Oxaloacetate as new inducer for osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells in vitro. Mol. Biol. Rep. 2024 51 1 451 10.1007/s11033‑024‑09389‑6 38536507
    [Google Scholar]
  26. Cooney D.S. Wimmers E.G. Ibrahim Z. Grahammer J. Christensen J.M. Brat G.A. Wu L.W. Sarhane K.A. Lopez J. Wallner C. Furtmüller G.J. Yuan N. Pang J. Sarkar K. Lee W.P.A. Brandacher G. Mesenchymal stem cells enhance nerve regeneration in a rat sciatic nerve repair and hindlimb transplant model. Sci. Rep. 2016 6 1 31306 10.1038/srep31306 27510321
    [Google Scholar]
  27. Levy M. Boulis N. Rao M. Svendsen C.N. Regenerative cellular therapies for neurologic diseases. Brain Res. 2016 1638 Pt A 88 96 10.1016/j.brainres.2015.06.053 26239912
    [Google Scholar]
  28. Eftekharzadeh M. Nobakht M. Alizadeh A. Soleimani M. Hajghasem M. Kordestani Shargh B. Karkuki Osguei N. Behnam B. Samadikuchaksaraei A. The effect of intrathecal delivery of bone marrow stromal cells on hippocampal neurons in rat model of alzheimer’s disease. Iran. J. Basic Med. Sci. 2015 18 5 520 525 26124940
    [Google Scholar]
  29. Baksh D. Song L. Tuan R.S. Adult mesenchymal stem cells: Characterization, differentiation, and application in cell and gene therapy. J. Cell. Mol. Med. 2004 8 3 301 316 10.1111/j.1582‑4934.2004.tb00320.x 15491506
    [Google Scholar]
  30. Qi Y. Zhang F. Song G. Sun X. Jiang R. Chen M. Ge J. Cholinergic neuronal differentiation of bone marrow mesenchymal stem cells in rhesus monkeys. Sci. China Life Sci. 2010 53 5 573 580 10.1007/s11427‑010‑0009‑4 20596940
    [Google Scholar]
  31. Zhang X. Zhang L. Wang L. Chen W. Ma Z. Han X. Liu C. Cheng X. Shi W. Guo J. Qin J. Yang X. Jin G. Neural differentiation of human Wharton’s jelly-derived mesenchymal stem cells improves the recovery of neurological function after transplantation in ischemic stroke rats. Neural Regen. Res. 2017 12 7 1103 1110 10.4103/1673‑5374.211189 28852392
    [Google Scholar]
  32. Hu W. Feng Z. Xu J. Jiang Z. Feng M. Brain-derived neurotrophic factor modified human umbilical cord mesenchymal stem cells-derived cholinergic-like neurons improve spatial learning and memory ability in alzheimer’s disease rats. Brain Res. 2019 1710 61 73 10.1016/j.brainres.2018.12.034 30586546
    [Google Scholar]
  33. Sanooghi D. Amini N. Azedi F. Bagher Z. Parvishan A. Lotfi A. Rashidi N. Lotfi E. Faghihi F. Faghihi F. Differentiation of mesenchymal stem cells derived from human adipose tissue into cholinergic-like cells; in vitro. Basic Clin. Neurosci. 2021 12 3 315 323 10.32598/bcn.2021.1008.2 34917291
    [Google Scholar]
  34. Samid D. Shack S. Sherman L.T. Phenylacetate: A novel nontoxic inducer of tumor cell differentiation. Cancer Res. 1992 52 7 1988 1992 1372534
    [Google Scholar]
  35. Gore S.D. Weng L-J. Zhai S. Figg W.D. Donehower R.C. Dover G.J. Grever M. Griffin C.A. Grochow L.B. Rowinsky E.K. Zabalena Y. Hawkins A.L. Burks K. Miller C.B. Impact of the putative differentiating agent sodium phenylbutyrate on myelodysplastic syndromes and acute myeloid leukemia. Clin. Cancer Res. 2001 7 8 2330 2339 11489809
    [Google Scholar]
  36. Call C.T.G. Stenson M.J. Witzig T.E. Effects of phenylacetate on cells from patients with B-chronic lymphocytic leukemia. Leuk. Lymphoma 1994 14 1-2 145 149 10.3109/10428199409049661 7920222
    [Google Scholar]
  37. Eigelberger M.S. Wong M.G. Duh Q.Y. Clark O.H. Phenylacetate enhances the antiproliferative effect of retinoic acid in follicular thyroid cancer. Surgery 2001 130 6 931 935 10.1067/msy.2001.118383 11742319
    [Google Scholar]
  38. Wandzioch E. Edling C.E. Palmer R.H. Carlsson L. Hallberg B. Activation of the MAP kinase pathway by c-Kit is PI-3 kinase dependent in hematopoietic progenitor/stem cell lines. Blood 2004 104 1 51 57 10.1182/blood‑2003‑07‑2554 14996702
    [Google Scholar]
  39. Fang J. Zhao X. Li S. Xing X. Wang H. Lazarovici P. Zheng W. Protective mechanism of artemisinin on rat bone marrow-derived mesenchymal stem cells against apoptosis induced by hydrogen peroxide via activation of c-Raf-Erk1/2-p90rsk-CREB pathway. Stem Cell Res. Ther. 2019 10 1 312 10.1186/s13287‑019‑1419‑2
    [Google Scholar]
  40. Ahamad N. Sun Y. Singh B.B. Increasing cytosolic Ca2+ levels restore cell proliferation and stem cell potency in aged MSCs. Stem Cell Res. 2021 56 102560 10.1016/j.scr.2021.102560 34624617
    [Google Scholar]
  41. Marei H.E.S. El-Gamal A. Althani A. Afifi N. Abd-Elmaksoud A. Farag A. Cenciarelli C. Thomas C. Anwarul H. Cholinergic and dopaminergic neuronal differentiation of human adipose tissue derived mesenchymal stem cells. J. Cell. Physiol. 2018 233 2 936 945 10.1002/jcp.25937 28369825
    [Google Scholar]
  42. Jahan S. Singh S. Srivastava A. Kumar V. Kumar D. Pandey A. Rajpurohit C.S. Purohit A.R. Khanna V.K. Pant A.B. PKA-GSK3β and β-catenin signaling play a critical role in trans-resveratrol mediated neuronal differentiation in human cord blood stem cells. Mol. Neurobiol. 2018 55 4 2828 2839 10.1007/s12035‑017‑0539‑x 28455695
    [Google Scholar]
  43. Nemati S. Mehrjerdi N.Z. Baharvand H. Differentiation of human bone marrow mesenchymal stem cells to neural-like cells in vitro. Tehran Univ. Med. J. 2009 67 8
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X355333241203114713
Loading
/content/journals/cscr/10.2174/011574888X355333241203114713
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test