Skip to content
2000
image of Bone Marrow Mesenchymal Stem Cells Ameliorate Diabetes and Diabetic Renal Fibrosis by Modulating the Inflammatory Factor IL-11

Abstract

Objective

This study aims to explore the therapeutic potential of mesenchymal stem cells (MSC) in treating diabetic nephropathy (DN) by investigating their effect on IL-11 modulation in a mouse model.

Methods

The effects of MSC therapy on DN were examined both and . Sixty adult male C57BL/6 mice were divided into the streptozotocin (STZ) diabetes (T1D) and the high-fat diet diabetes (T2D) models, with both groups receiving MSC treatment or saline for 4 or 8 weeks. Blood glucose, serum urea, interleukin-11 (IL-11), and kidney fibrosis markers were measured. Additionally, western blotting was used to assess levels of Type I and III collagen, E-Cadherin, α-smooth muscle actin (α-SMA), Vimentin, and ferroptosis suppressor protein 1 (FSP-1).

Results

MSC-treated T1D and T2D mice showed reduced blood glucose, serum urea, IL-11, TGF-β, and fibrosis markers (type I and III collagen, α-SMA, Vimentin, FSP-1), alongside increased E-Cadherin expression. Similar effects were observed using mouse glomerular epithelial cells, confirming MSC-mediated suppression of fibrosis pathways.

Conclusion

MSC therapy improves nephropathy, likely by inhibiting IL-11 and reducing fibrosis-related markers, making it a promising treatment for DN.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X348254241216171655
2024-12-27
2025-01-22
Loading full text...

Full text loading...

References

  1. Lei L. Mao Y. Meng D. Zhang X. Cui L. Huo Y. Wang Y. Percentage of circulating cd8+ t lymphocytes is associated with albuminuria in type 2 diabetes mellitus. Exp. Clin. Endocrinol. Diabetes 2013 122 1 27 30 10.1055/s‑0033‑1358666 24203650
    [Google Scholar]
  2. Zheng Z. Zheng F. Immune cells and inflammation in diabetic nephropathy. J. Diabetes Res. 2016 2016 1 10 10.1155/2016/1841690 26824038
    [Google Scholar]
  3. Zhang L. Long J. Jiang W. Shi Y. He X. Zhou Z. Li Y. Yeung R.O. Wang J. Matsushita K. Coresh J. Zhao M.H. Wang H. Trends in chronic kidney disease in china. N. Engl. J. Med. 2016 375 9 905 906 10.1056/NEJMc1602469 27579659
    [Google Scholar]
  4. Betz B. Conway B.R. Recent advances in animal models of diabetic nephropathy. Nephron, Exp. Nephrol. 2014 126 4 191 195 10.1159/000363300 25034792
    [Google Scholar]
  5. Marshall S.M. Recent advances in diabetic nephropathy. Clin. Med. 2004 a 4 3 277 282 10.7861/clinmedicine.4‑3‑277 15244365
    [Google Scholar]
  6. Marshall S.M. Recent advances in diabetic nephropathy. Postgrad. Med. J. 2004 b 80 949 624 633 10.1136/pgmj.2004.021287 15537844
    [Google Scholar]
  7. Gao M.J. Yu G. Dong J. Comparison of therapeutic effects of calcium dobesilate and perlndopril in treatment of early diabetic nephropathy. Diabetes Res. Clin. Pract. 2014 106 S30 S30 10.1016/S0168‑8227(14)70265‑7
    [Google Scholar]
  8. Gao X.Y. Liu Y. Zhou L.P. Jiang J.J. Chen Y. Shen Z.X. Sun S.Z. Clinical study of renal glucose kang mixture combined with western medicine in the treatment of early diabetic nephropathy. J. Am. Geriatr. Soc. 2014 62 S335 S336
    [Google Scholar]
  9. Massoto T.B. Santos A.C.R. Ramalho B.S. Almeida F.M. Martinez A.M.B. Marques S.A. Mesenchymal stem cells and treadmill training enhance function and promote tissue preservation after spinal cord injury. Brain Res. 2020 1726 146494 10.1016/j.brainres.2019.146494 31586628
    [Google Scholar]
  10. Xing X. Han S. Cheng G. Ni Y. Li Z. Li Z. Proteomic analysis of exosomes from adipose-derived mesenchymal stem cells: A novel therapeutic strategy for tissue injury. BioMed Res. Int. 2020 2020 1 10 10.1155/2020/6094562 32190672
    [Google Scholar]
  11. Arena S. Salati M. Sorgentoni G. Barbisan F. Orciani M. Characterization of tumor-derived mesenchymal stem cells potentially differentiating into cancer-associated fibroblasts in lung cancer. Clin. Transl. Oncol. 2018 20 12 1582 1591 10.1007/s12094‑018‑1894‑4 29796998
    [Google Scholar]
  12. D’Angelo W. Chen B. Gurung C. Guo Y.L. Characterization of embryonic stem cell-differentiated fibroblasts as mesenchymal stem cells with robust expansion capacity and attenuated innate immunity. Stem Cell Res. Ther. 2018 9 1 278 10.1186/s13287‑018‑1033‑8 30359317
    [Google Scholar]
  13. Shimada M. Feng R. Ikemoto T. Morine Y. Imura S. Iwahashi S. Saito Y. Takasu C. Establishment of insulin-producing cells differentiated from human adipose-derived mesenchymal stem cells using a 3d-culture system with xeno-antigen free reagents. Transplantation 2018 102 Suppl. 7 S235 S235 10.1097/01.tp.0000542909.28600.e6
    [Google Scholar]
  14. Pittenger M.F. Mackay A.M. Beck S.C. Jaiswal R.K. Douglas R. Mosca J.D. Moorman M.A. Simonetti D.W. Craig S. Marshak D.R. Multilineage potential of adult human mesenchymal stem cells. Science 1999 284 5411 143 147 10.1126/science.284.5411.143 10102814
    [Google Scholar]
  15. Tsai T.L. Li W.J. Identification of bone marrow-derived soluble factors regulating human mesenchymal stem cells for bone regeneration. Stem Cell Reports 2017 8 2 387 400 10.1016/j.stemcr.2017.01.004 28162996
    [Google Scholar]
  16. Seifrtová M. Havelek R. Ćmielová J. Jiroutová A. Soukup T. Brůčková L. Mokrý J. English D. Řezáčová M. The response of human ectomesenchymal dental pulp stem cells to cisplatin treatment. Int. Endod. J. 2012 45 5 401 412 10.1111/j.1365‑2591.2011.01990.x 22142405
    [Google Scholar]
  17. Mennan C. Brown S. McCarthy H. Mavrogonatou E. Kletsas D. Garcia J. Balain B. Richardson J. Roberts S. Mesenchymal stromal cells derived from whole human umbilical cord exhibit similar properties to those derived from wharton’s jelly and bone marrow. FEBS Open Bio 2016 6 11 1054 1066 10.1002/2211‑5463.12104 27833846
    [Google Scholar]
  18. Bouhtit F. Najar M. Agha D.M. Melki R. Najimi M. Sadki K. Lewalle P. Hamal A. Lagneaux L. Merimi M. The biological response of mesenchymal stromal cells to thymol and carvacrol in comparison to their essential oil: An innovative new study. Food Chem. Toxicol. 2019 134 110844 10.1016/j.fct.2019.110844 31562950
    [Google Scholar]
  19. Damala M. Swioklo S. Koduri M.A. Mitragotri N.S. Basu S. Connon C.J. Singh V. Encapsulation of human limbus-derived stromal/mesenchymal stem cells for biological preservation and transportation in extreme indian conditions for clinical use. Sci. Rep. 2019 9 1 16950 10.1038/s41598‑019‑53315‑x 31740778
    [Google Scholar]
  20. Picken A. Harriman J. Iftimia-Mander A. Johnson L. Prosser A. Quirk R. Thomas R. A monte carlo framework for managing biological variability in manufacture of autologous cell therapy from mesenchymal stromal cells therapies. Cytotherapy 2020 22 4 227 238 10.1016/j.jcyt.2020.01.006 32113873
    [Google Scholar]
  21. Yoon Y.M. Lee J.H. Song K.H. Noh H. Lee S.H. Melatonin‐stimulated exosomes enhance the regenerative potential of chronic kidney disease‐derived mesenchymal stem/stromal cells via cellular prion proteins. J. Pineal Res. 2020 68 3 e12632 10.1111/jpi.12632 31989677
    [Google Scholar]
  22. Packham D.K. Fraser I.R. Kerr P.G. Segal K.R. Allogeneic mesenchymal precursor cells (MPC) in diabetic nephropathy: A randomized, placebo-controlled, dose escalation study. EBioMedicine 2016 12 263 269 10.1016/j.ebiom.2016.09.011 27743903
    [Google Scholar]
  23. Tögel F. Weiss K. Yang Y. Hu Z. Zhang P. Westenfelder C. Vasculotropic, paracrine actions of infused mesenchymal stem cells are important to the recovery from acute kidney injury. Am. J. Physiol. Renal Physiol. 2007 292 5 F1626 F1635 10.1152/ajprenal.00339.2006 17213465
    [Google Scholar]
  24. Zhang M. Mal N. Kiedrowski M. Chacko M. Askari A.T. Popovic Z.B. Koc O.N. Penn M.S. Sdf‐1 expression by mesenchymal stem cells results in trophic support of cardiac myocytes after myocardial infarction. FASEB J. 2007 21 12 3197 3207 10.1096/fj.06‑6558com 17496162
    [Google Scholar]
  25. Wu Y. Zhang C. Guo R. Wu D. Shi J. Li L. Chu Y. Yuan X. Gao J. Mesenchymal stem cells: An overview of their potential in cell-based therapy for diabetic nephropathy. Stem Cells Int. 2021 2021 1 12 10.1155/2021/6620811 33815509
    [Google Scholar]
  26. Bi B. Schmitt R. Israilova M. Nishio H. Cantley L.G. Stromal cells protect against acute tubular injury via an endocrine effect. J. Am. Soc. Nephrol. 2007 18 9 2486 2496 10.1681/ASN.2007020140 17656474
    [Google Scholar]
  27. Nagaishi K. Mizue Y. Chikenji T. Otani M. Nakano M. Konari N. Fujimiya M. Mesenchymal stem cell therapy ameliorates diabetic nephropathy via the paracrine effect of renal trophic factors including exosomes. Sci. Rep. 2016 6 1 34842 10.1038/srep34842 27721418
    [Google Scholar]
  28. Livak K.J. Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative pcr and the 2(-delta delta c(t)) method. Methods 2001 25 4 402 408 10.1006/meth.2001.1262 11846609
    [Google Scholar]
  29. Magalhães D.A. Kume W.T. Correia F.S. Queiroz T.S. Allebrandt Neto E.W. Santos M.P.D. Kawashita N.H. França S.A. High-fat diet and streptozotocin in the induction of type 2 diabetes mellitus: A new proposal. an acad bras cienc. 2019
  30. Ghafarzadeh M. Namdari P. Tarhani M. Tarhani F. A review of application of stem cell therapy in the management of congenital heart disease. J. Matern. Fetal Neonatal Med. 2020 33 9 1607 1615 10.1080/14767058.2018.1520829 30185081
    [Google Scholar]
  31. Zhao R.C. Stem cell–based therapy for coronavirus disease 2019. Stem Cells Dev. 2020 29 11 679 681 10.1089/scd.2020.0071 32292113
    [Google Scholar]
  32. Boyle S.C. Kim M. Valerius M.T. McMahon A.P. Kopan R. Notch pathway activation can replace the requirement for wnt4 and wnt9b in mesenchymal-to-epithelial transition of nephron stem cells. Development 2011 138 19 4245 4254 10.1242/dev.070433 21852398
    [Google Scholar]
  33. Machiguchi T. Nakamura T. Cellular interactions via conditioned media induce in vivo nephron generation from tubular epithelial cells or mesenchymal stem cells. Biochem. Biophys. Res. Commun. 2013 435 3 327 333 10.1016/j.bbrc.2013.04.050 23618853
    [Google Scholar]
  34. Machiguchi T. Nakamura T. Nephron generation in kidney cortices through injection of pretreated mesenchymal stem cell-differentiated tubular epithelial cells. Biochem. Biophys. Res. Commun. 2019 518 1 141 147 10.1016/j.bbrc.2019.08.022 31420163
    [Google Scholar]
  35. Cohrs C.M. Panzer J.K. Drotar D.M. Enos S.J. Kipke N. Chen C. Bozsak R. Schöniger E. Ehehalt F. Distler M. Brennand A. Bornstein S.R. Weitz J. Solimena M. Speier S. Dysfunction of persisting β cells is a key feature of early type 2 diabetes pathogenesis. Cell Rep. 2020 31 1 107469 10.1016/j.celrep.2020.03.033 32268101
    [Google Scholar]
  36. Marchetti P. Suleiman M. De Luca C. Baronti W. Bosi E. Tesi M. Marselli L. A direct look at the dysfunction and pathology of the β cells in human type 2 diabetes. Semin. Cell Dev. Biol. 2020 103 83 93 10.1016/j.semcdb.2020.04.005 32417220
    [Google Scholar]
  37. Lee H. Lee Y.S. Harenda Q. Pietrzak S. Oktay H.Z. Schreiber S. Liao Y. Sonthalia S. Ciecko A.E. Chen Y.G. Keles S. Sridharan R. Engin F. Beta cell dedifferentiation induced by ire1α deletion prevents type 1 diabetes. Cell Metab. 2020 31 4 822 836.e5 10.1016/j.cmet.2020.03.002 32220307
    [Google Scholar]
  38. Tanday N. Irwin N. Flatt P.R. Moffett R.C. Dapagliflozin exerts positive effects on beta cells, decreases glucagon and does not alter beta- to alpha-cell transdifferentiation in mouse models of diabetes and insulin resistance. Biochem. Pharmacol. 2020 177 114009 10.1016/j.bcp.2020.114009 32360307
    [Google Scholar]
  39. Crans D. Yang L. Alfano J.A. Chi L.H. Jin W. (4-hydroxypyridine-2,6-dicarboxylato)oxovanadate(v)—a new insulin-like compound: Chemistry, effects on myoblast and yeast cell growth and effects on hyperglycemia in rats with stz-induced diabetes. Coord. Chem. Rev. 2003 237 1-2 13 22 10.1016/S0010‑8545(02)00292‑8
    [Google Scholar]
  40. Goyal S.N. Reddy N.M. Patil K.R. Nakhate K.T. Ojha S. Patil C.R. Agrawal Y.O. Challenges and issues with streptozotocin-induced diabetes – a clinically relevant animal model to understand the diabetes pathogenesis and evaluate therapeutics. Chem. Biol. Interact. 2016 244 49 63 10.1016/j.cbi.2015.11.032 26656244
    [Google Scholar]
  41. Herath C. Jayasumana C. De Silva P.M.C.S. De Silva P.H.C. Siribaddana S. De Broe M.E. Kidney diseases in agricultural communities: A case against heat-stress nephropathy. Kidney Int. Rep. 2018 3 2 271 280 10.1016/j.ekir.2017.10.006 29725631
    [Google Scholar]
  42. Lionaki S. Panagiotellis K. Melexopoulou C. Boletis J.N. The clinical course of IGA nephropathy after kidney transplantation and its management. Transplant. Rev. 2017 31 2 106 114 10.1016/j.trre.2017.01.005 28209246
    [Google Scholar]
  43. Varghese S. Gowtham Kumar S. Prevalence of micro albuminuria and diagnostic accuracy of urine dipstick for the screening of diabetic nephropathy in type 2 diabetes patients. Biocatal. Agric. Biotechnol. 2019 21 101316 10.1016/j.bcab.2019.101316
    [Google Scholar]
  44. Cappelli C. Tellez A. Jara C. Alarcón S. Torres A. Mendoza P. Podestá L. Flores C. Quezada C. Oyarzún C. San Martín R. The tgf-β profibrotic cascade targets ecto-5′-nucleotidase gene in proximal tubule epithelial cells and is a traceable marker of progressive diabetic kidney disease. Biochim. Biophys. Acta Mol. Basis Dis. 2020 1866 7 165796 10.1016/j.bbadis.2020.165796 32289379
    [Google Scholar]
  45. Rauchman M. Griggs D. Emerging strategies to disrupt the central tgf-β axis in kidney fibrosis. Transl. Res. 2019 209 90 104 10.1016/j.trsl.2019.04.003 31085163
    [Google Scholar]
  46. Zhang L. Su S. Zhu Y. Guo J. Guo S. Qian D. Ouyang Z. Duan J. Mulberry leaf active components alleviate type 2 diabetes and its liver and kidney injury in db/db mice through insulin receptor and tgf-β/smads signaling pathway. Biomed. Pharmacother. 2019 112 108675 10.1016/j.biopha.2019.108675 30780108
    [Google Scholar]
  47. Aly M.H. Arafat M.A. Hussein O.A. Elsaid H.H. Abdel-Hammed A.R. Study of angiopoietin-2 and vascular endothelial growth factor as markers of diabetic nephropathy onset in egyptians diabetic patients with non-albuminuric state. Diabetes Metab. Syndr. 2019 13 2 1623 1627 10.1016/j.dsx.2019.03.016 31336531
    [Google Scholar]
  48. Liang G. Song L. Chen Z. Qian Y. Xie J. Zhao L. Lin Q. Zhu G. Tan Y. Li X. Mohammadi M. Huang Z. Fibroblast growth factor 1 ameliorates diabetic nephropathy by an anti-inflammatory mechanism. Kidney Int. 2018 93 1 95 109 10.1016/j.kint.2017.05.013 28750927
    [Google Scholar]
  49. Betz B.B. Jenks S.J. Cronshaw A.D. Lamont D.J. Cairns C. Manning J.R. Goddard J. Webb D.J. Mullins J.J. Hughes J. McLachlan S. Strachan M.W.J. Price J.F. Conway B.R. Urinary peptidomics in a rodent model of diabetic nephropathy highlights epidermal growth factor as a biomarker for renal deterioration in patients with type 2 diabetes. Kidney Int. 2016 89 5 1125 1135 10.1016/j.kint.2016.01.015 27083286
    [Google Scholar]
  50. Ren X. Li H. Feng P. Wang J. Meng Z. Zheng W. Yang H. Xu K. Synergistic effects of combining anti-midkine and hepatocyte growth factor therapies against diabetic nephropathy in rats. Am. J. Med. Sci. 2015 350 1 47 54 10.1097/MAJ.0000000000000510 26086153
    [Google Scholar]
  51. Morita T. Yamamoto T. Churg J. Mesangiolysis: An update. Am. J. Kidney Dis. 1998 31 4 559 573 10.1053/ajkd.1998.v31.pm9531171 9531171
    [Google Scholar]
  52. Silbiger S. Crowley S. Shan Z. Brownlee M. Satriano J. Schlondorff D. Nonenzymatic glycation of mesangial matrix and prolonged exposure of mesangial matrix to elevated glucose reduces collagen synthesis and proteoglycan charge. Kidney Int. 1993 43 4 853 864 10.1038/ki.1993.120 8479121
    [Google Scholar]
  53. Clarke Stout L. Kumar S. Whorton E.B. Focal mesangiolysis and the pathogenesis of the kimmelstiel-wilson nodule. Hum. Pathol. 1993 24 1 77 89 10.1016/0046‑8177(93)90066‑P 8418016
    [Google Scholar]
  54. Deconte S.R. Oliveira R.J.S. Calábria L.K. Oliveira V.N. Gouveia N.M. Moraes A.S. Espindola F.S. Alterations of antioxidant biomarkers and type I collagen deposition in the parotid gland of streptozotocin-induced diabetic rats. Arch. Oral Biol. 2011 56 8 744 751 10.1016/j.archoralbio.2011.01.005 21310393
    [Google Scholar]
  55. Hopfer U. Hopfer H. Meyer-Schwesinger C. Loeffler I. Fukai N. Olsen B.R. Stahl R.A.K. Wolf G. Lack of type viii collagen in mice ameliorates diabetic nephropathy. Diabetes 2009 58 7 1672 1681 10.2337/db08‑0183 19401424
    [Google Scholar]
  56. Hornigold N. Johnson T.S. Huang L. Haylor J.L. Griffin M. Mooney A. Inhibition of collagen I accumulation reduces glomerulosclerosis by a hic-5-dependent mechanism in experimental diabetic nephropathy. Lab. Invest. 2013 93 5 553 565 10.1038/labinvest.2013.42 23508044
    [Google Scholar]
  57. Jakopin E. Bevc S. Ekart R. Hojs R. Collagen type III nephropathy as a systemic disease? - A case report. Nefrologia 2020 40 1 106 108 10.1016/j.nefro.2019.04.008 31377028
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X348254241216171655
Loading
/content/journals/cscr/10.2174/011574888X348254241216171655
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: TGF-β ; IL-11 ; Diabetic nephropathy ; mesenchymal stem cells
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test