Skip to content
2000
image of Anti-arthritic Effects of Undifferentiated and Chondrogenic Differentiated MSCs in MIA-induced Osteoarthritis in Wistar Rats: Involvement of Oxidative Stress and Immune Modulation

Abstract

Introduction

Osteoarthritis (OA) is a degenerative joint disease that can affect the many tissues of the joint. There are no officially recognized disease-modifying therapies for clinical use at this time probably due to a lack of complete comprehension of the pathogenesis of the disease. In recent years, emerging regenerative therapy and treatments with stem cells both undifferentiated and differentiated cells have gained much attention as they can efficiently promote tissue repair and regeneration.

Methods

To determine how bone marrow-derived mesenchymal stem cells (BM-MSCs) and chondrogenic differentiated MSCs (CD-MSCs) can treat OA in rats, OA was induced in Wistar rats by injecting three doses of 100 μL physiological saline containing 1 mg of MIA into rat ankle joint of the right hind leg for three consecutive days. Following the induction, the osteoarthritic rats were injected weekly with BM-MSCs or CD-MSCs at a dose of 1x106 cells/rat/dose for three weeks. In addition to morphological and histological investigations of the ankle, spectrophotometric, ELISA, and Western blot analyses were applied to detect various immunological and molecular parameters in serum and ankle.

Results

The results of the study showed that in osteoarthritic rats, BM-MSCs and CD-MSCs significantly reduced right hind paw circumference, total leucocyte count (TLC), differential leukocyte count (DLC) of neutrophils, monocytes, lymphocytes, and eosinophils, serum rheumatoid factor (RF), prostaglandin E2 (PGE2) and interleukin (IL-) 1β levels, while they elevated serum IL-10 level. Additionally, BM-MSCs and CD-MSCs markedly reduced lipid peroxides (LPO) levels while they elevated superoxide dismutase (SOD) and glutathione-S-transferase (GST) activities. The monocyte chemoattractant protein-1 (MCP-1) level was significantly downregulated in ankle joint articular tissues by treatment with BM-MSCs or CD-MSCs while nuclear factor erythroid 2-related factor 2 (Nrf2) was upregulated; CD-MSCs treatment was more effective.

Conclusion

According to these findings, it can be inferred that BM-MSCs and CD-MSCs have anti-arthritic potential in MIA-induced OA; CD-MSCs therapy is more effective than MSCs. The ameliorative anti-arthritic effects may be mediated suppressing inflammation and oxidative stress through the downregulation of MCP-1 and upregulation of Nrf2. Based on the obtained results, BM-MSCs and CD-MSCs therapies are promising new options that can be associated with other clinical treatments to improve cartilage regeneration and joint healing. However, more preclinical and clinical research is required to assess the benefits and safety of treating osteoarthritic patients with BM-MSCs and CD-MSCs.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X348230241209072307
2025-01-23
2025-05-10
Loading full text...

Full text loading...

References

  1. Coryell P.R. Diekman B.O. Loeser R.F. Mechanisms and therapeutic implications of cellular senescence in osteoarthritis. Nat. Rev. Rheumatol. 2021 17 1 47 57 10.1038/s41584‑020‑00533‑7 33208917
    [Google Scholar]
  2. Kloppenburg M. Berenbaum F. Osteoarthritis year in review 2019: Epidemiology and therapy. Osteoarthritis Cartilage 2020 28 3 242 248 10.1016/j.joca.2020.01.002 31945457
    [Google Scholar]
  3. Di Nicola V. Degenerative osteoarthritis a reversible chronic disease. Regen. Ther. 2020 15 149 160 10.1016/j.reth.2020.07.007 33426213
    [Google Scholar]
  4. Hamdalla H.M. Ahmed R.R. Galaly S.R. Ahmed O.M. Naguib I.A. Alghamdi B.S. Abdul-Hamid M. Assessment of the efficacy of bone marrow-derived mesenchymal stem cells against a monoiodoacetate-induced osteoarthritis model in wistar rats. Stem Cells Int. 2022 a 2022 1 14 10.1155/2022/1900403 36017131
    [Google Scholar]
  5. Hamdalla H.M. Ahmed R.R. Galaly S.R. Naguib I.A. Alghamdi B.S. Ahmed O.M. Farghali A. Abdul-Hamid M. Ameliorative effect of curcumin nanoparticles against monosodium iodoacetate-induced knee osteoarthritis in rats. Mediators Inflamm. 2022 b 2022 1 14 10.1155/2022/8353472 36578323
    [Google Scholar]
  6. Zhang W. Moskowitz R.W. Nuki G. Abramson S. Altman R.D. Arden N. Bierma-Zeinstra S. Brandt K.D. Croft P. Doherty M. Dougados M. Hochberg M. Hunter D.J. Kwoh K. Lohmander L.S. Tugwell P. OARSI recommendations for the management of hip and knee osteoarthritis, Part II: OARSI evidence-based, expert consensus guidelines. Osteoarthritis Cartilage 2008 16 2 137 162 10.1016/j.joca.2007.12.013 18279766
    [Google Scholar]
  7. Hochberg M.C. Dougados M. Pharmacological therapy of osteoarthritis. Best Pract. Res. Clin. Rheumatol. 2001 15 4 583 593 10.1053/berh.2001.0175 11567541
    [Google Scholar]
  8. Chen Y. Luo X. Kang R. Cui K. Ou J. Zhang X. Liang P. Current therapies for osteoarthritis and prospects of CRISPR-based genome, epigenome, and RNA editing in osteoarthritis treatment. J. Genet. Genomics 2024 51 2 159 183 10.1016/j.jgg.2023.07.007 37516348
    [Google Scholar]
  9. James S.L. Abate D. Abate K.H. Abay S.M. Abbafati C. Abbasi N. Abbastabar H. Abd-Allah F. Abdela J. Abdelalim A. Abdollahpour I. Abdulkader R.S. Abebe Z. Abera S.F. Abil O.Z. Abraha H.N. Abu-Raddad L.J. Abu-Rmeileh N.M.E. Accrombessi M.M.K. Acharya D. Acharya P. Ackerman I.N. Adamu A.A. Adebayo O.M. Adekanmbi V. Adetokunboh O.O. Adib M.G. Adsuar J.C. Afanvi K.A. Afarideh M. Afshin A. Agarwal G. Agesa K.M. Aggarwal R. Aghayan S.A. Agrawal S. Ahmadi A. Ahmadi M. Ahmadieh H. Ahmed M.B. Aichour A.N. Aichour I. Aichour M.T.E. Akinyemiju T. Akseer N. Al-Aly Z. Al-Eyadhy A. Al-Mekhlafi H.M. Al-Raddadi R.M. Alahdab F. Alam K. Alam T. Alashi A. Alavian S.M. Alene K.A. Alijanzadeh M. Alizadeh-Navaei R. Aljunid S.M. Alkerwi A. Alla F. Allebeck P. Alouani M.M.L. Altirkawi K. Alvis-Guzman N. Amare A.T. Aminde L.N. Ammar W. Amoako Y.A. Anber N.H. Andrei C.L. Androudi S. Animut M.D. Anjomshoa M. Ansha M.G. Antonio C.A.T. Anwari P. Arabloo J. Arauz A. Aremu O. Ariani F. Armoon B. Ärnlöv J. Arora A. Artaman A. Aryal K.K. Asayesh H. Asghar R.J. Ataro Z. Atre S.R. Ausloos M. Avila-Burgos L. Avokpaho E.F.G.A. Awasthi A. Ayala Quintanilla B.P. Ayer R. Azzopardi P.S. Babazadeh A. Badali H. Badawi A. Bali A.G. Ballesteros K.E. Ballew S.H. Banach M. Banoub J.A.M. Banstola A. Barac A. Barboza M.A. Barker-Collo S.L. Bärnighausen T.W. Barrero L.H. Baune B.T. Bazargan-Hejazi S. Bedi N. Beghi E. Behzadifar M. Behzadifar M. Béjot Y. Belachew A.B. Belay Y.A. Bell M.L. Bello A.K. Bensenor I.M. Bernabe E. Bernstein R.S. Beuran M. Beyranvand T. Bhala N. Bhattarai S. Bhaumik S. Bhutta Z.A. Biadgo B. Bijani A. Bikbov B. Bilano V. Bililign N. Bin Sayeed M.S. Bisanzio D. Blacker B.F. Blyth F.M. Bou-Orm I.R. Boufous S. Bourne R. Brady O.J. Brainin M. Brant L.C. Brazinova A. Breitborde N.J.K. Brenner H. Briant P.S. Briggs A.M. Briko A.N. Britton G. Brugha T. Buchbinder R. Busse R. Butt Z.A. Cahuana-Hurtado L. Cano J. Cárdenas R. Carrero J.J. Carter A. Carvalho F. Castañeda-Orjuela C.A. Castillo Rivas J. Castro F. Catalá-López F. Cercy K.M. Cerin E. Chaiah Y. Chang A.R. Chang H-Y. Chang J-C. Charlson F.J. Chattopadhyay A. Chattu V.K. Chaturvedi P. Chiang P.P-C. Chin K.L. Chitheer A. Choi J-Y.J. Chowdhury R. Christensen H. Christopher D.J. Cicuttini F.M. Ciobanu L.G. Cirillo M. Claro R.M. Collado-Mateo D. Cooper C. Coresh J. Cortesi P.A. Cortinovis M. Costa M. Cousin E. Criqui M.H. Cromwell E.A. Cross M. Crump J.A. Dadi A.F. Dandona L. Dandona R. Dargan P.I. Daryani A. Das Gupta R. Das Neves J. Dasa T.T. Davey G. Davis A.C. Davitoiu D.V. De Courten B. De La Hoz F.P. De Leo D. De Neve J-W. Degefa M.G. Degenhardt L. Deiparine S. Dellavalle R.P. Demoz G.T. Deribe K. Dervenis N. Des Jarlais D.C. Dessie G.A. Dey S. Dharmaratne S.D. Dinberu M.T. Dirac M.A. Djalalinia S. Doan L. Dokova K. Doku D.T. Dorsey E.R. Doyle K.E. Driscoll T.R. Dubey M. Dubljanin E. Duken E.E. Duncan B.B. Duraes A.R. Ebrahimi H. Ebrahimpour S. Echko M.M. Edvardsson D. Effiong A. Ehrlich J.R. El Bcheraoui C. El Sayed Zaki M. El-Khatib Z. Elkout H. Elyazar I.R.F. Enayati A. Endries A.Y. Er B. Erskine H.E. Eshrati B. Eskandarieh S. Esteghamati A. Esteghamati S. Fakhim H. Fallah Omrani V. Faramarzi M. Fareed M. Farhadi F. Farid T.A. Farinha C.S.E. Farioli A. Faro A. Farvid M.S. Farzadfar F. Feigin V.L. Fentahun N. Fereshtehnejad S-M. Fernandes E. Fernandes J.C. Ferrari A.J. Feyissa G.T. Filip I. Fischer F. Fitzmaurice C. Foigt N.A. Foreman K.J. Fox J. Frank T.D. Fukumoto T. Fullman N. Fürst T. Furtado J.M. Futran N.D. Gall S. Ganji M. Gankpe F.G. Garcia-Basteiro A.L. Gardner W.M. Gebre A.K. Gebremedhin A.T. Gebremichael T.G. Gelano T.F. Geleijnse J.M. Genova-Maleras R. Geramo Y.C.D. Gething P.W. Gezae K.E. Ghadiri K. Ghasemi Falavarjani K. Ghasemi-Kasman M. Ghimire M. Ghosh R. Ghoshal A.G. Giampaoli S. Gill P.S. Gill T.K. Ginawi I.A. Giussani G. Gnedovskaya E.V. Goldberg E.M. Goli S. Gómez-Dantés H. Gona P.N. Gopalani S.V. Gorman T.M. Goulart A.C. Goulart B.N.G. Grada A. Grams M.E. Grosso G. Gugnani H.C. Guo Y. Gupta P.C. Gupta R. Gupta R. Gupta T. Gyawali B. Haagsma J.A. Hachinski V. Hafezi-Nejad N. Haghparast Bidgoli H. Hagos T.B. Hailu G.B. Haj-Mirzaian A. Haj-Mirzaian A. Hamadeh R.R. Hamidi S. Handal A.J. Hankey G.J. Hao Y. Harb H.L. Harikrishnan S. Haro J.M. Hasan M. Hassankhani H. Hassen H.Y. Havmoeller R. Hawley C.N. Hay R.J. Hay S.I. Hedayatizadeh-Omran A. Heibati B. Hendrie D. Henok A. Herteliu C. Heydarpour S. Hibstu D.T. Hoang H.T. Hoek H.W. Hoffman H.J. Hole M.K. Homaie Rad E. Hoogar P. Hosgood H.D. Hosseini S.M. Hosseinzadeh M. Hostiuc M. Hostiuc S. Hotez P.J. Hoy D.G. Hsairi M. Htet A.S. Hu G. Huang J.J. Huynh C.K. Iburg K.M. Ikeda C.T. Ileanu B. Ilesanmi O.S. Iqbal U. Irvani S.S.N. Irvine C.M.S. Islam S.M.S. Islami F. Jacobsen K.H. Jahangiry L. Jahanmehr N. Jain S.K. Jakovljevic M. Javanbakht M. Jayatilleke A.U. Jeemon P. Jha R.P. Jha V. Ji J.S. Johnson C.O. Jonas J.B. Jozwiak J.J. Jungari S.B. Jürisson M. Kabir Z. Kadel R. Kahsay A. Kalani R. Kanchan T. Karami M. Karami Matin B. Karch A. Karema C. Karimi N. Karimi S.M. Kasaeian A. Kassa D.H. Kassa G.M. Kassa T.D. Kassebaum N.J. Katikireddi S.V. Kawakami N. Karyani A.K. Keighobadi M.M. Keiyoro P.N. Kemmer L. Kemp G.R. Kengne A.P. Keren A. Khader Y.S. Khafaei B. Khafaie M.A. Khajavi A. Khalil I.A. Khan E.A. Khan M.S. Khan M.A. Khang Y-H. Khazaei M. Khoja A.T. Khosravi A. Khosravi M.H. Kiadaliri A.A. Kiirithio D.N. Kim C-I. Kim D. Kim P. Kim Y-E. Kim Y.J. Kimokoti R.W. Kinfu Y. Kisa A. Kissimova-Skarbek K. Kivimäki M. Knudsen A.K.S. Kocarnik J.M. Kochhar S. Kokubo Y. Kolola T. Kopec J.A. Kosen S. Kotsakis G.A. Koul P.A. Koyanagi A. Kravchenko M.A. Krishan K. Krohn K.J. Kuate Defo B. Kucuk Bicer B. Kumar G.A. Kumar M. Kyu H.H. Lad D.P. Lad S.D. Lafranconi A. Lalloo R. Lallukka T. Lami F.H. Lansingh V.C. Latifi A. Lau K.M-M. Lazarus J.V. Leasher J.L. Ledesma J.R. Lee P.H. Leigh J. Leung J. Levi M. Lewycka S. Li S. Li Y. Liao Y. Liben M.L. Lim L-L. Lim S.S. Liu S. Lodha R. Looker K.J. Lopez A.D. Lorkowski S. Lotufo P.A. Low N. Lozano R. Lucas T.C.D. Lucchesi L.R. Lunevicius R. Lyons R.A. Ma S. Macarayan E.R.K. Mackay M.T. Madotto F. Magdy Abd El Razek H. Magdy Abd El Razek M. Maghavani D.P. Mahotra N.B. Mai H.T. Majdan M. Majdzadeh R. Majeed A. Malekzadeh R. Malta D.C. Mamun A.A. Manda A-L. Manguerra H. Manhertz T. Mansournia M.A. Mantovani L.G. Mapoma C.C. Maravilla J.C. Marcenes W. Marks A. Martins-Melo F.R. Martopullo I. März W. Marzan M.B. Mashamba-Thompson T.P. Massenburg B.B. Mathur M.R. Matsushita K. Maulik P.K. Mazidi M. McAlinden C. McGrath J.J. McKee M. Mehndiratta M.M. Mehrotra R. Mehta K.M. Mehta V. Mejia-Rodriguez F. Mekonen T. Melese A. Melku M. Meltzer M. Memiah P.T.N. Memish Z.A. Mendoza W. Mengistu D.T. Mengistu G. Mensah G.A. Mereta S.T. Meretoja A. Meretoja T.J. Mestrovic T. Mezerji N.M.G. Miazgowski B. Miazgowski T. Millear A.I. Miller T.R. Miltz B. Mini G.K. Mirarefin M. Mirrakhimov E.M. Misganaw A.T. Mitchell P.B. Mitiku H. Moazen B. Mohajer B. Mohammad K.A. Mohammadifard N. Mohammadnia-Afrouzi M. Mohammed M.A. Mohammed S. Mohebi F. Moitra M. Mokdad A.H. Molokhia M. Monasta L. Moodley Y. Moosazadeh M. Moradi G. Moradi-Lakeh M. Moradinazar M. Moraga P. Morawska L. Moreno Velásquez I. Morgado-Da-Costa J. Morrison S.D. Moschos M.M. Mountjoy-Venning W.C. Mousavi S.M. Mruts K.B. Muche A.A. Muchie K.F. Mueller U.O. Muhammed O.S. Mukhopadhyay S. Muller K. Mumford J.E. Murhekar M. Musa J. Musa K.I. Mustafa G. Nabhan A.F. Nagata C. Naghavi M. Naheed A. Nahvijou A. Naik G. Naik N. Najafi F. Naldi L. Nam H.S. Nangia V. Nansseu J.R. Nascimento B.R. Natarajan G. Neamati N. Negoi I. Negoi R.I. Neupane S. Newton C.R.J. Ngunjiri J.W. Nguyen A.Q. Nguyen H.T. Nguyen H.L.T. Nguyen H.T. Nguyen L.H. Nguyen M. Nguyen N.B. Nguyen S.H. Nichols E. Ningrum D.N.A. Nixon M.R. Nolutshungu N. Nomura S. Norheim O.F. Noroozi M. Norrving B. Noubiap J.J. Nouri H.R. Nourollahpour Shiadeh M. Nowroozi M.R. Nsoesie E.O. Nyasulu P.S. Odell C.M. Ofori-Asenso R. Ogbo F.A. Oh I-H. Oladimeji O. Olagunju A.T. Olagunju T.O. Olivares P.R. Olsen H.E. Olusanya B.O. Ong K.L. Ong S.K. Oren E. Ortiz A. Ota E. Otstavnov S.S. Øverland S. Owolabi M.O. P A M. Pacella R. Pakpour A.H. Pana A. Panda-Jonas S. Parisi A. Park E-K. Parry C.D.H. Patel S. Pati S. Patil S.T. Patle A. Patton G.C. Paturi V.R. Paulson K.R. Pearce N. Pereira D.M. Perico N. Pesudovs K. Pham H.Q. Phillips M.R. Pigott D.M. Pillay J.D. Piradov M.A. Pirsaheb M. Pishgar F. Plana-Ripoll O. Plass D. Polinder S. Popova S. Postma M.J. Pourshams A. Poustchi H. Prabhakaran D. Prakash S. Prakash V. Purcell C.A. Purwar M.B. Qorbani M. Quistberg D.A. Radfar A. Rafay A. Rafiei A. Rahim F. Rahimi K. Rahimi-Movaghar A. Rahimi-Movaghar V. Rahman M. Rahman M.H. Rahman M.A. Rahman S.U. Rai R.K. Rajati F. Ram U. Ranjan P. Ranta A. Rao P.C. Rawaf D.L. Rawaf S. Reddy K.S. Reiner R.C. Reinig N. Reitsma M.B. Remuzzi G. Renzaho A.M.N. Resnikoff S. Rezaei S. Rezai M.S. Ribeiro A.L.P. Roberts N.L.S. Robinson S.R. Roever L. Ronfani L. Roshandel G. Rostami A. Roth G.A. Roy A. Rubagotti E. Sachdev P.S. Sadat N. Saddik B. Sadeghi E. Saeedi Moghaddam S. Safari H. Safari Y. Safari-Faramani R. Safdarian M. Safi S. Safiri S. Sagar R. Sahebkar A. Sahraian M.A. Sajadi H.S. Salam N. Salama J.S. Salamati P. Saleem K. Saleem Z. Salimi Y. Salomon J.A. Salvi S.S. Salz I. Samy A.M. Sanabria J. Sang Y. Santomauro D.F. Santos I.S. Santos J.V. Santric Milicevic M.M. Sao Jose B.P. Sardana M. Sarker A.R. Sarrafzadegan N. Sartorius B. Sarvi S. Sathian B. Satpathy M. Sawant A.R. Sawhney M. Saxena S. Saylan M. Schaeffner E. Schmidt M.I. Schneider I.J.C. Schöttker B. Schwebel D.C. Schwendicke F. Scott J.G. Sekerija M. Sepanlou S.G. Serván-Mori E. Seyedmousavi S. Shabaninejad H. Shafieesabet A. Shahbazi M. Shaheen A.A. Shaikh M.A. Shams-Beyranvand M. Shamsi M. Shamsizadeh M. Sharafi H. Sharafi K. Sharif M. Sharif-Alhoseini M. Sharma M. Sharma R. She J. Sheikh A. Shi P. Shibuya K. Shigematsu M. Shiri R. Shirkoohi R. Shishani K. Shiue I. Shokraneh F. Shoman H. Shrime M.G. Si S. Siabani S. Siddiqi T.J. Sigfusdottir I.D. Sigurvinsdottir R. Silva J.P. Silveira D.G.A. Singam N.S.V. Singh J.A. Singh N.P. Singh V. Sinha D.N. Skiadaresi E. Slepak E.L.N. Sliwa K. Smith D.L. Smith M. Soares Filho A.M. Sobaih B.H. Sobhani S. Sobngwi E. Soneji S.S. Soofi M. Soosaraei M. Sorensen R.J.D. Soriano J.B. Soyiri I.N. Sposato L.A. Sreeramareddy C.T. Srinivasan V. Stanaway J.D. Stein D.J. Steiner C. Steiner T.J. Stokes M.A. Stovner L.J. Subart M.L. Sudaryanto A. Sufiyan M.B. Sunguya B.F. Sur P.J. Sutradhar I. Sykes B.L. Sylte D.O. Tabarés-Seisdedos R. Tadakamadla S.K. Tadesse B.T. Tandon N. Tassew S.G. Tavakkoli M. Taveira N. Taylor H.R. Tehrani-Banihashemi A. Tekalign T.G. Tekelemedhin S.W. Tekle M.G. Temesgen H. Temsah M-H. Temsah O. Terkawi A.S. Teweldemedhin M. Thankappan K.R. Thomas N. Tilahun B. To Q.G. Tonelli M. Topor-Madry R. Topouzis F. Torre A.E. Tortajada-Girbés M. Touvier M. Tovani-Palone M.R. Towbin J.A. Tran B.X. Tran K.B. Troeger C.E. Truelsen T.C. Tsilimbaris M.K. Tsoi D. Tudor Car L. Tuzcu E.M. Ukwaja K.N. Ullah I. Undurraga E.A. Unutzer J. Updike R.L. Usman M.S. Uthman O.A. Vaduganathan M. Vaezi A. Valdez P.R. Varughese S. Vasankari T.J. Venketasubramanian N. Villafaina S. Violante F.S. Vladimirov S.K. Vlassov V. Vollset S.E. Vosoughi K. Vujcic I.S. Wagnew F.S. Waheed Y. Waller S.G. Wang Y. Wang Y-P. Weiderpass E. Weintraub R.G. Weiss D.J. Weldegebreal F. Weldegwergs K.G. Werdecker A. West T.E. Whiteford H.A. Widecka J. Wijeratne T. Wilner L.B. Wilson S. Winkler A.S. Wiyeh A.B. Wiysonge C.S. Wolfe C.D.A. Woolf A.D. Wu S. Wu Y-C. Wyper G.M.A. Xavier D. Xu G. Yadgir S. Yadollahpour A. Yahyazadeh Jabbari S.H. Yamada T. Yan L.L. Yano Y. Yaseri M. Yasin Y.J. Yeshaneh A. Yimer E.M. Yip P. Yisma E. Yonemoto N. Yoon S-J. Yotebieng M. Younis M.Z. Yousefifard M. Yu C. Zadnik V. Zaidi Z. Zaman S.B. Zamani M. Zare Z. Zeleke A.J. Zenebe Z.M. Zhang K. Zhao Z. Zhou M. Zodpey S. Zucker I. Vos T. Murray C.J.L. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018 392 10159 1789 1858 10.1016/S0140‑6736(18)32279‑7 30496104
    [Google Scholar]
  10. Hunter D.J. Bierma-Zeinstra S. Osteoarthritis. Lancet 2019 393 10182 1745 1759 10.1016/S0140‑6736(19)30417‑9 31034380
    [Google Scholar]
  11. Lanza R. Langer R. Vacanti J.P. Principles of Tissue Engineering 3rd ed Burlington, VT, USA Academic Press 2011
    [Google Scholar]
  12. Čamernik K. Barlič A. Drobnič M. Marc J. Jeras M. Zupan J. Mesenchymal stem cells in the musculoskeletal sys-tem: From animal models to human tissue regeneration? Stem Cell Rev. Stem Cell Rev. 2018 14 3 346 369 10.1007/s12015‑018‑9800‑6 29556896
    [Google Scholar]
  13. Mianehsaz E. Mirzaei H.R. Mahjoubin-Tehran M. Rezaee A. Sahebnasagh R. Pourhanifeh M.H. Mirzaei H. Hamblin M.R. Mesenchymal stem cell-derived exosomes: A new therapeutic approach to osteoarthritis? Stem Cell Res. Ther. 2019 10 1 340 10.1186/s13287‑019‑1445‑0 31753036
    [Google Scholar]
  14. Mirzaei H. Sahebkar A. Sichani L.S. Moridikia A. Nazari S. Sadri Nahand J. salehi H. Stenvang J. Masoudifar A. Mirzaei H.R. Jaafari M.R. Therapeutic application of multipotent stem cells. J. Cell. Physiol. 2018 233 4 2815 2823 10.1002/jcp.25990 28475219
    [Google Scholar]
  15. Wu J. Kuang L. Chen C. Yang J. Zeng W.N. Li T. Chen H. Huang S. Fu Z. Li J. Liu R. Ni Z. Chen L. Yang L. miR-100-5p-abundant exosomes derived from infrapatellar fat pad MSCs protect articular cartilage and ameliorate gait abnormalities via inhibition of mTOR in osteoarthritis. Biomaterials 2019 206 87 100 10.1016/j.biomaterials.2019.03.022 30927715
    [Google Scholar]
  16. Moradian Tehrani R. Verdi J. Noureddini M. Salehi R. Salarinia R. Mosalaei M. Simonian M. Alani B. Ghiasi M.R. Jaafari M.R. Mirzaei H.R. Mirzaei H. Mesenchymal stem cells: A new platform for targeting suicide genes in cancer. J. Cell. Physiol. 2018 233 5 3831 3845 10.1002/jcp.26094 28703313
    [Google Scholar]
  17. Matas J. Orrego M. Amenabar D. Infante C. Tapia-Limonchi R. Cadiz M.I. Alcayaga-Miranda F. González P.L. Muse E. Khoury M. Figueroa F.E. Espinoza F. Umbilical cord-derived mesenchymal stromal cells (MSCs) for knee osteo-arthritis: Repeated MSC dosing is superior to a single MSC dose and to hyaluronic acid in a controlled randomized phase I/II trial. Stem Cells Transl. Med. 2019 8 3 215 224 10.1002/sctm.18‑0053 30592390
    [Google Scholar]
  18. Enomoto T. Akagi R. Ogawa Y. Yamaguchi S. Hoshi H. Sasaki T. Sato Y. Nakagawa R. Kimura S. Ohtori S. Sasho T. Timing of intra-articular injection of synovial mesenchymal stem cells affects cartilage restoration in a partial thickness cartilage defect model in rats. Cartilage 2020 11 1 122 129 10.1177/1947603518786542 29989441
    [Google Scholar]
  19. Yoshimura H. Muneta T. Nimura A. Yokoyama A. Koga H. Sekiya I. Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell Tissue Res. 327 3 449 462 2007 10.1007/s00441‑006‑0308‑z
    [Google Scholar]
  20. Jiang Roles of vitamin D and TGF-β1 in BMSCs. Cell. Physiol. Biochem. 2017 42 2230 2241 10.1159/000479997 28817810
    [Google Scholar]
  21. Puetzer J.L. Petitte J.N. Loboa E.G. Comparative review of growth factors for induction of three-dimensional in vitro chondrogenesis in human mesenchymal stem cells isolated from bone marrow and adipose tissue. Tissue Eng. Part B Rev. 2010 16 4 435 444 10.1089/ten.teb.2009.0705 20196646
    [Google Scholar]
  22. Deng S. zhou X. Ge Z. Song Y. Wang H. Liu X. Zhang D. Exosomes from adipose-derived mesenchymal stem cells ameliorate cardiac damage after myocardial infarction by activating S1P/SK1/S1PR1 signaling and promoting macrophage M2 polarization. Int. J. Biochem. Cell Biol. 2019 114 105564 10.1016/j.biocel.2019.105564 31276786
    [Google Scholar]
  23. Li N. Hua J. Interactions between mesenchymal stem cells and the immune system. Cell. Mol. Life Sci. 2017 74 13 2345 2360 10.1007/s00018‑017‑2473‑5 28214990
    [Google Scholar]
  24. Wang Y. Chen X. Cao W. Shi Y. Plasticity of mesenchymal stem cells in immunomodulation: Pathological and therapeutic implications. Nat. Immunol. 2014 15 11 1009 1016 10.1038/ni.3002 25329189
    [Google Scholar]
  25. Zhao X. Zhao Y. Sun X. Xing Y. Wang X. Yang Q. Immunomodulation of MSCs and MSC-derived extracellular vesicles in osteoarthritis. Front. Bioeng. Biotechnol. 2020 8 575057 10.3389/fbioe.2020.575057 33251195
    [Google Scholar]
  26. Molnar V. Matišić V. Kodvanj I. Bjelica R. Jeleč Ž. Hudetz D. Rod E. Čukelj F. Vrdoljak T. Vidović D. Starešinić M. Sabalić S. Dobričić B. Petrović T. Antičević D. Borić I. Košir R. Zmrzljak U.P. Primorac D. Cytokines and chemokines involved in osteoarthritis pathogenesis. Int. J. Mol. Sci. 2021 22 17 9208 10.3390/ijms22179208 34502117
    [Google Scholar]
  27. Garcia-Contreras M. Thakor A.S. Human adipose tissue-derived mesenchymal stem cells and their extracellular vesicles modulate lipopolysaccharide activated human microglia. Cell Death Discov. 2021 7 1 98 10.1038/s41420‑021‑00471‑7 33972507
    [Google Scholar]
  28. Bennett N.T. Schultz G.S. Growth factors and wound healing: Biochemical properties of growth factors and their receptors. Am. J. Surg. 1993 165 6 728 737 10.1016/S0002‑9610(05)80797‑4 8506974
    [Google Scholar]
  29. Faulknor R.A. Olekson M.A. Ekwueme E.C. Krzyszczyk P. Freeman J.W. Berthiaume F. Hypoxia impairs mesenchymal stromal cell-induced macrophage M1 to M2 transition. Technology (Singap.) 2017 5 2 81 86 10.1142/S2339547817500042 29552603
    [Google Scholar]
  30. Ni J. Liu X. Yin Y. Zhang P. Xu Y.W. Liu Z. Exosomes derived from TIMP2-modified human umbilical cord mesenchymal stem cells enhance the repair effect in rat model with myocardial infarction possibly by the Akt/ SFRP2 pathway. Oxid. Med. Cell. Longev. 2019 2019 1 19 10.1155/2019/1958941 31182988
    [Google Scholar]
  31. Kuroda K. Kabata T. Hayashi K. Maeda T. Kajino Y. Iwai S. Fujita K. Hasegawa K. Inoue D. Sugimoto N. Tsuchiya H. The paracrine effect of adipose-derived stem cells inhibits osteoarthritis progression. BMC Musculoskelet. Disord. 2015 16 1 236 10.1186/s12891‑015‑0701‑4 26336958
    [Google Scholar]
  32. Duffy M.M. Pindjakova J. Hanley S.A. McCarthy C. Weidhofer G.A. Sweeney E.M. English K. Shaw G. Murphy J.M. Barry F.P. Mahon B.P. Belton O. Ceredig R. Griffin M.D. Mesenchymal stem cell inhibition of T‐helper 17 cell‐ differentiation is triggered by cell–cell contact and mediated by prostaglandin E2 via the EP4 receptor. Eur. J. Immunol. 2011 41 10 2840 2851 10.1002/eji.201141499 21710489
    [Google Scholar]
  33. Pers Y.M. Ruiz M. Noël D. Jorgensen C. Mesenchymal stem cells for the management of inflammation in osteoarthritis: State of the art and perspectives. Osteoarthritis Cartilage 2015 23 11 2027 2035 10.1016/j.joca.2015.07.004 26521749
    [Google Scholar]
  34. Wang S. Zhu R. Li H. Li J. Han Q. Zhao R.C. Mesenchymal stem cells and immune disorders: From basic science to clinical transition. Front. Med. 2018 30062557
    [Google Scholar]
  35. Kim J. Hematti P. Mesenchymal stem cell-educated macrophages: A novel type of alternatively activated macrophages. Exp. Hematol. 2009 37 12 1445 1453 10.1016/j.exphem.2009.09.004 19772890
    [Google Scholar]
  36. Jo C.H. Lee Y.G. Shin W.H. Kim H. Chai J.W. Jeong E.C. Kim J.E. Shim H. Shin J.S. Shin I.S. Ra J.C. Oh S. Yoon K.S. Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: A proof-of-concept clinical trial. Stem Cells 2014 32 5 1254 1266 10.1002/stem.1634 24449146
    [Google Scholar]
  37. Wu M.C. Meng Q.H. Current understanding of mesenchymal stem cells in liver diseases. World J. Stem Cells 2021 13 9 1349 1359 10.4252/wjsc.v13.i9.1349 34630867
    [Google Scholar]
  38. Rodríguez-Fuentes D.E. Fernández-Garza L.E. Samia-Meza J.A. Barrera-Barrera S.A. Caplan A.I. Barrera-Saldaña H.A. Mesenchymal stem cells current clinical applications: A systematic review. Arch. Med. Res. 2021 52 1 93 101 10.1016/j.arcmed.2020.08.006 32977984
    [Google Scholar]
  39. Zhang Q. Liu J. Duan H. Li R. Peng W. Wu C. Activation of Nrf2/HO-1 signaling: An important molecular mechanism of herbal medicine in the treatment of atherosclerosis via the protection of vascular endothelial cells from oxidative stress. J. Adv. Res. 2021 34 43 63 10.1016/j.jare.2021.06.023 35024180
    [Google Scholar]
  40. Mansouri A. Reiner Ž. Ruscica M. Tedeschi-Reiner E. Radbakhsh S. Bagheri Ekta M. Sahebkar A. Antioxidant effects of statins by modulating Nrf2 and Nrf2/HO-1 signaling in different diseases. J. Clin. Med. 2022 11 5 1313 10.3390/jcm11051313 35268403
    [Google Scholar]
  41. Su C.J. Zhang J.T. Zhao F.L. Xu D.L. Pan J. Liu T. Resolvin D1/N-formyl peptide receptor 2 ameliorates paclitaxel-induced neuropathic pain through the activation of IL-10/Nrf2/HO-1 pathway in mice. Front. Immunol. 2023 14 1091753 10.3389/fimmu.2023.1091753 36993950
    [Google Scholar]
  42. Mohammadzadeh M. Halabian R. Gharehbaghian A. Amirizadeh N. Jahanian-Najafabadi A. Roushandeh A.M. Roudkenar M.H. Nrf-2 overexpression in mesenchymal stem cells reduces oxidative stress-induced apoptosis and cytotoxicity. Cell Stress Chaperones 2012 17 5 553 565 10.1007/s12192‑012‑0331‑9 22362068
    [Google Scholar]
  43. Szekanecz Z. Halloran M.M. Volin M.V. Woods J.M. Strieter R.M. Haines G.K. Kunkel S.L. Burdick M.D. Koch A.E. Temporal expression of inflammatory cytokines and chemokines in rat adjuvant‐induced arthritis. Arthritis Rheum. 2000 43 6 1266 1277 10.1002/1529‑0131(200006)43:6<1266::AID‑ANR9>3.0.CO;2‑P 10857785
    [Google Scholar]
  44. Akiyama K. Chen C. Wang D. Xu X. Qu C. Yamaza T. Cai T. Chen W. Sun L. Shi S. Mesenchymal-stem-cell-induced immunoregulation involves FAS-ligand-/FAS-mediated T cell apoptosis. Cell Stem Cell 2012 10 5 544 555 10.1016/j.stem.2012.03.007 22542159
    [Google Scholar]
  45. Zhang R. Ma J. Han J. Zhang W. Ma J. Mesenchymal stem cell related therapies for cartilage lesions and osteoarthritis. Am. J. Transl. Res. 2019 11 10 6275 6289 31737182
    [Google Scholar]
  46. Song Y. Zhang J. Xu H. Lin Z. Chang H. Liu W. Kong L. Mesenchymal stem cells in knee osteoarthritis treatment: A systematic review and meta-analysis. J. Orthop. Translat. 2020 24 121 130 10.1016/j.jot.2020.03.015 32913710
    [Google Scholar]
  47. Cetin Z. Saygili E.I. Görgisen G. Sokullu E. Preclinical experimental applications of miRNA loaded BMSC extracellular vesicles. Stem Cell Rev. Rep. 2021 17 2 471 501 10.1007/s12015‑020‑10082‑x 33398717
    [Google Scholar]
  48. Thapa R. Moglad E. Goyal A. Bhat A.A. Almalki W.H. Kazmi I. Alzarea S.I. Ali H. Oliver B.G. MacLoughlin R. Dureja H. Singh S.K. Dua K. Gupta G. Deciphering NF-kappaB pathways in smoking-related lung carcinogenesis. EXCLI J. 2024 23 991 1017 39253534
    [Google Scholar]
  49. Hussain M.S. Altamimi A.S.A. Afzal M. Almalki W.H. Kazmi I. Alzarea S.I. Gupta G. Shahwan M. Kukreti N. Wong L.S. Kumarasamy V. Subramaniyan V. Kaempferol: Paving the path for advanced treatments in aging-related diseases. Exp. Gerontol. 2024 188 112389 10.1016/j.exger.2024.112389 38432575
    [Google Scholar]
  50. Jimbo S. Terashima Y. Takebayashi T. Teramoto A. Ogon I. A novel rat model of ankle osteoarthritis induced by the application of monoiodoacetate. Br. J. Med. Med. Res. 2017 6 260 2
    [Google Scholar]
  51. Pittenger M.F. Mackay A.M. Beck S.C. Jaiswal R.K. Douglas R. Mosca J.D. Moorman M.A. Simonetti D.W. Craig S. Marshak D.R. Multilineage potential of adult human mesenchymal stem cells. Science 1999 284 5411 143 147 10.1126/science.284.5411.143 10102814
    [Google Scholar]
  52. Aggarwal S. Pittenger M.F. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005 105 4 1815 1822 10.1182/blood‑2004‑04‑1559 15494428
    [Google Scholar]
  53. Chaudhary J.K. Rath P.C. A simple method for isolation, propagation, characterization, and differentiation of adult mouse bone marrow-derived multipotent mesenchymal stem cells. J. Cell Sci. Ther. 2017 8 261
    [Google Scholar]
  54. Ahmed E.A. Ahmed O.M. Fahim H.I. Combinatory effects of bone marrow-derived mesenchymal stem cells and in-domethacin on adjuvant-induced arthritis in Wistar rats: roles of IL-1β, IL-4, Nrf-2, and oxidative stress. J. Evid. Based Complementary Altern. Med. 2021 a 2021a 8899143
    [Google Scholar]
  55. Ahmed O.M. Ebaid H. El-Nahass E.S. Ragab M. Alhazza I.M. Nephroprotective effect of pleurotus ostreatus and agaricus bisporus extracts and carvedilol on ethylene glycol-induced urolithiasis: Roles of NF-κB, p53, bcl-2, bax and bak. Biomolecules 2020 10 9 1317 10.3390/biom10091317 32937925
    [Google Scholar]
  56. Solchaga L.A. Penick K.J. Welter J.F. Chondrogenic differentiation of bone marrow-derived mesenchymal stem cells: Tips and tricks. Methods Mol. Biol. 2011 698 253 278 10.1007/978‑1‑60761‑999‑4_20 21431525
    [Google Scholar]
  57. Kalamegam G. Abbas M. Gari M. Alsehli H. Kadam R. Alkaff M. Chaudhary A. Al-Qahtani M. Abuzenadah A. Kafienah W. Mobasheri A. Pelleted bone marrow derived mesenchymal stem cells are better protected from the deleterious effects of arthroscopic heat shock. Front. Physiol. 2016 7 180 10.3389/fphys.2016.00180 27252654
    [Google Scholar]
  58. Hsieh C.C. Chang C.C. Hsu P.J. Chen L. Yen B.L. Protocol for efficient human MSC chondrogenesis via Wnt antagonism instead of TGF-β. STAR Protoc. 2023 4 4 102728 10.1016/j.xpro.2023.102728 37979177
    [Google Scholar]
  59. van Buul G.M. Siebelt M. Leijs M.J.C. Bos P.K. Waarsing J.H. Kops N. Weinans H. Verhaar J.A.N. Bernsen M.R. van Osch G.J.V.M. Mesenchymal stem cells reduce pain but not degenerative changes in a mono-iodoacetate rat model of osteoarthritis. J. Orthop. Res. 2014 32 9 1167 1174 10.1002/jor.22650 24839120
    [Google Scholar]
  60. Ahmed E.A. Ahmed O.M. Fahim H.I. Ali T.M. Elesawy B.H. Ashour M.B. Potency of bone marrow-derived mesenchymal stem cells and indomethacin in complete Freund’s adjuvant-induced arthritic rats: roles of TNF-α, IL-10, iNOS, MMP-9, and TGF-β1. Stem Cells Int. 2021 b 2021 1 11 10.1155/2021/6665601 33884000
    [Google Scholar]
  61. Miale J.B. Laboratory medicine - Haematology. J. R. Coll. Physicians Lond. 1972 6 4 380 385 5043441
    [Google Scholar]
  62. Garg P. Goyal V. Role of synovial fluid examination in diagnosis of joint diseases. J. Clin. Diagn. Res. 2018 12 7 EC06 EC09
    [Google Scholar]
  63. Suvarna K.S. Layton C. Bancroft J.D. Bancroft’s Theory and Practice of Histological Techniques E-Book London, UK Elsevier 2017
    [Google Scholar]
  64. Sancho D. Gómez M. Viedma F. Esplugues E. Gordón-Alonso M. Angeles García-López M. de la Fuente H. Martínez-A C. Lauzurica P. Sánchez-Madrid F. CD69 downregulates autoimmune reactivity through active transforming growth factor-β production in collagen-induced arthritis. J. Clin. Invest. 2003 112 6 872 882 10.1172/JCI200319112 12975472
    [Google Scholar]
  65. Gözel N. Çakirer M. Karataş A. Tuzcu M. Özdemir F.A. Dağli A.F. Şahin K. Koca S.S. Sorafenib reveals antiarthritic potentials in collagen induced experimental arthritis model. Arch. Rheumatol. 2018 33 3 309 315 10.5606/ArchRheumatol.2018.6652 30632530
    [Google Scholar]
  66. Liu G. Wu R. Yang B. Shi Y. Deng C. Atala A. Zhang Y. A cocktail of growth factors released from a heparin hyaluron-ic-acid hydrogel promotes the myogenic potential of human urine-derived stem cells in vivo. Acta Biomater. 2020
    [Google Scholar]
  67. Mustonen A.M. Nieminen P. Extracellular vesicles and their potential significance in the pathogenesis and treatment of osteoarthritis. Pharmaceuticals (Basel) 2021 14 4 315 10.3390/ph14040315 33915903
    [Google Scholar]
  68. Wu X. Wang Y. Xiao Y. Crawford R. Mao X. Prasadam I. Extracellular vesicles: Potential role in osteoarthritis regenerative medicine. J. Orthop. Translat. 2020 21 73 80 10.1016/j.jot.2019.10.012 32099807
    [Google Scholar]
  69. Ahmed O.M. Hassan M.A. Saleh A.S. Combinatory effect of hesperetin and mesenchymal stem cells on the deteriorated lipid profile, heart and kidney functions and antioxidant activity in STZ-induced diabetic rats. Biocell 2020 44 1 27 29 10.32604/biocell.2020.08040
    [Google Scholar]
  70. Ahmed O.M. Ashour M.B. Fahim H.I. Ahmed N.A. The role of Th1/Th2/Th17 cytokines and antioxidant defense system in mediating the effects of lemon and grapefruit peel hydroethanolic extracts on adjuvant-induced arthritis in rats. J. Appl. Pharm. Sci. 2018 8 10 69 81 10.7324/JAPS.2018.81010
    [Google Scholar]
  71. Liang Z. Zhang G. Gan G. Naren D. Liu X. Liu H. Mo J. Lu S. Nie D. Ma L. Preclinical short-term and long-term safety of human bone marrow mesenchymal stem cells. Cell Transplant. 2023 32 09636897231213271 10.1177/09636897231213271 38059278
    [Google Scholar]
  72. Jimbo S. Terashima Y. Teramoto A. Takebayashi T. Ogon I. Watanabe K. Sato T. Ichise N. Tohse N. Yamashita T. Antinociceptive effects of hyaluronic acid on monoiodoacetate-induced ankle osteoarthritis in rats. J. Pain Res. 2019 12 191 200 10.2147/JPR.S186413 30655688
    [Google Scholar]
  73. South S. Crabtree K. Vijayagopal P. Averitt D. Juma S. Dose dependent effects of whole blueberry on cartilage health and pain in a monosodium iodoacetate (MIA) induced rat model of osteoarthritis. Curr. Dev. Nutr. 2020 4 2 nzaa045_110 10.1093/cdn/nzaa045_110
    [Google Scholar]
  74. Im H.J. Kim J.S. Li X. Kotwal N. Sumner D.R. van Wijnen A.J. Davis F.J. Yan D. Levine B. Henry J.L. Desevré J. Kroin J.S. Alteration of sensory neurons and spinal response to an experimental osteoarthritis pain model. Arthritis Rheum. 2010 62 10 2995 3005 10.1002/art.27608 20556813
    [Google Scholar]
  75. Ferreira-Gomes J. Adães S. Sousa R.M. Mendonça M. Castro-Lopes J.M. Dose-dependent expression of neuronal injury markers during experimental osteoarthritis induced by monoiodoacetate in the rat. Mol. Pain 2012 8 1744-8069-8-50 10.1186/1744‑8069‑8‑50 22769424
    [Google Scholar]
  76. Moon S.J. Jeong J.H. Jhun J.Y. Yang E.J. Min J.K. Choi J.Y. Cho M.L. Ursodeoxycholic acid ameliorates pain severity and cartilage degeneration in monosodium iodoacetate-induced osteoarthritis in rats. Immune Netw. 2014 14 1 45 53 10.4110/in.2014.14.1.45 24605080
    [Google Scholar]
  77. Naveen S.V. Ahmad R.E. Hui W.J. Suhaeb A.M. Murali M.R. Shanmugam R. Kamarul T. Histology, glycosaminoglycan level and cartilage stiffness in monoiodoacetate-induced osteoarthritis: Comparative analysis with anterior cruciate ligament transection in rat model and human osteoarthritis. Int. J. Med. Sci. 2014 11 1 97 105 10.7150/ijms.6964 24396291
    [Google Scholar]
  78. Chen D. Shen J. Zhao W. Wang T. Han L. Hamilton J.L. Im H.J. Osteoarthritis: Toward a comprehensive understanding of pathological mechanism. Bone Res. 2017 5 1 16044 10.1038/boneres.2016.44 28149655
    [Google Scholar]
  79. Cottom J.M. Maker J.M. Cartilage allograft techniques and materials. Clin. Podiatr. Med. Surg. 2015 32 1 93 98 10.1016/j.cpm.2014.09.012 25440420
    [Google Scholar]
  80. Pinal P. Dharmik P. Natvarlal P. Experimental investigation of anti-rheumatoid activity of Pleurotus sajorcaju in adjuvant-induced arthritic rats. Chin. J. Nat. Med. 2012 10 4 269 274 [i]. 10.3724/SP.J.1009.2012.00269
    [Google Scholar]
  81. Franch A. Castellote C. Castell M. Blood lymphocyte subsets in rats with adjuvant arthritis. Ann. Rheum. Dis. 1994 53 7 461 466 10.1136/ard.53.7.461 7944619
    [Google Scholar]
  82. Bahtiar A. Nurazizah M. Roselina T. Tambunan A.P. Arsianti A. Ethanolic extracts of babandotan leaves (Ageratum conyzoides L.) prevents inflammation and proteoglycan degradation by inhibiting TNF-α and MMP-9 on osteoarthritis rats induced by monosodium iodoacetate. Asian Pac. J. Trop. Med. 2017 10 3 270 277 10.1016/j.apjtm.2017.03.006 28442110
    [Google Scholar]
  83. Tatiya A.U. Saluja A.K. Further studies on membrane stabilizing, anti-inflammatory and FCA induced arthritic activity of various fractions of bark of Machilus macrantha in rats. Rev. Bras. Farmacogn. 2011 21 6 1052 1064 10.1590/S0102‑695X2011005000152
    [Google Scholar]
  84. Devi S.M. Balach V. Sasikala K. Manikantan P. Arun M. Krishnan B.B. Sudha S. Elevated rheumatoid factor (RF) from peripheral blood of patients with rheumatoid arthritis (RA) has altered chromosomes in Coimbatore population. South India. J. Clin. Med. Res. 2010 2 167 174
    [Google Scholar]
  85. Slaughter L. Carson D.A. Jensen F.C. Holbrook T.L. Vaughan J.H. In vitro effects of Epstein-Barr virus on peripheral blood mononuclear cells from patients with rheumatoid arthritis and normal subjects. J. Exp. Med. 1978 148 5 1429 1434 10.1084/jem.148.5.1429 214511
    [Google Scholar]
  86. Gad S.S. Fayez A.M. Abdelaziz M. Abou El-ezz D. Amelioration of autoimmunity and inflammation by zinc oxide nanoparticles in experimental rheumatoid arthritis. Naunyn Schmiedebergs Arch. Pharmacol. 2021 394 9 1975 1981 10.1007/s00210‑021‑02105‑2 34236500
    [Google Scholar]
  87. van Delft M.A.M. Huizinga T.W.J. An overview of autoantibodies in rheumatoid arthritis. J. Autoimmun. 2020 110 102392 10.1016/j.jaut.2019.102392 31911013
    [Google Scholar]
  88. Robinson W.H. Lepus C.M. Wang Q. Raghu H. Mao R. Lindstrom T.M. Sokolove J. Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nat. Rev. Rheumatol. 2016 12 10 580 592 10.1038/nrrheum.2016.136 27539668
    [Google Scholar]
  89. Richards M.M. Maxwell J.S. Weng L. Angelos M.G. Golzarian J. Intra-articular treatment of knee osteoarthritis: From anti-inflammatories to products of regenerative medicine. Phys. Sportsmed. 2016 44 2 101 108 10.1080/00913847.2016.1168272 26985986
    [Google Scholar]
  90. Gray A. Marrero-Berrios I. Weinberg J. Manchikalapati D. SchianodiCola J. Schloss R.S. Yarmush J. The effect of local anesthetic on pro-inflammatory macrophage modulation by mesenchymal stromal cells. Int. Immunopharmacol. 2016 33 48 54 10.1016/j.intimp.2016.01.019 26854576
    [Google Scholar]
  91. Yi T. Song S.U. Immunomodulatory properties of mesenchymal stem cells and their therapeutic applications. Arch. Pharm. Res. 2012 35 2 213 221 10.1007/s12272‑012‑0202‑z 22370776
    [Google Scholar]
  92. Al Faqeh H. Nor Hamdan B.M.Y. Chen H.C. Aminuddin B.S. Ruszymah B.H.I. The potential of intra-articular injection of chondrogenic-induced bone marrow stem cells to retard the progression of osteoarthritis in a sheep model. Exp. Gerontol. 2012 47 6 458 464 10.1016/j.exger.2012.03.018 22759409
    [Google Scholar]
  93. ElBatsh M.M. Eledel R. Noreldin R.I. Effect of intra-articular injection of chondrocytes differentiated from mesenchymal stem cells in monosodium iodoacetate induced osteoarthritis in male rats. 41 2 144 156 2020 10.21608/besps.2020.29649.1059
    [Google Scholar]
  94. Nam Y. Rim Y.A. Jung S.M. Ju J.H. Cord blood cell-derived iPSCs as a new candidate for chondrogenic differentiation and cartilage regeneration. Stem Cell Res. Ther. 2017 8 1 16 10.1186/s13287‑017‑0477‑6 28129782
    [Google Scholar]
  95. Farrugia M. Baron B. The role of TNF-α in rheumatoid arthritis: A focus on regulatory T cells. J. Clin. Transl. Res. 2016 2 3 84 90 10.18053/jctres.02.201603.005 30873466
    [Google Scholar]
  96. Ragab G.H. Halfaya F.M. Ahmed O.M. Abou El-Kheir W. Mahdi E.A. Ali T.M. Almehmadi M.M. Hagag U. Platelet-rich plasma ameliorates monosodium iodoacetate-induced ankle osteoarthritis in the rat model via suppression of inflammation and oxidative stress. Evid. Based Complement. Alternat. Med. 2021 2021 1 13 10.1155/2021/6692432 33531920
    [Google Scholar]
  97. Abo-Aziza F.A.M. Zaki A.K.A. Abo El-Maaty A.M. Bone marrow-derived mesenchymal stem cell (BM-MSC): A tool of cell therapy in hydatid experimentally infected rats. Cell Regen. (Lond.) 2019 8 2 58 71 10.1016/j.cr.2019.11.001 31844519
    [Google Scholar]
  98. Fan M-P. Si M. Li B-J. Hu G.H. Hou Y. Yang W. Liu L. Tang B. Nie L. Cell therapy of a knee osteoarthritis rat model using precartilaginous stem cells. Eur. Rev. Med. Pharmacol. Sci. 2018 22 7 2119 2125 29687871
    [Google Scholar]
  99. Kondo M. Yamaoka K. Tanaka Y. Acquiring chondrocyte phenotype from human mesenchymal stem cells under inflammatory conditions. Int. J. Mol. Sci. 2014 15 11 21270 21285 10.3390/ijms151121270 25407530
    [Google Scholar]
  100. Hoogduijn M.J. Popp F. Verbeek R. Masoodi M. Nicolaou A. Baan C. Dahlke M.H. The immunomodulatory properties of mesenchymal stem cells and their use for immunotherapy. Int. Immunopharmacol. 2010 10 12 1496 1500 10.1016/j.intimp.2010.06.019 20619384
    [Google Scholar]
  101. Li F. Li X. Liu G. Gao C. Li X. Bone marrow mesenchymal stem cells decrease the expression of RANKL in collagen-induced arthritis rats via reducing the levels of IL-22. J. Immunol. Res. 2019 2019 1 9 10.1155/2019/8459281 31828174
    [Google Scholar]
  102. Park K.H. Mun C.H. Kang M.I. Lee S.W. Lee S.K. Park Y.B. Treatment of collagen-induced arthritis using immune modulatory properties of human mesenchymal stem cells. Cell Transplant. 2016 25 6 1057 1072 10.3727/096368915X687949 25853338
    [Google Scholar]
  103. Chang Y.H. Wu K.C. Ding D.C. Induced pluripotent stem cell-differentiated chondrocytes repair cartilage defect in a rabbit osteoarthritis model. Stem Cells Int. 2020 2020 1 16 10.1155/2020/8867349 33224204
    [Google Scholar]
  104. Yamada E.F. Salgueiro A.F. Goulart A.S. Mendes V.P. Anjos B.L. Folmer V. da Silva M.D. Evaluation of monosodium iodoacetate dosage to induce knee osteoarthritis: Relation with oxidative stress and pain. Int. J. Rheum. Dis. 2019 22 3 399 410 10.1111/1756‑185X.13450 30585422
    [Google Scholar]
  105. Halfaya F.M. Ragab G.H. Hagag U. Ahmed O.M. Elkheir W.A. Efficacy of hyaluronic acid in the treatment of MIA-induced ankle osteoarthritis in rats and its effect on antioxidant response element. J Vet Med Res. 2020 27 2 10.21608/jvmr.2020.34766.1020
    [Google Scholar]
  106. Ansari M.Y. Ahmad N. Haqqi T.M. Oxidative stress and inflammation in osteoarthritis pathogenesis: Role of polyphenols. Biomed. Pharmacother. 2020 129 110452 10.1016/j.biopha.2020.110452 32768946
    [Google Scholar]
  107. Pathak N.N. Balaganur V. Lingaraju M.C. Effect of atorvastatin, a HMG-CoA reductase inhibitor in monosodium iodoacetate-induced osteoarthritic pain: Implication for osteoarthritis therapy. Pharmacol. Rep. 67 3 513 519 2014 10.1016/j.pharep.2014.12.005
    [Google Scholar]
  108. Zahan O.M. Serban O. Gherman C. Fodor D. The evaluation of oxidative stress in osteoarthritis. Med. Pharm. Rep. 2020 93 1 12 22 10.15386/mpr‑1422 32133442
    [Google Scholar]
  109. Vaillancourt F. Fahmi H. Shi Q. Lavigne P. Ranger P. Fernandes J.C. Benderdour M. 4-Hydroxynonenal induces apoptosis in human osteoarthritic chondrocytes: The protective role of glutathione-S-transferase. Arthritis Res. Ther. 2008 10 5 R107 10.1186/ar2503 18782442
    [Google Scholar]
  110. Nejad-Moghaddam A. Ajdari S. Tahmasbpour E. Goodarzi H. Panahi Y. Ghanei M. Adipose-derived mesenchymal stem cells for treatmentof airway injuries in a patient after long-term exposure to sulfur mustard. Cell J. 2017 19 1 117 126 28367422
    [Google Scholar]
  111. Bhakkiyalakshmi E. Sireesh D. Ramkumar K.M. Chapter 12 - Redox sensitive transcription via Nrf2-Keap1 in suppression of inflammation. Immunity and Inflammation in Health and Disease Academic Press 2018 149 161 10.1016/B978‑0‑12‑805417‑8.00012‑3
    [Google Scholar]
  112. Su H. Wang Z. Zhou L. Liu D. Zhang N. Regulation of the Nrf2/HO-1 axis by mesenchymal stem cells-derived extracellular vesicles: Implications for disease treatment. Front. Cell Dev. Biol. 2024 12 1397954 10.1016/B978‑0‑12‑805417‑8.00012‑3
    [Google Scholar]
  113. Ghareghomi S. Moosavi-Movahedi F. Saso L. Habibi-Rezaei M. Khatibi A. Hong J. Moosavi-Movahedi A.A. Modulation of Nrf2/HO-1 by natural compounds in lung cancer. Antioxidants (Basel) 2023 12 3 735 10.3390/antiox12030735 36978983
    [Google Scholar]
  114. Lal R. Dhaliwal J. Dhaliwal N. Dharavath R.N. Chopra K. Activation of the Nrf2/HO-1 signaling pathway by dimethyl fumarate ameliorates complete Freund’s adjuvant-induced arthritis in rats. Eur. J. Pharmacol. 2021 899 174044 10.1016/j.ejphar.2021.174044 33745959
    [Google Scholar]
  115. Wang X. Ye L. Zhang K. Gao L. Xiao J. Zhang Y. Upregulation of microRNA‐200a in bone marrow mesenchymal stem cells enhances the repair of spinal cord injury in rats by reducing oxidative stress and regulating Keap1/Nrf2 pathway. Artif. Organs 2020 44 7 744 752 10.1111/aor.13656 31995644
    [Google Scholar]
  116. Deshmane S.L. Kremlev S. Amini S. Sawaya B.E. Monocyte chemoattractant protein-1 (MCP-1): An overview. J. Interferon Cytokine Res. 2009 29 6 313 326 10.1089/jir.2008.0027 19441883
    [Google Scholar]
  117. Haikal S.M. Abdeltawab N.F. Rashed L.A. Abd El-Galil T.I. Elmalt H.A. Amin M.A. Combination therapy of mesenchymal stromal cells and interleukin-4 attenuates rheumatoid arthritis in a collagen-induced murine model. Cells 2019 8 8 823 10.3390/cells8080823 31382595
    [Google Scholar]
  118. Ängeby Möller K. Klein S. Seeliger F. Finn A. Stenfors C. Svensson C.I. Monosodium iodoacetate-induced monoarthritis develops differently in knee versus ankle joint in rats. Neurobiol. Pain 2019 6 100036 10.1016/j.ynpai.2019.100036 31535058
    [Google Scholar]
  119. Finn A. Ängeby Möller K. Gustafsson C. Abdelmoaty S. Nordahl G. Ferm M. Svensson C. Influence of model and matrix on cytokine profile in rat and human. Rheumatology (Oxford) 2014 53 12 2297 2305 10.1093/rheumatology/keu281 25065008
    [Google Scholar]
  120. Zhou B. Yuan J. Zhou Y. Ghawji M. Deng Y.P. Lee A.J. Lee A.J. Nair U. Kang A.H. Brand D.D. Yoo T.J. Administering human adipose-derived mesenchymal stem cells to prevent and treat experimental arthritis. Clin. Immunol. 2011 141 3 328 337 10.1016/j.clim.2011.08.014 21944669
    [Google Scholar]
  121. Uccelli A. Moretta L. Pistoia V. Mesenchymal stem cells in health and disease. Nat. Rev. Immunol. 2008 8 9 726 736 10.1038/nri2395 19172693
    [Google Scholar]
  122. Shi Y. Su J. Roberts A.I. Shou P. Rabson A.B. Ren G. How mesenchymal stem cells interact with tissue immune responses. Trends Immunol. 2012 33 3 136 143 10.1016/j.it.2011.11.004 22227317
    [Google Scholar]
  123. Suzuki K. Chosa N. Sawada S. Takizawa N. Yaegashi T. Ishisaki A. Enhancement of anti‐inflammatory and osteogenic abilities of mesenchymal stem cells via cell‐to‐cell adhesion to periodontal ligament‐derived fibroblasts. Stem Cells Int. 2017 2017 3296498 10.1155/2017/3296498 28167967
    [Google Scholar]
  124. Park H.J. Lee C.K. Song S.H. Yun J.H. Lee A. Park H.J. Highly bioavailable curcumin powder suppresses articular cartilage damage in rats with mono-iodoacetate (MIA)-induced osteoarthritis. Food Sci. Biotechnol. 2020 29 2 251 263 10.1007/s10068‑019‑00679‑5 32064134
    [Google Scholar]
  125. Moqbel S.A.A. He Y. Xu L. Ma C. Ran J. Xu K. Wu L. Rat chondrocyte inflammation and osteoarthritis are ameliorated by madecassoside. Oxid. Med. Cell Longev. 2020 2020 7540197 10.1155/2020/7540197
    [Google Scholar]
  126. Pap T. Müller-Ladner U. Gay R.E. Gay S. Fibroblast biology. Role of synovial fibroblasts in the pathogenesis of rheumatoid arthritis. Arthritis Res. 2000 2 5 361 367 10.1186/ar113 11094449
    [Google Scholar]
  127. Tak P.P. Bresnihan B. The pathogenesis and prevention of joint damage in rheumatoid arthritis: Advances from synovial biopsy and tissue analysis. Arthritis Rheum. 2000 43 12 2619 2633 10.1002/1529‑0131(200012)43:12<2619::AID‑ANR1>3.0.CO;2‑V 11145019
    [Google Scholar]
  128. Singh A. Goel S.C. Gupta K.K. Kumar M. Arun G.R. Patil H. Kumaraswamy V. Jha S. The role of stem cells in osteoarthri-tis: An experimental study in rabbits. Bone Joint 2013 3 32 37 10.1302/2046‑3758.32.2000187
    [Google Scholar]
  129. Greish S. Abogresha N. Abdel-Hady Z. Zakaria E. Ghaly M. Hefny M. Human umbilical cord mesenchymal stem cells as treatment of adjuvant rheumatoid arthritis in a rat model. World J. Stem Cells 2012 4 10 101 109 10.4252/wjsc.v4.i10.101 23189211
    [Google Scholar]
  130. Augello A. Kurth T. De Bari S. Eur. Cell Mater. Mesenchymal stem cells: A perspective from in vitro cultures to in vivo migration and niches. 20 121 133 2010 10.22203/eCM.v020a11
    [Google Scholar]
  131. Kuyinu E.L. Narayanan G. Nair L.S. Laurencin C.T. Animal models of osteoarthritis: Classification, update, and measurement of outcomes. J. Orthop. Surg. Res. 2016 11 1 19 10.1186/s13018‑016‑0346‑5 26837951
    [Google Scholar]
  132. Ritskes-Hoitinga M. Leenaars C. Beumer W. Coenen-de Roo T. Stafleu F. Meijboom F.L.B. Improving translation by identifying evidence for more human-relevant preclinical strategies. Animals (Basel) 2020 10 7 1170 10.3390/ani10071170 32664195
    [Google Scholar]
  133. Pound P. Ritskes-Hoitinga M. Is it possible to overcome issues of external validity in preclinical animal research? Why most animal models are bound to fail. J. Transl. Med. 2018 16 1 304 10.1186/s12967‑018‑1678‑1 30404629
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X348230241209072307
Loading
/content/journals/cscr/10.2174/011574888X348230241209072307
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test