Skip to content
2000
image of Potential Future Therapeutic Application of Mesenchymal Stem Cell-derived Exosomes in Ulcerative Colitis

Abstract

Exosomes, a subclass of Extracellular Vesicles (EVs), are pivotal mediators of intercellular communication. Exosomes derived from Mesenchymal Stem Cells (MSCs) exhibit anti-inflammatory and immunomodulatory activities similar to that of their parental cells, which makes them a cell-free treatment strategy against Ulcerative Colitis (UC). Engineered MSC Exosomes (MSC-Exos) hold the potential to impart multifunctionality to MSCs and optimize their therapeutic effectiveness. This study provides a comprehensive overview of the research progress, mechanisms of action, and potential applications of MSC-Exos and engineered MSC-Exos in the treatment of UC.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X340609241220053638
2024-12-30
2025-01-22
Loading full text...

Full text loading...

References

  1. Ng S.C. Shi H.Y. Hamidi N. Underwood F.E. Tang W. Benchimol E.I. Panaccione R. Ghosh S. Wu J.C.Y. Chan F.K.L. Sung J.J.Y. Kaplan G.G. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: A systematic review of population-based studies. Lancet 2017 390 10114 2769 2778 10.1016/S0140‑6736(17)32448‑0 29050646
    [Google Scholar]
  2. Feuerstein J.D. Cheifetz A.S. Ulcerative colitis. Mayo Clin. Proc. 2014 89 11 1553 1563 10.1016/j.mayocp.2014.07.002 25199861
    [Google Scholar]
  3. Singh N. Bernstein C.N. Environmental risk factors for inflammatory bowel disease. United Eur. Gastroenterol. J. 2022 10 10 1047 1053 10.1002/ueg2.12319 36262056
    [Google Scholar]
  4. Du L. Ha C. Epidemiology and pathogenesis of ulcerative colitis. Gastroenterol. Clin. North Am. 2020 49 4 643 654 10.1016/j.gtc.2020.07.005 33121686
    [Google Scholar]
  5. Etchevers M.J. Aceituno M. Bosch G.O. Ordás I. Sans M. Ricart E. Panés J. Risk factors and characteristics of extent progression in ulcerative colitis. Inflamm. Bowel Dis. 2009 15 9 1320 1325 10.1002/ibd.20897 19235909
    [Google Scholar]
  6. Ungaro R. Mehandru S. Allen P.B. Biroulet P.L. Colombel J.F. Ulcerative colitis. Lancet 2017 389 10080 1756 1770 10.1016/S0140‑6736(16)32126‑2 27914657
    [Google Scholar]
  7. Kaenkumchorn T. Wahbeh G. Ulcerative colitis. Gastroenterol. Clin. North Am. 2020 49 4 655 669 10.1016/j.gtc.2020.07.001 33121687
    [Google Scholar]
  8. Piovani D. Danese S. Biroulet P.L. Nikolopoulos G.K. Lytras T. Bonovas S. Environmental risk factors for inflammatory bowel diseases: An umbrella review of meta-analyses. Gastroenterology 2019 157 3 647 659.e4 10.1053/j.gastro.2019.04.016 31014995
    [Google Scholar]
  9. Lo C.H. Lochhead P. Khalili H. Song M. Tabung F.K. Burke K.E. Richter J.M. Giovannucci E.L. Chan A.T. Ananthakrishnan A.N. Dietary inflammatory potential and risk of crohn’s disease and ulcerative colitis. Gastroenterology 2020 159 3 873 883.e1 10.1053/j.gastro.2020.05.011 32389666
    [Google Scholar]
  10. Agrawal M. Jess T. Implications of the changing epidemiology of inflammatory bowel disease in a changing world. United Eur. Gastroenterol. J. 2022 10 10 1113 1120 10.1002/ueg2.12317 36251359
    [Google Scholar]
  11. Zuo T. Lu X.J. Zhang Y. Cheung C.P. Lam S. Zhang F. Tang W. Ching J.Y.L. Zhao R. Chan P.K.S. Sung J.J.Y. Yu J. Chan F.K.L. Cao Q. Sheng J.Q. Ng S.C. Gut mucosal virome alterations in ulcerative colitis. Gut 2019 68 7 1169 1179 10.1136/gutjnl‑2018‑318131 30842211
    [Google Scholar]
  12. Ordás I. Eckmann L. Talamini M. Baumgart D.C. Sandborn W.J. Ulcerative colitis. Lancet 2012 380 9853 1606 1619 10.1016/S0140‑6736(12)60150‑0 22914296
    [Google Scholar]
  13. Geremia A. Biancheri P. Allan P. Corazza G.R. Sabatino D.A. Innate and adaptive immunity in inflammatory bowel disease. Autoimmun. Rev. 2014 13 1 3 10 10.1016/j.autrev.2013.06.004 23774107
    [Google Scholar]
  14. Guan Q. A comprehensive review and update on the pathogenesis of inflammatory bowel disease. J. Immunol. Res. 2019 2019 1 16 10.1155/2019/7247238 31886308
    [Google Scholar]
  15. Duchmann R. Kaiser I. Hermann E. Mayet W. Ewe K. BÜSchenfelde K-H.M.Z. Tolerance exists towards resident intestinal flora but is broken in active inflammatory bowel disease (IBD). Clin. Exp. Immunol. 2008 102 3 448 455 10.1111/j.1365‑2249.1995.tb03836.x 8536356
    [Google Scholar]
  16. Palmela C. Chevarin C. Xu Z. Torres J. Sevrin G. Hirten R. Barnich N. Ng S.C. Colombel J.F. Adherent-invasive Escherichia coli in inflammatory bowel disease. Gut 2018 67 3 574 587 10.1136/gutjnl‑2017‑314903 29141957
    [Google Scholar]
  17. Zhou J. Lai W. Yang W. Pan J. Shen H. Cai Y. Yang C. Ma N. Zhang Y. Zhang R. Xie X. Dong Z. Gao Y. Du C. BLT1 in dendritic cells promotes Th1/Th17 differentiation and its deficiency ameliorates TNBS-induced colitis. Cell. Mol. Immunol. 2018 15 12 1047 1056 10.1038/s41423‑018‑0030‑2 29670278
    [Google Scholar]
  18. Macpherson A.J. Uhr T. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 2004 303 5664 1662 1665 10.1126/science.1091334 15016999
    [Google Scholar]
  19. Kamada N. Hisamatsu T. Okamoto S. Chinen H. Kobayashi T. Sato T. Sakuraba A. Kitazume M.T. Sugita A. Koganei K. Akagawa K.S. Hibi T. Unique CD14 intestinal macrophages contribute to the pathogenesis of Crohn disease via IL-23/IFN-gamma axis. J. Clin. Invest. 2008 118 6 2269 2280 18497880
    [Google Scholar]
  20. Steiner A. Reygaerts T. Pontillo A. Ceccherini I. Moecking J. Moghaddas F. Davidson S. Caroli F. Grossi A. Castro F.F.M. Kalil J. Gohr F.N. Schmidt F.I. Bartok E. Zillinger T. Hartmann G. Geyer M. Gattorno M. Mendonça L.O. Masters S.L. Recessive NLRC4-autoinflammatory disease reveals an ulcerative colitis locus. J. Clin. Immunol. 2022 42 2 325 335 10.1007/s10875‑021‑01175‑4 34783940
    [Google Scholar]
  21. An Y. Zhai Z. Wang X. Ding Y. He L. Li L. Mo Q. Mu C. Xie R. Liu T. Zhong W. Wang B. Cao H. Targeting Desulfovibrio vulgaris flagellin-induced NAIP/NLRC4 inflammasome activation in macrophages attenuates ulcerative colitis. J. Adv. Res. 2023 52 219 232 10.1016/j.jare.2023.08.008 37586642
    [Google Scholar]
  22. Li J. Ma C-M. Di D-L. A narrative review of pyrolysis and its role in ulcerative colitis. Eur. Rev. Med. Pharmacol. Sci. 2022 26 4 1156 1163 35253171
    [Google Scholar]
  23. Raine T. Bonovas S. Burisch J. Kucharzik T. Adamina M. Annese V. Bachmann O. Bettenworth D. Chaparro M. Dochan C.W. Eder P. Ellul P. Fidalgo C. Fiorino G. Gionchetti P. Gisbert J.P. Gordon H. Hedin C. Holubar S. Iacucci M. Karmiris K. Katsanos K. Kopylov U. Lakatos P.L. Lytras T. Lyutakov I. Noor N. Pellino G. Piovani D. Savarino E. Selvaggi F. Verstockt B. Spinelli A. Panis Y. Doherty G. ECCO Guidelines on therapeutics in ulcerative colitis: Medical treatment. J. Crohn’s Colitis 2022 16 1 2 17 10.1093/ecco‑jcc/jjab178 34635919
    [Google Scholar]
  24. Murray A. Nguyen T.M. Parker C.E. Feagan B.G. MacDonald J.K. Oral 5-aminosalicylic acid for induction of remission in ulcerative colitis. Cochrane Database Syst. Rev. 2020 8 8 CD000543 32786164
    [Google Scholar]
  25. Ko C.W. Singh S. Feuerstein J.D. Ytter F.C. Ytter F.Y. Cross R.K. Crockett S. Ytter F.Y. Feuerstein J. Flamm S. Inadomi J. Ko C. Muniraj T. O’Shea R. Pandolfino J. Patel A. Sharaf R. Siddique S. Su G. Wang K. Weizman A. AGA Clinical practice guidelines on the management of mild-to-moderate ulcerative colitis. Gastroenterology 2019 156 3 748 764 10.1053/j.gastro.2018.12.009 30576644
    [Google Scholar]
  26. Berre L.C. Honap S. Biroulet P.L. Ulcerative colitis. Lancet 2023 402 10401 571 584 10.1016/S0140‑6736(23)00966‑2 37573077
    [Google Scholar]
  27. Vanga R. Long M.D. Contemporary management of ulcerative colitis. Curr. Gastroenterol. Rep. 2018 20 3 12 10.1007/s11894‑018‑0622‑0 29589185
    [Google Scholar]
  28. Kucharzik T. Koletzko S. Kannengiesser K. Dignass A. Ulcerative colitis-diagnostic and therapeutic algorithms. Dtsch. Arztebl. Int. 2020 117 33-34 564 574 33148393
    [Google Scholar]
  29. Rawla P. Sunkara T. Barsouk A. Epidemiology of colorectal cancer: Incidence, mortality, survival, and risk factors. Prz. Gastroenterol. 2019 14 2 89 103 10.5114/pg.2018.81072 31616522
    [Google Scholar]
  30. Nielsen O.H. Hammerhøj A. Ainsworth M.A. Gubatan J. D’Haens G. Immunogenicity of therapeutic antibodies used for inflammatory bowel disease: Treatment and clinical considerations. Drugs 2024 2024 1 19 10.1007/s40265‑024‑02115‑3 39532820
    [Google Scholar]
  31. Kim K.H. Morente B.G. Cuende N. Santiago A.S. Mesenchymal stromal cells: Properties and role in management of cutaneous diseases. J. Eur. Acad. Dermatol. Venereol. 2017 31 3 414 423 10.1111/jdv.13934 27549663
    [Google Scholar]
  32. Ricart E. Amezaga J.A. Ordás I. Pinó S. Ramírez A. Panés J. Cell therapies for IBD: What works? Curr. Drug Targets 2013 14 12 1453 1459 10.2174/13894501113146660234 24160439
    [Google Scholar]
  33. Kang J. Zhang L. Luo X. Ma X. Wang G. Yang Y. Yan Y. Qian H. Zhang X. Xu W. Mao F. Systematic exposition of mesenchymal stem cell for inflammatory bowel disease and its associated colorectal cancer. BioMed Res. Int. 2018 2018 1 16 10.1155/2018/9652817 30687760
    [Google Scholar]
  34. Urbanelli L. Buratta S. Sagini K. Ferrara G. Lanni M. Emiliani C. Exosome-based strategies for diagnosis and therapy. Recent Patents CNS Drug Discov. 2015 10 1 10 27 10.2174/1574889810666150702124059 26133463
    [Google Scholar]
  35. Deatherage B.L. Cookson B.T. Membrane vesicle release in bacteria, eukaryotes, and archaea: A conserved yet underappreciated aspect of microbial life. Infect. Immun. 2012 80 6 1948 1957 10.1128/IAI.06014‑11 22409932
    [Google Scholar]
  36. Jafari D. Malih S. Eslami S.S. Jafari R. Darzi L. Tarighi P. Samadikuchaksaraei A. The relationship between molecular content of mesenchymal stem cells derived exosomes and their potentials: Opening the way for exosomes based therapeutics. Biochimie 2019 165 76 89 10.1016/j.biochi.2019.07.009 31302163
    [Google Scholar]
  37. Barile L. Vassalli G. Exosomes: Therapy delivery tools and biomarkers of diseases. Pharmacol. Ther. 2017 174 63 78 10.1016/j.pharmthera.2017.02.020 28202367
    [Google Scholar]
  38. Mushahary D. Spittler A. Kasper C. Weber V. Charwat V. Isolation, cultivation, and characterization of human mesenchymal stem cells. Cytometry A 2018 93 1 19 31 10.1002/cyto.a.23242 29072818
    [Google Scholar]
  39. Chiesa S. Morbelli S. Morando S. Massollo M. Marini C. Bertoni A. Frassoni F. Bartolomé S.T. Sambuceti G. Traggiai E. Uccelli A. Mesenchymal stem cells impair in vivo T-cell priming by dendritic cells. Proc. Natl. Acad. Sci. 2011 108 42 17384 17389 10.1073/pnas.1103650108 21960443
    [Google Scholar]
  40. Giuliani M. Fleury M. Vernochet A. Ketroussi F. Clay D. Azzarone B. Lataillade J.J. Durrbach A. Long-lasting inhibitory effects of fetal liver mesenchymal stem cells on T-lymphocyte proliferation. PLoS One 2011 6 5 e19988 10.1371/journal.pone.0019988 21625521
    [Google Scholar]
  41. Sheng H. Wang Y. Jin Y. Zhang Q. Zhang Y. Wang L. Shen B. Yin S. Liu W. Cui L. Li N. A critical role of IFNγ in priming MSC-mediated suppression of T cell proliferation through up-regulation of B7-H1. Cell Res. 2008 18 8 846 857 10.1038/cr.2008.80 18607390
    [Google Scholar]
  42. Chang C.J. Yen M.L. Chen Y.C. Chien C.C. Huang H.I. Bai C.H. Yen B.L. Placenta-derived multipotent cells exhibit immunosuppressive properties that are enhanced in the presence of interferon-gamma. Stem Cells 2006 24 11 2466 2477 10.1634/stemcells.2006‑0071 17071860
    [Google Scholar]
  43. Chen Q.Q. Yan L. Wang C-Z. Wang W-H. Shi H. Su B-B. Zeng Q-H. Du H-T. Wan J. Mesenchymal stem cells alleviate TNBS-induced colitis by modulating inflammatory and autoimmune responses. World J. Gastroenterol. 2013 19 29 4702 4717 10.3748/wjg.v19.i29.4702 23922467
    [Google Scholar]
  44. Guo G. Tan Z. Liu Y. Shi F. She J. The therapeutic potential of stem cell-derived exosomes in the ulcerative colitis and colorectal cancer. Stem Cell Res. Ther. 2022 13 1 138 10.1186/s13287‑022‑02811‑5 35365226
    [Google Scholar]
  45. Pegtel D.M. Gould S.J. Exosomes. Annu. Rev. Biochem. 2019 88 1 487 514 10.1146/annurev‑biochem‑013118‑111902 31220978
    [Google Scholar]
  46. Rezaie J. Feghhi M. Etemadi T. A review on exosomes application in clinical trials: Perspective, questions, and challenges. Cell Commun. Signal. 2022 20 1 145 10.1186/s12964‑022‑00959‑4 36123730
    [Google Scholar]
  47. Lai R.C. Yeo R.W.Y. Lim S.K. Mesenchymal stem cell exosomes. Semin. Cell Dev. Biol. 2015 40 82 88 10.1016/j.semcdb.2015.03.001 25765629
    [Google Scholar]
  48. French K.C. Antonyak M.A. Cerione R.A. Extracellular vesicle docking at the cellular port: Extracellular vesicle binding and uptake. Semin. Cell Dev. Biol. 2017 67 48 55 10.1016/j.semcdb.2017.01.002 28104520
    [Google Scholar]
  49. Kshirsagar S.K. Alam S.M. Jasti S. Hodes H. Nauser T. Gilliam M. Billstrand C. Hunt J.S. Petroff M.G. Immunomodulatory molecules are released from the first trimester and term placenta via exosomes. Placenta 2012 33 12 982 990 10.1016/j.placenta.2012.10.005 23107341
    [Google Scholar]
  50. Shen Z. Huang W. Liu J. Tian J. Wang S. Rui K. Effects of mesenchymal stem cell-derived exosomes on autoimmune diseases. Front. Immunol. 2021 12 749192 10.3389/fimmu.2021.749192 34646275
    [Google Scholar]
  51. Li H. Dai H. Li J. Immunomodulatory properties of mesenchymal stromal/stem cells: The link with metabolism. J. Adv. Res. 2023 45 15 29 10.1016/j.jare.2022.05.012 35659923
    [Google Scholar]
  52. Court A.C. Gatt L.A. Crawford L.P. Parra E. Tobar A.V. Bátiz L.F. Contreras R.A. Ortúzar M.I. Kurte M. Vega E.R. Coutinho M.V. Lagos P.K. Figueroa F.E. Khoury M. Mitochondrial transfer from MSCs to T cells induces Treg differentiation and restricts inflammatory response. EMBO Rep. 2020 21 2 e48052 10.15252/embr.201948052 31984629
    [Google Scholar]
  53. Lopez C.R. Vega E.R. Paredes M.J. Campos L.N. Torres M.J. Tejedor G. Letter V.A.M. Valdés F.A. Pradenas C. Oyarce K. Jorgensen C. Khoury M. Robles G.M.A. Altamirano C. Djouad F. Crawford L.P. HIF1α‐dependent metabolic reprogramming governs mesenchymal stem/stromal cell immunoregulatory functions. FASEB J. 2020 34 6 8250 8264 10.1096/fj.201902232R 32333618
    [Google Scholar]
  54. Grégoire C. Lechanteur C. Briquet A. Baudoux É. Baron F. Louis E. Beguin Y. Review article: Mesenchymal stromal cell therapy for inflammatory bowel diseases. Aliment. Pharmacol. Ther. 2017 45 2 205 221 10.1111/apt.13864 27878827
    [Google Scholar]
  55. Deng C. Zhang H. Li Y. Cheng X. Liu Y. Huang S. Cheng J. Chen H. Shao P. Jiang B. Wang X. Wang K. Exosomes derived from mesenchymal stem cells containing berberine for ulcerative colitis therapy. J. Colloid Interface Sci. 2024 671 354 373 10.1016/j.jcis.2024.05.162 38815372
    [Google Scholar]
  56. Li N. Zhao L. Geng X. Liu J. Zhang X. Hu Y. Qi J. Chen H. Qiu J. Zhang X. Jin S. Stimulation by exosomes from hypoxia-preconditioned hair follicle mesenchymal stem cells facilitates mitophagy by inhibiting the PI3K/AKT/mTOR signaling pathway to alleviate ulcerative colitis. Theranostics 2024 14 11 4278 4296 10.7150/thno.96038 39113800
    [Google Scholar]
  57. Gu L. Ren F. Fang X. Yuan L. Liu G. Wang S. Exosomal microRNA-181a derived from mesenchymal stem cells improves gut microbiota composition, barrier function, and inflammatory status in an experimental colitis model. Front. Med. 2021 8 660614 10.3389/fmed.2021.660614 34249964
    [Google Scholar]
  58. Cai X. Zhang Z. Yuan J. Ocansey D.K.W. Tu Q. Zhang X. Qian H. Xu W. Qiu W. Mao F. hucMSC-derived exosomes attenuate colitis by regulating macrophage pyroptosis via the miR-378a-5p/NLRP3 axis. Stem Cell Res. Ther. 2021 12 1 416 10.1186/s13287‑021‑02492‑6 34294138
    [Google Scholar]
  59. Yang J. Liu X.X. Fan H. Tang Q. Shou Z.X. Zuo D.M. Zou Z. Xu M. Chen Q.Y. Peng Y. Deng S.J. Liu Y.J. Extracellular vesicles derived from bone marrow mesenchymal stem cells protect against experimental colitis via attenuating colon inflammation, oxidative stress and apoptosis. PLoS One 2015 10 10 e0140551 10.1371/journal.pone.0140551 26469068
    [Google Scholar]
  60. Liu H. Liang Z. Wang F. Zhou C. Zheng X. Hu T. He X. Wu X. Lan P. Exosomes from mesenchymal stromal cells reduce murine colonic inflammation via a macrophage-dependent mechanism. JCI Insight 2019 4 24 e131273
    [Google Scholar]
  61. Marikar F.M.M.T. Jin G. Sheng W. Ma D. Hua Z. Metallothionein 2A an interactive protein linking phosphorylated FADD to NF-κB pathway leads to colorectal cancer formation. Chin. Clin. Oncol. 2016 5 6 76 10.21037/cco.2016.11.03 28061540
    [Google Scholar]
  62. Na Y.R. Stakenborg M. Seok S.H. Matteoli G. Macrophages in intestinal inflammation and resolution: A potential therapeutic target in IBD. Nat. Rev. Gastroenterol. Hepatol. 2019 16 9 531 543 10.1038/s41575‑019‑0172‑4 31312042
    [Google Scholar]
  63. Giri J. Das R. Nylen E. Chinnadurai R. Galipeau J. CCL2 and CXCL12 Derived from mesenchymal stromal cells cooperatively polarize IL-10+ tissue macrophages to mitigate gut injury. Cell Rep. 2020 30 6 1923 1934.e4 10.1016/j.celrep.2020.01.047 32049021
    [Google Scholar]
  64. Yang R. Huang H. Cui S. Zhou Y. Zhang T. Zhou Y. IFN-γ promoted exosomes from mesenchymal stem cells to attenuate colitis via miR-125a and miR-125b. Cell Death Dis. 2020 11 7 603 10.1038/s41419‑020‑02788‑0 32733020
    [Google Scholar]
  65. Qiu L. Chen W. Wu C. Yuan Y. Li Y. Exosomes of oral squamous cell carcinoma cells containing miR-181a-3p induce muscle cell atrophy and apoptosis by transmissible endoplasmic reticulum stress signaling. Biochem. Biophys. Res. Commun. 2020 533 4 831 837 10.1016/j.bbrc.2020.09.066 32998818
    [Google Scholar]
  66. Wang D. Xue H. Tan J. Liu P. Qiao C. Pang C. Zhang L. Bone marrow mesenchymal stem cells-derived exosomes containing miR-539-5p inhibit pyroptosis through NLRP3/caspase-1 signalling to alleviate inflammatory bowel disease. Inflamm. Res. 2022 71 7-8 833 846 10.1007/s00011‑022‑01577‑z 35637388
    [Google Scholar]
  67. Romano B. Elangovan S. Erreni M. Sala E. Petti L. Kunderfranco P. Massimino L. Restelli S. Sinha S. Lucchetti D. Anselmo A. Colombo F.S. Stravalaci M. Arena V. D’Alessio S. Ungaro F. Inforzato A. Izzo A.A. Sgambato A. Day A.J. Vetrano S. TNF-Stimulated gene-6 is a key regulator in switching stemness and biological properties of mesenchymal stem cells. Stem Cells 2019 37 7 973 987 10.1002/stem.3010 30942926
    [Google Scholar]
  68. Yang S. Liang X. Song J. Li C. Liu A. Luo Y. Ma H. Tan Y. Zhang X. A novel therapeutic approach for inflammatory bowel disease by exosomes derived from human umbilical cord mesenchymal stem cells to repair intestinal barrier via TSG-6. Stem Cell Res. Ther. 2021 12 1 315 10.1186/s13287‑021‑02404‑8 34051868
    [Google Scholar]
  69. Wu Y. Qiu W. Xu X. Kang J. Wang J. Wen Y. Tang X. Yan Y. Qian H. Zhang X. Xu W. Mao F. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate inflammatory bowel disease in mice through ubiquitination. Am. J. Transl. Res. 2018 10 7 2026 2036 30093940
    [Google Scholar]
  70. Cleynen I. Vazeille E. Artieda M. Verspaget H.W. Szczypiorska M. Bringer M.A. Lakatos P.L. Seibold F. Parnell K. Weersma R.K. John M.J.M. Walsh M.R. Staelens D. Arijs I. Hertogh D.G. Müller S. Tordai A. Hommes D.W. Ahmad T. Wijmenga C. Pender S. Rutgeerts P. Steen V.K. Lottaz D. Vermeire S. Michaud D.A. Genetic and microbial factors modulating the ubiquitin proteasome system in inflammatory bowel disease. Gut 2014 63 8 1265 1274 10.1136/gutjnl‑2012‑303205 24092863
    [Google Scholar]
  71. Esteller M. Non-coding RNAs in human disease. Nat. Rev. Genet. 2011 12 12 861 874 10.1038/nrg3074 22094949
    [Google Scholar]
  72. Gao X. Zhang H. Zhang C. Li M. Yu X. Sun Y. Shi Y. Zhang H. He X. The emerging role of long non-coding RNAs in renal cell carcinoma progression and clinical therapy via targeting metabolic regulation. Front. Pharmacol. 2023 14 1122065 10.3389/fphar.2023.1122065 36969848
    [Google Scholar]
  73. Xu Y. Zhang L. Ocansey D.K.W. Wang B. Hou Y. Mei R. Yan Y. Zhang X. Zhang Z. Mao F. HucMSC-Ex alleviates inflammatory bowel disease via the lnc78583-mediated miR3202/HOXB13 pathway. J. Zhejiang Univ. Sci. B 2022 23 5 423 431 10.1631/jzus.B2100793 35557042
    [Google Scholar]
  74. Kang J. Zhang Z. Wang J. Wang G. Yan Y. Qian H. Zhang X. Xu W. Mao F. hucMSCs Attenuate IBD through releasing miR148b-5p to inhibit the expression of 15-lox-1 in macrophages. Mediators Inflamm. 2019 2019 1 16 10.1155/2019/6953963 31275059
    [Google Scholar]
  75. Wu X. Mu Y. Yao J. Lin F. Wu D. Ma Z. Adipose-derived stem cells from patients with ulcerative colitis exhibit impaired immunosuppressive function. Front. Cell Dev. Biol. 2022 10 822772 10.3389/fcell.2022.822772 35252190
    [Google Scholar]
  76. Nishikawa T. Maeda K. Nakamura M. Yamamura T. Sawada T. Mizutani Y. Ito T. Ishikawa T. Furukawa K. Ohno E. Miyahara R. Kawashima H. Honda T. Ishigami M. Yamamoto T. Matsumoto S. Hotta Y. Fujishiro M. Filtrated adipose tissue-derived mesenchymal stem cell lysate ameliorates experimental acute colitis in mice. Dig. Dis. Sci. 2021 66 4 1034 1044 10.1007/s10620‑020‑06359‑3 32488819
    [Google Scholar]
  77. Wang G. Yuan J. Cai X. Xu Z. Wang J. Ocansey D.K.W. Yan Y. Qian H. Zhang X. Xu W. Mao F. HucMSC‐exosomes carrying miR‐326 inhibit neddylation to relieve inflammatory bowel disease in mice. Clin. Transl. Med. 2020 10 2 e113 10.1002/ctm2.113 32564521
    [Google Scholar]
  78. Yu H. Yang X. Xiao X. Xu M. Yang Y. Xue C. Li X. Wang S. Zhao R.C. Human adipose mesenchymal stem cell-derived exosomes protect mice from DSS-induced inflammatory bowel disease by promoting intestinal-stem-cell and epithelial regeneration. Aging Dis. 2021 12 6 1423 1437 10.14336/AD.2021.0601 34527419
    [Google Scholar]
  79. Heidari N. Kenarsari A.H. Namaki S. Baghaei K. Zali M.R. Khaligh G.S. Hashemi S.M. Adipose‐derived mesenchymal stem cell‐secreted exosome alleviates dextran sulfate sodium‐induced acute colitis by treg cell induction and inflammatory cytokine reduction. J. Cell. Physiol. 2021 236 8 5906 5920 10.1002/jcp.30275 33728664
    [Google Scholar]
  80. Chang C-L. Chen C-H. Chiang J.Y. Sun C-K. Chen Y-L. Chen K-H. Sung P-H. Huang T-H. Li Y-C. Chen H-H. Yip H.K. Synergistic effect of combined melatonin and adipose-derived mesenchymal stem cell (ADMSC)-derived exosomes on amelioration of dextran sulfate sodium (DSS)-induced acute colitis. Am. J. Transl. Res. 2019 11 5 2706 2724 31217848
    [Google Scholar]
  81. Seishima J. Iida N. Kitamura K. Yutani M. Wang Z. Seki A. Yamashita T. Sakai Y. Honda M. Yamashita T. Kagaya T. Shirota Y. Fujinaga Y. Mizukoshi E. Kaneko S. Gut-derived enterococcus faecium from ulcerative colitis patients promotes colitis in a genetically susceptible mouse host. Genome Biol. 2019 20 1 252 10.1186/s13059‑019‑1879‑9 31767028
    [Google Scholar]
  82. Yang L. Wang T. Zhang X. Zhang H. Yan N. Zhang G. Yan R. Li Y. Yu J. He J. Jia S. Wang H. Exosomes derived from human placental mesenchymal stem cells ameliorate myocardial infarction via anti-inflammation and restoring gut dysbiosis. BMC Cardiovasc. Disord. 2022 22 1 61 10.1186/s12872‑022‑02508‑w 35172728
    [Google Scholar]
  83. Deng C. Hu Y. Conceição M. Wood M.J.A. Zhong H. Wang Y. Shao P. Chen J. Qiu L. Oral delivery of layer-by-layer coated exosomes for colitis therapy. J. Control. Release 2023 354 635 650 10.1016/j.jconrel.2023.01.017 36634710
    [Google Scholar]
  84. Rui K. Zhang Z. Tian J. Lin X. Wang X. Ma J. Tang X. Xu H. Lu L. Wang S. Olfactory ecto-mesenchymal stem cells possess immunoregulatory function and suppress autoimmune arthritis. Cell. Mol. Immunol. 2016 13 3 401 408 10.1038/cmi.2015.82 26388237
    [Google Scholar]
  85. Tian J. Zhu Q. Zhang Y. Bian Q. Hong Y. Shen Z. Xu H. Rui K. Yin K. Wang S. Olfactory ecto-mesenchymal stem cell-derived exosomes ameliorate experimental colitis via modulating Th1/Th17 and treg cell responses. Front. Immunol. 2020 11 598322 10.3389/fimmu.2020.598322 33362781
    [Google Scholar]
  86. Chang Y. Zhang Y. Jiang Y. Zhao L. Lv C. Huang Q. Guan J. Jin S. From hair to colon: Hair follicle-derived MSCs alleviate pyroptosis in DSS-induced ulcerative colitis by releasing exosomes in a paracrine manner. Oxid. Med. Cell. Longev. 2022 2022 1 20 10.1155/2022/9097530 36160717
    [Google Scholar]
  87. Batrakova E.V. Kim M.S. Using exosomes, naturally-equipped nanocarriers, for drug delivery. J. Control. Release 2015 219 396 405 10.1016/j.jconrel.2015.07.030 26241750
    [Google Scholar]
  88. Phan J. Kumar P. Hao D. Gao K. Farmer D. Wang A. Engineering mesenchymal stem cells to improve their exosome efficacy and yield for cell‐free therapy. J. Extracell. Vesicles 2018 7 1 1522236 10.1080/20013078.2018.1522236 30275938
    [Google Scholar]
  89. Ricks D.M. Kutner R. Zhang X.Y. Welsh D.A. Reiser J. Optimized lentiviral transduction of mouse bone marrow-derived mesenchymal stem cells. Stem Cells Dev. 2008 17 3 441 450 10.1089/scd.2007.0194 18513160
    [Google Scholar]
  90. Ulpiano C. Silva D.C.L. Monteiro G.A. Bioengineered mesenchymal-stromal-cell-derived extracellular vesicles as an improved drug delivery system: Methods and applications. Biomedicines 2023 11 4 1231 10.3390/biomedicines11041231 37189850
    [Google Scholar]
  91. Armstrong J.P.K. Holme M.N. Stevens M.M. Re-engineering extracellular vesicles as smart nanoscale therapeutics. ACS Nano 2017 11 1 69 83 10.1021/acsnano.6b07607 28068069
    [Google Scholar]
  92. Zhu X. Ma D. Yang B. An Q. Zhao J. Gao X. Zhang L. Research progress of engineered mesenchymal stem cells and their derived exosomes and their application in autoimmune/inflammatory diseases. Stem Cell Res. Ther. 2023 14 1 71 10.1186/s13287‑023‑03295‑7 37038221
    [Google Scholar]
  93. Koutroubakis I.E. Binion D.G. Lymphangiogenesis in inflammatory bowel disease; A new therapeutic target? Clin. Transl. Gastroenterol. 2016 7 3 e154 10.1038/ctg.2015.68 26986654
    [Google Scholar]
  94. Wang X. Wang H. Cao J. Ye C. Exosomes from adipose-derived stem cells promotes VEGF-C-Dependent lymphangiogenesis by regulating miRNA-132/TGF-β pathway. Cell. Physiol. Biochem. 2018 49 1 160 171 10.1159/000492851 30134228
    [Google Scholar]
  95. Xu F. Fei Z. Dai H. Xu J. Fan Q. Shen S. Zhang Y. Ma Q. Chu J. Peng F. Zhou F. Liu Z. Wang C. Mesenchymal stem cell‐derived extracellular vesicles with high PD‐L1 expression for autoimmune diseases treatment. Adv. Mater. 2022 34 1 2106265 10.1002/adma.202106265 34613627
    [Google Scholar]
  96. Cao Y. Wu B.J. Zheng W.P. Yin M.L. Liu T. Song H.L. Effect of heme oxygenase‐1 transduced bone marrow mesenchymal stem cells on damaged intestinal epithelial cells in vitro. Cell Biol. Int. 2017 41 7 726 738 10.1002/cbin.10749 28206713
    [Google Scholar]
  97. Sun D. Cao H. Yang L. Lin L. Hou B. Zheng W. Shen Z. Song H. MiR-200b in heme oxygenase-1-modified bone marrow mesenchymal stem cell-derived exosomes alleviates inflammatory injury of intestinal epithelial cells by targeting high mobility group box 3. Cell Death Dis. 2020 11 6 480 10.1038/s41419‑020‑2685‑8 32587254
    [Google Scholar]
  98. Chen X. Kang R. Kroemer G. Tang D. Ferroptosis in infection, inflammation, and immunity. J. Exp. Med. 2021 218 6 e20210518 10.1084/jem.20210518 33978684
    [Google Scholar]
  99. Wei Z. Hang S. Ocansey W.D.K. Zhang Z. Wang B. Zhang X. Mao F. Human umbilical cord mesenchymal stem cells derived exosome shuttling mir-129-5p attenuates inflammatory bowel disease by inhibiting ferroptosis. J. Nanobiotechnology 2023 21 1 188 10.1186/s12951‑023‑01951‑x 37303049
    [Google Scholar]
  100. Gan J. Sun L. Chen G. Ma W. Zhao Y. Sun L. Mesenchymal stem cell exosomes encapsulated oral microcapsules for acute colitis treatment. Adv. Healthc. Mater. 2022 11 17 2201105 10.1002/adhm.202201105 35737997
    [Google Scholar]
  101. Tao S.C. Guo S.C. Li M. Ke Q.F. Guo Y.P. Zhang C.Q. Chitosan wound dressings incorporating exosomes derived from microRNA-126-overexpressing synovium mesenchymal stem cells provide sustained release of exosomes and heal full-thickness skin defects in a diabetic rat model. Stem Cells Transl. Med. 2017 6 3 736 747 10.5966/sctm.2016‑0275 28297576
    [Google Scholar]
  102. Su N. Gao P.L. Wang K. Wang J.Y. Zhong Y. Luo Y. Fibrous scaffolds potentiate the paracrine function of mesenchymal stem cells: A new dimension in cell-material interaction. Biomaterials 2017 141 74 85 10.1016/j.biomaterials.2017.06.028 28667901
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X340609241220053638
Loading
/content/journals/cscr/10.2174/011574888X340609241220053638
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: ulcerative colitis ; immunomodulatory ; inflammation ; mesenchymal stem cells ; therapy ; Exosomes
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test