Skip to content
2000
image of Intraarticular Injection of Stem Cell and Related Exosome Targeting Synovial Macrophages in Osteoarthritis

Abstract

Osteoarthritis is a costly and debilitating condition, especially as the population ages and more people are affected. The primary osteoarthritis targets in the joint cavity are chondrocytes and synovial cells. Researchers are increasingly convinced that macrophages play a crucial role in the development or therapy of osteoarthritis despite being largely ignored in earlier studies due to their capacity to switch from a pro-inflammatory to an anti-inflammatory phenotype. Stem cell or similar extracellular vesicle intraarticular injection offers fresh promise for treating osteoarthritis. However, the mechanism by which this works needs further investigation. It is important to investigate the intricate cellular interactions between mesenchymal stem cells (MSCs) and macrophages. Emerging routes using extracellular vesicles (EVs) are garnering more and more attention in intercellular communication, which has historically focused on cytokines and soluble mediators. Therefore, we focus on the polarization of macrophages as a primary consideration in our study of stem cells and associated EVs utilization in treating knee osteoarthritis.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X338318241213055616
2024-12-27
2025-01-22
Loading full text...

Full text loading...

References

  1. Safiri S. Kolahi A.A. Smith E. Hill C. Bettampadi D. Mansournia M.A. Hoy D. Ashrafi-Asgarabad A. Sepidarkish M. Almasi-Hashiani A. Collins G. Kaufman J. Qorbani M. Moradi-Lakeh M. Woolf A.D. Guillemin F. March L. Cross M. Global, regional and national burden of osteoarthritis 1990-2017: A systematic analysis of the global burden of disease study 2017. Ann. Rheum. Dis. 2020 79 6 819 828 10.1136/annrheumdis‑2019‑216515 32398285
    [Google Scholar]
  2. Martel-Pelletier J. Barr A.J. Cicuttini F.M. Conaghan P.G. Cooper C. Goldring M.B. Goldring S.R. Jones G. Teichtahl A.J. Pelletier J.P. Osteoarthritis. Nat. Rev. Dis. Primers 2016 2 1 16072 10.1038/nrdp.2016.72 27734845
    [Google Scholar]
  3. Conaghan P.G. Cook A.D. Hamilton J.A. Tak P.P. Therapeutic options for targeting inflammatory osteoarthritis pain. Nat. Rev. Rheumatol. 2019 15 6 355 363 10.1038/s41584‑019‑0221‑y 31068673
    [Google Scholar]
  4. Madry H. Surgical therapy in osteoarthritis. Osteoarthr. Carti. 2022 30 8 1019 1034 10.1016/j.joca.2022.01.012 35183776
    [Google Scholar]
  5. Beam E. Osmon D. Prosthetic joint infection update. Infect. Dis. Clin. North Am. 2018 32 4 843 859 10.1016/j.idc.2018.06.005 30241717
    [Google Scholar]
  6. Fujii Y. Liu L. Yagasaki L. Inotsume M. Chiba T. Asahara H. Cartilage homeostasis and osteoarthritis. Int. J. Mol. Sci. 2022 23 11 6316 10.3390/ijms23116316 35682994
    [Google Scholar]
  7. Sanchez-Lopez E. Coras R. Torres A. Lane N.E. Guma M. Synovial inflammation in osteoarthritis progression. Nat. Rev. Rheumatol. 2022 18 5 258 275 10.1038/s41584‑022‑00749‑9 35165404
    [Google Scholar]
  8. Knights A.J. Redding S.J. Maerz T. Inflammation in osteoarthritis: The latest progress and ongoing challenges. Curr. Opin. Rheumatol. 2023 35 2 128 134 10.1097/BOR.0000000000000923 36695054
    [Google Scholar]
  9. Thomson A. Hilkens C.M.U. Synovial macrophages in osteoarthritis: The key to understanding pathogenesis? Front. Immunol. 2021 12 678757 10.3389/fimmu.2021.678757 34211470
    [Google Scholar]
  10. Wang D. Chai X.Q. Hu S.S. Pan F. Joint synovial macrophages as a potential target for intra-articular treatment of osteoarthritis-related pain. Osteoarth. Carti. 2022 30 3 406 415 10.1016/j.joca.2021.11.014 34861384
    [Google Scholar]
  11. Fernandes T.L. Gomoll A.H. Lattermann C. Hernandez A.J. Bueno D.F. Amano M.T. Macrophage: A potential target on cartilage regeneration. Front. Immunol. 2020 11 111 10.3389/fimmu.2020.00111 32117263
    [Google Scholar]
  12. Shu C.C. Zaki S. Ravi V. Schiavinato A. Smith M.M. Little C.B. The relationship between synovial inflammation, structural pathology, and pain in post-traumatic osteoarthritis: Differential effect of stem cell and hyaluronan treatment. Arthritis Res. Ther. 2020 22 1 29 10.1186/s13075‑020‑2117‑2 32059749
    [Google Scholar]
  13. Manferdini C. Paolella F. Gabusi E. Gambari L. Piacentini A. Filardo G. Fleury-Cappellesso S. Barbero A. Murphy M. Lisignoli G. Adipose stromal cells mediated switching of the pro-inflammatory profile of M1-like macrophages is facilitated by PGE2: In vitro evaluation. Osteoarthr. Carti. 2017 25 7 1161 1171 10.1016/j.joca.2017.01.011 28153787
    [Google Scholar]
  14. Topoluk N. Steckbeck K. Siatkowski S. Burnikel B. Tokish J. Mercuri J. Amniotic mesenchymal stem cells mitigate osteoarthritis progression in a synovial macrophage‐mediated in vitro explant coculture model. J. Tissue Eng. Regen. Med. 2018 12 4 1097 1110 10.1002/term.2610 29131526
    [Google Scholar]
  15. Fahy N. de Vries-van Melle M.L. Lehmann J. Wei W. Grotenhuis N. Farrell E. van der Kraan P.M. Murphy J.M. Bastiaansen-Jenniskens Y.M. van Osch G.J.V.M. Human osteoarthritic synovium impacts chondrogenic differentiation of mesenchymal stem cells via macrophage polarisation state. Osteoarthr. Carti. 2014 22 8 1167 1175 10.1016/j.joca.2014.05.021 24911520
    [Google Scholar]
  16. Yu H. Huang Y. Yang L. Research progress in the use of mesenchymal stem cells and their derived exosomes in the treatment of osteoarthritis. Ageing Res. Rev. 2022 80 101684 10.1016/j.arr.2022.101684 35809775
    [Google Scholar]
  17. Wu C.L. Harasymowicz N.S. Klimak M.A. Collins K.H. Guilak F. The role of macrophages in osteoarthritis and cartilage repair. Osteoarthr. Carti. 2020 28 5 544 554 10.1016/j.joca.2019.12.007 31926267
    [Google Scholar]
  18. Martel-Pelletier J. Pathophysiology of osteoarthritis. Osteoarthr. Carti. 2004 12 Suppl. A 31 33 10.1016/j.joca.2003.10.002 14698638
    [Google Scholar]
  19. Mathiessen A. Conaghan P.G. Synovitis in osteoarthritis: Current understanding with therapeutic implications. Arthritis Res. Ther. 2017 19 1 18 10.1186/s13075‑017‑1229‑9 28148295
    [Google Scholar]
  20. Scanzello C.R. Goldring S.R. The role of synovitis in osteoarthritis pathogenesis. Bone 2012 51 2 249 257 10.1016/j.bone.2012.02.012 22387238
    [Google Scholar]
  21. Zhao K. Ruan J. Nie L. Ye X. Li J. Effects of synovial macrophages in osteoarthritis. Front. Immunol. 2023 14 1164137 10.3389/fimmu.2023.1164137 37492583
    [Google Scholar]
  22. Kompel A.J. Roemer F.W. Murakami A.M. Diaz L.E. Crema M.D. Guermazi A. Intra-articular corticosteroid injections in the hip and knee: Perhaps not as safe as we thought? Radiology 2019 293 3 656 663 10.1148/radiol.2019190341 31617798
    [Google Scholar]
  23. Arden N.K. Perry T.A. Bannuru R.R. Bruyère O. Cooper C. Haugen I.K. Hochberg M.C. McAlindon T.E. Mobasheri A. Reginster J.Y. Non-surgical management of knee osteoarthritis: Comparison of ESCEO and OARSI 2019 guidelines. Nat. Rev. Rheumatol. 2021 17 1 59 66 10.1038/s41584‑020‑00523‑9 33116279
    [Google Scholar]
  24. Wood M.J. Leckenby A. Reynolds G. Spiering R. Pratt A.G. Rankin K.S. Isaacs J.D. Haniffa M.A. Milling S. Hilkens C.M.U. Macrophage proliferation distinguishes 2 subgroups of knee osteoarthritis patients. JCI Insight 2019 4 2 e125325 10.1172/jci.insight.125325 30674730
    [Google Scholar]
  25. Zhang H. Cai D. Bai X. Macrophages regulate the progression of osteoarthritis. Osteoarthr. Carti. 2020 28 5 555 561 10.1016/j.joca.2020.01.007 31982565
    [Google Scholar]
  26. Liu B. Zhang M. Zhao J. Zheng M. Yang H. Imbalance of M1/M2 macrophages is linked to severity level of knee osteoarthritis. Exp. Ther. Med. 2018 16 6 5009 5014 10.3892/etm.2018.6852 30546406
    [Google Scholar]
  27. Pittenger M.F. Mackay A.M. Beck S.C. Jaiswal R.K. Douglas R. Mosca J.D. Moorman M.A. Simonetti D.W. Craig S. Marshak D.R. Multilineage potential of adult human mesenchymal stem cells. Science 1999 284 5411 143 147 10.1126/science.284.5411.143 10102814
    [Google Scholar]
  28. Giorgino R. Albano D. Fusco S. Peretti G.M. Mangiavini L. Messina C. Knee osteoarthritis: Epidemiology, pathogenesis, and mesenchymal stem cells: What else is new? an update. Int. J. Mol. Sci. 2023 24 7 6405 10.3390/ijms24076405 37047377
    [Google Scholar]
  29. Chen Y. Cheng R.J. Wu Y. Huang D. Li Y. Liu Y. Advances in stem cell-based therapies in the treatment of osteoarthritis. Int. J. Mol. Sci. 2023 25 1 394 10.3390/ijms25010394 38203565
    [Google Scholar]
  30. Abumaree M.H. Al Jumah M.A. Kalionis B. Jawdat D. Al Khaldi A. Abomaray F.M. Fatani A.S. Chamley L.W. Knawy B.A. Human placental mesenchymal stem cells (pMSCs) play a role as immune suppressive cells by shifting macrophage differentiation from inflammatory M1 to anti-inflammatory M2 macrophages. Stem Cell Rev. 2013 9 5 620 641 10.1007/s12015‑013‑9455‑2 23812784
    [Google Scholar]
  31. Yang C.Y. Chang P.Y. Chen J.Y. Wu B.S. Yang A.H. Lee O.K.S. Adipose-derived mesenchymal stem cells attenuate dialysis-induced peritoneal fibrosis by modulating macrophage polarization via interleukin-6. Stem Cell Res. Ther. 2021 12 1 193 10.1186/s13287‑021‑02270‑4 33741073
    [Google Scholar]
  32. Wang Y. Han B. Wang Y. Wang C. Zhang H. Xue J. Wang X. Niu T. Niu Z. Chen Y. Mesenchymal stem cell–secreted extracellular vesicles carrying TGF‐β1 up‐regulate miR‐132 and promote mouse M2 macrophage polarization. J. Cell. Mol. Med. 2020 24 21 12750 12764 10.1111/jcmm.15860 32965772
    [Google Scholar]
  33. Pilny E. Smolarczyk R. Jarosz-Biej M. Hadyk A. Skorupa A. Ciszek M. Krakowczyk Ł. Kułach N. Gillner D. Sokół M. Szala S. Cichoń T. Human ADSC xenograft through IL-6 secretion activates M2 macrophages responsible for the repair of damaged muscle tissue. Stem Cell Res. Ther. 2019 10 1 93 10.1186/s13287‑019‑1188‑y 30867059
    [Google Scholar]
  34. Espagnolle N. Balguerie A. Arnaud E. Sensebé L. Varin A. CD54-mediated interaction with pro-inflammatory macrophages increases the immunosuppressive function of human mesenchymal stromal cells. Stem Cell Reports 2017 8 4 961 976 10.1016/j.stemcr.2017.02.008 28330617
    [Google Scholar]
  35. Takizawa N. Okubo N. Kamo M. Chosa N. Mikami T. Suzuki K. Yokota S. Ibi M. Ohtsuka M. Taira M. Yaegashi T. Ishisaki A. Kyakumoto S. Bone marrow-derived mesenchymal stem cells propagate immunosuppressive/anti-inflammatory macrophages in cell-to-cell contact-independent and -dependent manners under hypoxic culture. Exp. Cell Res. 2017 358 2 411 420 10.1016/j.yexcr.2017.07.014 28712928
    [Google Scholar]
  36. Shapouri-Moghaddam A. Mohammadian S. Vazini H. Taghadosi M. Esmaeili S.A. Mardani F. Seifi B. Mohammadi A. Afshari J.T. Sahebkar A. Macrophage plasticity, polarization, and function in health and disease. J. Cell. Physiol. 2018 233 9 6425 6440 10.1002/jcp.26429 29319160
    [Google Scholar]
  37. Li Y. Tu Q. Xie D. Chen S. Gao K. Xu X. Zhang Z. Mei X. Triamcinolone acetonide-loaded nanoparticles encapsulated by CD90+ MCSs-derived microvesicles drive anti-inflammatory properties and promote cartilage regeneration after osteoarthritis. J. Nanobiotechnology 2022 20 1 150 10.1186/s12951‑022‑01367‑z 35305656
    [Google Scholar]
  38. Wang T. He C. Pro-inflammatory cytokines: The link between obesity and osteoarthritis. Cytokine Growth Factor Rev. 2018 44 38 50 10.1016/j.cytogfr.2018.10.002 30340925
    [Google Scholar]
  39. Harrell C.R. Markovic B.S. Fellabaum C. Arsenijevic N. Djonov V. Volarevic V. The role of Interleukin 1 receptor antagonist in mesenchymal stem cell‐based tissue repair and regeneration. Biofactors 2020 46 2 263 275 10.1002/biof.1587 31755595
    [Google Scholar]
  40. Lee K. Park N. Jung H. Rim Y.A. Nam Y. Lee J. Park S.H. Ju J.H. Mesenchymal stem cells ameliorate experimental arthritis via expression of interleukin-1 receptor antagonist. PLoS One 2018 13 2 e0193086 10.1371/journal.pone.0193086 29481574
    [Google Scholar]
  41. Liu W. Zhang S. Gu S. Sang L. Dai C. Mesenchymal stem cells recruit macrophages to alleviate experimental colitis through TGFβ1. Cell. Physiol. Biochem. 2015 35 3 858 865 10.1159/000369743 25632987
    [Google Scholar]
  42. Wang R. Xu B. TGF-β1-modified MSC-derived exosomal miR-135b attenuates cartilage injury via promoting M2 synovial macrophage polarization by targeting MAPK6. Cell Tissue Res. 2021 384 1 113 127 10.1007/s00441‑020‑03319‑1 33404840
    [Google Scholar]
  43. Wang W. Liang M. Wang L. Bei W. Rong X. Xu J. Guo J. Role of prostaglandin E2 in macrophage polarization: Insights into atherosclerosis. Biochem. Pharmacol. 2023 207 115357 10.1016/j.bcp.2022.115357 36455672
    [Google Scholar]
  44. Bouffi C. Bony C. Courties G. Jorgensen C. Noël D. IL-6-dependent PGE2 secretion by mesenchymal stem cells inhibits local inflammation in experimental arthritis. PLoS One 2010 5 12 e14247 10.1371/journal.pone.0014247 21151872
    [Google Scholar]
  45. Lee S. Zhang Q.Z. Karabucak B. Le A.D. DPSCs from inflamed pulp modulate macrophage function via the TNF-α/IDO axis. J. Dent. Res. 2016 95 11 1274 1281 10.1177/0022034516657817 27384335
    [Google Scholar]
  46. Toh W.S. Lai R.C. Zhang B. Lim S.K. MSC exosome works through a protein-based mechanism of action. Biochem. Soc. Trans. 2018 46 4 843 853 10.1042/BST20180079 29986939
    [Google Scholar]
  47. Vadhan A. Gupta T. Hsu W.L. Mesenchymal stem cell-derived exosomes as a treatment option for osteoarthritis. Int. J. Mol. Sci. 2024 25 17 9149 10.3390/ijms25179149 39273098
    [Google Scholar]
  48. Ragni E. Papait A. Perucca Orfei C. Silini A.R. Colombini A. Viganò M. Libonati F. Parolini O. Girolamo L. Amniotic membrane-mesenchymal stromal cells secreted factors and extracellular vesicle-miRNAs: Anti-inflammatory and regenerative features for musculoskeletal tissues. Stem Cells Transl. Med. 2021 10 7 1044 1062 10.1002/sctm.20‑0390 33656805
    [Google Scholar]
  49. Wu H. Peng Z. Xu Y. Sheng Z. Liu Y. Liao Y. Wang Y. Wen Y. Yi J. Xie C. Chen X. Hu J. Yan B. Wang H. Yao X. Fu W. Ouyang H. Engineered adipose-derived stem cells with IGF-1-modified mRNA ameliorates osteoarthritis development. Stem Cell Res. Ther. 2022 13 1 19 10.1186/s13287‑021‑02695‑x 35033199
    [Google Scholar]
  50. Colombini A. Libonati F. Cangelosi D. Lopa S. De Luca P. Coviello D.A. Moretti M. de Girolamo L. Inflammatory priming with IL-1β promotes the immunomodulatory behavior of adipose derived stem cells. Front. Bioeng. Biotechnol. 2022 10 1000879 10.3389/fbioe.2022.1000879 36338130
    [Google Scholar]
  51. Chang L.H. Wu S.C. Chen C.H. Chen J.W. Huang W.C. Wu C.W. Lin Y.S. Chen Y.J. Chang J.K. Ho M.L. Exosomes derived from hypoxia-cultured human adipose stem cells alleviate articular chondrocyte inflammaging and post-traumatic osteoarthritis progression. Int. J. Mol. Sci. 2023 24 17 13414 10.3390/ijms241713414 37686220
    [Google Scholar]
  52. Xia P. Wang X. Wang Q. Wang X. Lin Q. Cheng K. Li X. Low-intensity pulsed ultrasound promotes autophagy-mediated migration of mesenchymal stem cells and cartilage repair. Cell Transplant. 2021 30 0963689720986142 10.1177/0963689720986142 33412895
    [Google Scholar]
  53. Cai Y. Wu C. Ou Q. Zeng M. Xue S. Chen J. Lu Y. Ding C. Enhanced osteoarthritis therapy by nanoengineered mesenchymal stem cells using biomimetic CuS nanoparticles loaded with plasmid DNA encoding TGF-β1. Bioact. Mater. 2023 19 444 457 10.1016/j.bioactmat.2022.04.021 35574050
    [Google Scholar]
  54. Lin Y.Y. Kuan C.Y. Chang C.T. Chuang M.H. Syu W.S. Zhang K.L. Lee C.H. Lin P.C. Dong G.C. Lin F.H. 3D-cultured adipose-derived stem cell spheres using calcium-alginate scaffolds for osteoarthritis treatment in a mono-iodoacetate-induced rat model. Int. J. Mol. Sci. 2023 24 8 7062 10.3390/ijms24087062 37108239
    [Google Scholar]
  55. Weng Z. Wang Y. Ouchi T. Liu H. Qiao X. Wu C. Zhao Z. Li L. Li B. Mesenchymal stem/stromal cell senescence: Hallmarks, mechanisms, and combating strategies. Stem Cells Transl. Med. 2022 11 4 356 371 10.1093/stcltm/szac004 35485439
    [Google Scholar]
  56. Lei J. Jiang X. Li W. Ren J. Wang D. Ji Z. Wu Z. Cheng F. Cai Y. Yu Z.R. Belmonte J.C.I. Li C. Liu G.H. Zhang W. Qu J. Wang S. Exosomes from antler stem cells alleviate mesenchymal stem cell senescence and osteoarthritis. Prot. Cell 2022 13 3 220 226 10.1007/s13238‑021‑00860‑9 34342820
    [Google Scholar]
  57. Li H. Xiang D. Gong C. Wang X. Liu L. Naturally derived injectable hydrogels with ROS-scavenging property to protect transplanted stem cell bioactivity for osteoarthritic cartilage repair. Front. Bioeng. Biotechnol. 2023 10 1109074 10.3389/fbioe.2022.1109074 36686241
    [Google Scholar]
  58. Hamilton A.M. Cheung W.Y. Gómez-Aristizábal A. Sharma A. Nakamura S. Chaboureau A. Bhatt S. Rabani R. Kapoor M. Foster P.J. Viswanathan S. Iron nanoparticle-labeled murine mesenchymal stromal cells in an osteoarthritic model persists and suggests anti-inflammatory mechanism of action. PLoS One 2019 14 12 e0214107 10.1371/journal.pone.0214107 31794570
    [Google Scholar]
  59. Cosenza S. Toupet K. Maumus M. Luz-Crawford P. Blanc-Brude O. Jorgensen C. Noël D. Mesenchymal stem cells-derived exosomes are more immunosuppressive than microparticles in inflammatory arthritis. Theranostics 2018 8 5 1399 1410 10.7150/thno.21072 29507629
    [Google Scholar]
  60. Shen X. Qin J. Wei Z. Liu F. Bone marrow mesenchymal stem cell exosome-derived lncRNA TUC339 influences the progression of osteoarthritis by regulating synovial macrophage polarization and chondrocyte apoptosis. Biomed. Pharmacother. 2023 167 115488 10.1016/j.biopha.2023.115488 37729727
    [Google Scholar]
  61. Sun W. Qu S. Ji M. Sun Y. Hu B. BMP-7 modified exosomes derived from synovial mesenchymal stem cells attenuate osteoarthritis by M2 polarization of macrophages. Heliyon 2023 9 9 e19934 10.1016/j.heliyon.2023.e19934 37809369
    [Google Scholar]
  62. Pang L. Jin H. Lu Z. Xie F. Shen H. Li X. Zhang X. Jiang X. Wu L. Zhang M. Zhang T. Zhai Y. Zhang Y. Guan H. Su J. Li M. Gao J. Treatment with mesenchymal stem cell‐derived nanovesicle‐containing gelatin methacryloyl hydrogels alleviates osteoarthritis by modulating chondrogenesis and macrophage polarization. Adv. Healthc. Mater. 2023 12 17 2300315 10.1002/adhm.202300315 36848378
    [Google Scholar]
  63. Wang T. Zhao H. Zhang Y. Liu Y. Liu J. Chen G. Duan K. Li Z. Hui H.P.J. Yan J. A novel extracellular vesicles production system harnessing matrix homeostasis and macrophage reprogramming mitigates osteoarthritis. J. Nanobiotechnol. 2024 22 1 79 10.1186/s12951‑024‑02324‑8 38419097
    [Google Scholar]
  64. Zhang S. Chuah S.J. Lai R.C. Hui J.H.P. Lim S.K. Toh W.S. MSC exosomes mediate cartilage repair by enhancing proliferation, attenuating apoptosis and modulating immune reactivity. Biomaterials 2018 156 16 27 10.1016/j.biomaterials.2017.11.028 29182933
    [Google Scholar]
  65. Zhang J. Rong Y. Luo C. Cui W. Bone marrow mesenchymal stem cell-derived exosomes prevent osteoarthritis by regulating synovial macrophage polarization. Aging 2020 12 24 25138 25152 10.18632/aging.104110 33350983
    [Google Scholar]
  66. Li P.L. Chen D.F. Li X.T. Hao R.C. Zhao Z.D. Li Z.L. Yin B.F. Tang J. Luo Y.W. Wu C.T. Nie J.J. Zhu H. Microgel-based carriers enhance skeletal stem cell reprogramming towards immunomodulatory phenotype in osteoarthritic therapy. Bioact. Mater. 2024 34 204 220 10.1016/j.bioactmat.2023.12.022 38235309
    [Google Scholar]
  67. Li B. Shen E. Wu Z. Qi H. Wu C. Liu D. Jiang X. BMSC-derived exosomes attenuate rat osteoarthritis by regulating macrophage polarization through pink1/parkin signaling pathway. Cartilage 2024 11 19476035241245805 10.1177/19476035241245805 38641989
    [Google Scholar]
  68. Hsueh Y.H. Buddhakosai W. Le P.N. Tu Y.Y. Huang H.C. Lu H.E. Chen W.L. Tu Y.K. Therapeutic effect of induced pluripotent stem cell -derived extracellular vesicles in an in vitro and in vivo osteoarthritis model. J. Orthop. Translat. 2023 38 141 155 10.1016/j.jot.2022.10.004 36381245
    [Google Scholar]
  69. Zhou H. Shen X. Yan C. Xiong W. Ma Z. Tan Z. Wang J. Li Y. Liu J. Duan A. Liu F. Extracellular vesicles derived from human umbilical cord mesenchymal stem cells alleviate osteoarthritis of the knee in mice model by interacting with METTL3 to reduce m6A of NLRP3 in macrophage. Stem Cell Res. Ther. 2022 13 1 322 10.1186/s13287‑022‑03005‑9 35842714
    [Google Scholar]
  70. Huang H.Y. Hsu C.W. Lin G.C. Lin H.S. Chou Y.J. Liou I.H. Sun S.F. Comparing efficacy of a single intraarticular injection of platelet-rich plasma (PRP) combined with different hyaluronans for knee osteoarthritis: A randomized-controlled clinical trial. BMC Musculoskelet. Disord. 2022 23 1 954 10.1186/s12891‑022‑05906‑5 36329428
    [Google Scholar]
  71. Tang S. Chen P. Zhang H. Weng H. Fang Z. Chen C. Peng G. Gao H. Hu K. Chen J. Chen L. Chen X. Comparison of curative effect of human umbilical cord-derived mesenchymal stem cells and their small extracellular vesicles in treating osteoarthritis. Int. J. Nanom. 2021 16 8185 8202 10.2147/IJN.S336062 34938076
    [Google Scholar]
  72. Li P.L. Wang Y.X. Zhao Z.D. Li Z.L. Liang J.W. Wang Q. Yin B.F. Hao R.C. Han M.Y. Ding L. Wu C.T. Zhu H. Clinical-grade human dental pulp stem cells suppressed the activation of osteoarthritic macrophages and attenuated cartilaginous damage in a rabbit osteoarthritis model. Stem Cell Res. Ther. 2021 12 1 260 10.1186/s13287‑021‑02353‑2 33933140
    [Google Scholar]
  73. Lee M. Kim G.H. Kim M. Seo J.M. Kim Y.M. Seon M.R. Um S. Choi S.J. Oh W. Song B.R. Jin H.J. PTX-3 secreted by intra-articular-injected SMUP-cells reduces pain in an osteoarthritis rat model. Cells 2021 10 9 2420 10.3390/cells10092420 34572070
    [Google Scholar]
  74. Zavatti M. Beretti F. Casciaro F. Bertucci E. Maraldi T. Comparison of the therapeutic effect of amniotic fluid stem cells and their exosomes on monoiodoacetate‐induced animal model of osteoarthritis. Biofactors 2020 46 1 106 117 10.1002/biof.1576 31625201
    [Google Scholar]
  75. Woo C.H. Kim H.K. Jung G.Y. Jung Y.J. Lee K.S. Yun Y.E. Han J. Lee J. Kim W.S. Choi J.S. Yang S. Park J.H. Jo D.G. Cho Y.W. Small extracellular vesicles from human adipose‐derived stem cells attenuate cartilage degeneration. J. Extracell. Vesicles 2020 9 1 1735249 10.1080/20013078.2020.1735249 32284824
    [Google Scholar]
  76. Tong W. Zhang X. Zhang Q. Fang J. Liu Y. Shao Z. Yang S. Wu D. Sheng X. Zhang Y. Tian H. Multiple umbilical cord–derived MSCs administrations attenuate rat osteoarthritis progression via preserving articular cartilage superficial layer cells and inhibiting synovitis. J. Orthop. Translat. 2020 23 21 28 10.1016/j.jot.2020.03.007 32455113
    [Google Scholar]
  77. Manferdini C. Maumus M. Gabusi E. Piacentini A. Filardo G. Peyrafitte J.A. Jorgensen C. Bourin P. Fleury-Cappellesso S. Facchini A. Noël D. Lisignoli G. Adipose-derived mesenchymal stem cells exert antiinflammatory effects on chondrocytes and synoviocytes from osteoarthritis patients through prostaglandin E2. Arthritis Rheum. 2013 65 5 1271 1281 10.1002/art.37908 23613363
    [Google Scholar]
  78. Wang S. Jiang W. Lv S. Sun Z. Si L. Hu J. Yang Y. Qiu D. Liu X. Zhu S. Yang L. Qi L. Chi G. Wang G. Li P. Liao B. Human umbilical cord mesenchymal stem cells-derived exosomes exert anti-inflammatory effects on osteoarthritis chondrocytes. Aging 2023 15 18 9544 9560 10.18632/aging.205034 37724890
    [Google Scholar]
  79. Liu Q. Wu J. Wang H. Jia Z. Li G. Human infrapatellar fat pad mesenchymal stem cell–derived extracellular vesicles purified by anion exchange chromatography suppress osteoarthritis progression in a mouse model. Clin. Orthop. Relat. Res. 2024 482 7 1246 1262 10.1097/CORR.0000000000003067 38662932
    [Google Scholar]
  80. Liebmann K. Castillo M.A. Jergova S. Best T.M. Sagen J. Kouroupis D. Modification of mesenchymal stem/stromal cell-derived small extracellular vesicles by calcitonin gene related peptide (CGRP) antagonist: Potential implications for inflammation and pain reversal. Cells 2024 13 6 484 10.3390/cells13060484 38534328
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X338318241213055616
Loading
/content/journals/cscr/10.2174/011574888X338318241213055616
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: cell interplay ; macrophage ; osteoarthritis ; Stem cell
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test