Skip to content
2000
image of Evaluation of Safety and Efficacy of Repeated Mesenchymal Stem Cell Transplantation in Patients with Amyotrophic Lateral Sclerosis (ALS) by Investigating Patient’s Specific microRNAs as Novel Biomarkers: A Clinical Trial Study

Abstract

Background

Since there is currently no cure for amyotrophic lateral sclerosis (ALS), it is essential to search for diagnostic biomarkers and novel treatments to reduce the severity of this disease. One of these treatment approaches is stem cell transplantation.

Objective

This study aims to evaluate the safety and efficacy of repeated transplantation of autologous bone marrow-derived mesenchymal stem cells (BM-MSCs) in patients with ALS by analyzing clinical and molecular data.

Methods

This one-arm, single-center, open-label without a control group, prospective clinical trial, twenty-one confirmed ALS patients entered the study based on defined inclusion and exclusion criteria and underwent repeated stem cell transplantation (3 times BM-MSCs transplantation (1×10^6, MSC/Kg BW per injection) concurrently intrathecally (IT) and intravenously (IV), with one-month interval). Clinical assessment using ALS functional rating scale-revised (ALSFRS) and forced vital capacity (FVC) values and also molecular investigation by evaluating specific microRNAs expression (mir206, 133a-3p, 338-3p) in patient's serum and Cerebra spinal fluid (CSF) samples were done three times during the 3-month follow-up period.

Results

No serious adverse effects were reported during the study. Besides, significant improvement in FVC when compared the baseline with the end of the research and the -value was (0.036), and stability in ALSFRS was observed, and the -value was (=0.16) following stem cell transplantation in patients; also, the mentioned microRNA expression was non-significant ( > 0.05) as reported as well.

Conclusion

Our results demonstrated that repeated transplantation of BM-MSCs was a safe procedure in ALS patients, leading to delay in disease progression and improvement in clinical symptoms. Future studies are needed to confirm these results.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X330199250106081717
2025-01-29
2025-05-04
Loading full text...

Full text loading...

References

  1. Feldman E.L. Goutman S.A. Petri S. Mazzini L. Savelieff M.G. Shaw P.J. Sobue G. Amyotrophic lateral sclerosis. Lancet 2022 400 10360 1363 1380 10.1016/S0140‑6736(22)01272‑7 36116464
    [Google Scholar]
  2. Goutman S.A. Savelieff M.G. Jang D.G. Hur J. Feldman E.L. The amyotrophic lateral sclerosis exposome: Recent advances and future directions. Nat. Rev. Neurol. 2023 19 10 617 634 10.1038/s41582‑023‑00867‑2 37709948
    [Google Scholar]
  3. Ajroud-Driss S. Siddique T. Sporadic and hereditary amyotrophic lateral sclerosis (ALS). Biochim. Biophys. Acta Mol. Basis Dis. 2015 1852 4 679 684 10.1016/j.bbadis.2014.08.010 25193032
    [Google Scholar]
  4. Cunha-Oliveira T. Montezinho L. Simões R.F. Carvalho M. Ferreiro E. Silva F.S.G. Mitochondria: A promising convergent target for the treatment of amyotrophic lateral sclerosis. Cells 2024 13 3 248 10.3390/cells13030248 38334639
    [Google Scholar]
  5. Masrori P. Van Damme P. Amyotrophic lateral sclerosis: A clinical review. Eur. J. Neurol. 2020 27 10 1918 1929 10.1111/ene.14393 32526057
    [Google Scholar]
  6. Queiroz D.D. Eleutherio E.C.A. Astrocytes, SOD1 and amyotrophic lateral sclerosis: Mechanisms and implications in neurodegeneration. Ann. Clin. Case Rep. 2024 9 2666
    [Google Scholar]
  7. Okada K. Ito D. Morimoto S. Kato C. Oguma Y. Warita H. Suzuki N. Aoki M. Kuramoto J. Kobayashi R. Shinozaki M. Ikawa M. Nakahara J. Takahashi S. Nishimoto Y. Shibata S. Okano H. Multiple lines of evidence for disruption of nuclear lamina and nucleoporins in FUS amyotrophic lateral sclerosis. Brain 2024 awae224 10.1093/brain/awae224 39312484
    [Google Scholar]
  8. Benatar M. Boylan K. Jeromin A. Rutkove S.B. Berry J. Atassi N. Bruijn L. ALS biomarkers for therapy development: State of the field and future directions. Muscle Nerve 2016 53 2 169 182 10.1002/mus.24979 26574709
    [Google Scholar]
  9. Punjani R. Larson T.C. Wagner L. Davis B. Horton D.K. Kaye W. Survival and epidemiology of amyotrophic lateral sclerosis (ALS) cases in the Chicago and Detroit metropolitan cohort: Incident cases 2009–2011 and survival through 2018. Amyotroph. Lateral Scler. Frontotemporal Degener. 2023 24 3-4 203 211 10.1080/21678421.2022.2121167 36200180
    [Google Scholar]
  10. Duan Q.Q. Jiang Z. Su W.M. Gu X.J. Wang H. Cheng Y.F. Cao B. Gao X. Wang Y. Chen Y.P. Risk factors of amyotrophic lateral sclerosis: A global meta-summary. Front. Neurosci. 2023 17 1177431 10.3389/fnins.2023.1177431 37168926
    [Google Scholar]
  11. Turner MR Bowser R Bruijn L Dupuis L Ludolph A McGrath M Mechanisms, models and biomarkers in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2013 1 1 19 32 10.3109/21678421.2013.778554
    [Google Scholar]
  12. Ravnik-Glavač M. Glavač D. Circulating RNAs as potential biomarkers in amyotrophic lateral sclerosis. Int. J. Mol. Sci. 2020 21 5 1714 10.3390/ijms21051714 32138249
    [Google Scholar]
  13. Elias N.D.P. Gomes B.C. Gromicho M. Identification of de-regulated circulating microRNAs as putative biomarkers in amyotrophic lateral sclerosis. Medicine 2023 102 13
    [Google Scholar]
  14. Quinlan S. Kenny A. Medina M. Engel T. Jimenez-Mateos E.M. MicroRNAs in neurodegenerative diseases. Int. Rev. Cell Mol. Biol. 2017 334 309 343 10.1016/bs.ircmb.2017.04.002 28838542
    [Google Scholar]
  15. Zhu Y. Li M. He Z. Pang X. Du R. Yu W. Zhang J. Bai J. Wang J. Huang X. Evaluating the causal association between microRNAs and amyotrophic lateral sclerosis. Neurol. Sci. 2023 44 10 3567 3575 10.1007/s10072‑023‑06860‑3 37261630
    [Google Scholar]
  16. Gascon E. Gao F.B. Cause or effect: Misregulation of microRNA pathways in neurodegeneration. Front. Neurosci. 2012 6 48 10.3389/fnins.2012.00048 22509148
    [Google Scholar]
  17. YILDIRIM H MiRnas and neurodegenerative diseases. Health and science Efeakademi citations 2024 99
    [Google Scholar]
  18. Ricci C. Marzocchi C. Battistini S. MicroRNAs as biomarkers in amyotrophic lateral sclerosis. Cells 2018 7 11 219 10.3390/cells7110219 30463376
    [Google Scholar]
  19. Mitchell P.S. Parkin R.K. Kroh E.M. Fritz B.R. Wyman S.K. Pogosova-Agadjanyan E.L. Peterson A. Noteboom J. O’Briant K.C. Allen A. Lin D.W. Urban N. Drescher C.W. Knudsen B.S. Stirewalt D.L. Gentleman R. Vessella R.L. Nelson P.S. Martin D.B. Tewari M. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. USA 2008 105 30 10513 10518 10.1073/pnas.0804549105 18663219
    [Google Scholar]
  20. Mazzini L. Gelati M. Profico D.C. Sorarù G. Ferrari D. Copetti M. Muzi G. Ricciolini C. Carletti S. Giorgi C. Spera C. Frondizi D. Masiero S. Stecco A. Cisari C. Bersano E. De Marchi F. Sarnelli M.F. Querin G. Cantello R. Petruzzelli F. Maglione A. Zalfa C. Binda E. Visioli A. Trombetta D. Torres B. Bernardini L. Gaiani A. Massara M. Paolucci S. Boulis N.M. Vescovi A.L. ALS-NSCs Trial Study Group Results from phase I clinical trial with intraspinal injection of neural stem cells in amyotrophic lateral sclerosis: A long-term outcome. Stem Cells Transl. Med. 2019 8 9 887 897 10.1002/sctm.18‑0154 31104357
    [Google Scholar]
  21. Seta Y. Kimura K. Masahiro G. Tatsumori K. Murakami Y. SHED-CM: The safety and efficacy of conditioned media from human exfoliated deciduous teeth stem cells in amyotrophic lateral sclerosis treatment: A retrospective cohort analysis. Biomedicines 2024 12 10 2193 10.3390/biomedicines12102193 39457505
    [Google Scholar]
  22. Najafi S. Najafi P. Kaffash Farkhad N. Hosseini Torshizi G. Assaran Darban R. Boroumand A.R. Sahab-Negah S. Khodadoust M.A. Tavakol-Afshari J. Mesenchymal stem cell therapy in amyotrophic lateral sclerosis (ALS) patients: A comprehensive review of disease information and future perspectives. Iran. J. Basic Med. Sci. 2023 26 8 872 881 37427325
    [Google Scholar]
  23. Ceccarelli L. Verriello L. Pauletto G. Valente M. Spadea L. Salati C. Zeppieri M. Ius T. The role of human pluripotent stem cells in amyotrophic lateral sclerosis: From biological mechanism to practical implications. Front. Biosci. (Landmark Ed.) 2024 29 3 114 10.31083/j.fbl2903114 38538275
    [Google Scholar]
  24. Noh M.Y. Lim S.M. Oh K.W. Cho K.A. Park J. Kim K.S. Lee S.J. Kwon M.S. Kim S.H. Mesenchymal stem cells modulate the functional properties of microglia via TGF-β secretion. Stem Cells Transl. Med. 2016 5 11 1538 1549 10.5966/sctm.2015‑0217 27400795
    [Google Scholar]
  25. Gowrishankar S. Smith M.E. Creber N. Muzaffar J. Borsetto D. Immunosuppression in stem cell clinical trials of neural and retinal cell types: A systematic review. PLoS One 2024 19 7 e0304073 10.1371/journal.pone.0304073 38968328
    [Google Scholar]
  26. Liu X. Zheng P. Wang X. Dai G. Cheng H. Zhang Z. Hua R. Niu X. Shi J. An Y. A preliminary evaluation of efficacy and safety of Wharton’s jelly mesenchymal stem cell transplantation in patients with type 2 diabetes mellitus. Stem Cell Res. Ther. 2014 5 2 57 10.1186/scrt446 24759263
    [Google Scholar]
  27. Rezvani A. Adimi S. Ghaemmaghami Z. Azimi A. Diabetes Mellitus in HSCT. Cardiovascular Considerations in Hematopoietic Stem Cell Transplantation. Springer 2024 127 140 10.1007/978‑3‑031‑53659‑5_10
    [Google Scholar]
  28. Venkataramana N.K. Kumar S.K.V. Balaraju S. Radhakrishnan R.C. Bansal A. Dixit A. Rao D.K. Das M. Jan M. Gupta P.K. Totey S.M. Open-labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinson’s disease. Transl. Res. 2010 155 2 62 70 10.1016/j.trsl.2009.07.006 20129486
    [Google Scholar]
  29. Zhao J. Qu K. Jia S. Yang R. Cui Z. Li J. Yu P. Dong M. Efficacy and efficacy-influencing factors of stem cell transplantation on patients with Parkinson’s disease: A systematic review and meta-analysis. Front. Neurol. 2024 15 1329343 10.3389/fneur.2024.1329343 38682036
    [Google Scholar]
  30. Oh K.W. Noh M.Y. Kwon M.S. Kim H.Y. Oh S. Park J. Kim H.J. Ki C.S. Kim S.H. Repeated intrathecal mesenchymal stem cells for amyotrophic lateral sclerosis. Ann. Neurol. 2018 84 3 361 373 10.1002/ana.25302 30048006
    [Google Scholar]
  31. Sykova E. Cizkova D. Kubinova S. Mesenchymal stem cells in treatment of spinal cord injury and amyotrophic lateral sclerosis. Front. Cell Dev. Biol. 2021 9 695900 10.3389/fcell.2021.695900 34295897
    [Google Scholar]
  32. Zalfa C. Rota Nodari L. Vacchi E. Gelati M. Profico D. Boido M. Binda E. De Filippis L. Copetti M. Garlatti V. Daniele P. Rosati J. De Luca A. Pinos F. Cajola L. Visioli A. Mazzini L. Vercelli A. Svelto M. Vescovi A.L. Ferrari D. Transplantation of clinical-grade human neural stem cells reduces neuroinflammation, prolongs survival and delays disease progression in the SOD1 rats. Cell Death Dis. 2019 10 5 345 10.1038/s41419‑019‑1582‑5 31024007
    [Google Scholar]
  33. Sironi F. De Marchi F. Mazzini L. Bendotti C. Cell therapy in ALS: An update on preclinical and clinical studies. Brain Res. Bull. 2023 194 64 81 10.1016/j.brainresbull.2023.01.008 36690163
    [Google Scholar]
  34. Alkhazaali-Ali Z. Sahab-Negah S. Boroumand A.R. Farkhad N.K. Khodadoust M.A. Tavakol-Afshari J. Evaluation of the safety and efficacy of repeated mesenchymal stem cell transplantations in ALS patients by investigating patients’ specific immunological and biochemical biomarkers. Diseases 2024 12 5 99 10.3390/diseases12050099 38785754
    [Google Scholar]
  35. Hemmatian H. Bakker A.D. Klein-Nulend J. van Lenthe G.H. Aging, osteocytes, and mechanotransduction. Curr. Osteoporos. Rep. 2017 15 5 401 411 10.1007/s11914‑017‑0402‑z 28891009
    [Google Scholar]
  36. Lo Coco D. Marchese S. La Bella V. Piccoli T. Lo Coco A. The amyotrophic lateral sclerosis functional rating scale predicts survival time in amyotrophic lateral sclerosis patients on invasive mechanical ventilation. Chest 2007 132 1 64 69 10.1378/chest.06‑2712 17475635
    [Google Scholar]
  37. Lu L. Deng Y. Xu R. Current potential therapeutics of amyotrophic lateral sclerosis. Front. Neurol. 2024 15 1402962 10.3389/fneur.2024.1402962 38721118
    [Google Scholar]
  38. Nam J.Y. Chun S. Lee T.Y. Seo Y. Kim K. Park J. Sung W. Oh K.W. Lee S. Park J.S. Oh J. Chung K.C. An H. Chu H.S. Son B. Kim S.H. Long-term survival benefits of intrathecal autologous bone marrow-derived mesenchymal stem cells (Neuronata-R®: lenzumestrocel) treatment in ALS: Propensity-score-matched control, surveillance study. Front. Aging Neurosci. 2023 15 1148444 10.3389/fnagi.2023.1148444 37122380
    [Google Scholar]
  39. Czaplinski A. Yen A.A. Appel S.H. Forced vital capacity (FVC) as an indicator of survival and disease progression in an ALS clinic population. J. Neurol. Neurosurg. Psychiatry 2005 77 3 390 392 10.1136/jnnp.2005.072660 16484652
    [Google Scholar]
  40. Mazzini L. Fagioli F. Boccaletti R. Mareschi K. Oliveri G. Olivieri C. Pastore I. Marasso R. Madon E. Stem cell therapy in amyotrophic lateral sclerosis: A methodological approach in humans. Amyotroph. Lateral Scler. Other Motor Neuron Disord. 2003 4 3 158 161 10.1080/14660820310014653 13129802
    [Google Scholar]
  41. Oh K.W. Moon C. Kim H.Y. Oh S. Park J. Lee J.H. Chang I.Y. Kim K.S. Kim S.H. Phase I trial of repeated intrathecal autologous bone marrow-derived mesenchymal stromal cells in amyotrophic lateral sclerosis. Stem Cells Transl. Med. 2015 4 6 590 597 10.5966/sctm.2014‑0212 25934946
    [Google Scholar]
  42. Giagnorio E. Malacarne C. Mantegazza R. Bonanno S. Marcuzzo S. MyomiRs and their multifaceted regulatory roles in muscle homeostasis and amyotrophic lateral sclerosis. J. Cell Sci. 2021 134 12 jcs258349 10.1242/jcs.258349 34137441
    [Google Scholar]
  43. Dube U. Del-Aguila J.L. Li Z. Budde J.P. Jiang S. Hsu S. Ibanez L. Fernandez M.V. Farias F. Norton J. Gentsch J. Wang F. Allegri R. Amtashar F. Benzinger T. Berman S. Bodge C. Brandon S. Brooks W. Buck J. Buckles V. Chea S. Chrem P. Chui H. Cinco J. Clifford J. D’Mello M. Donahue T. Douglas J. Edigo N. Erekin-Taner N. Fagan A. Farlow M. Farrar A. Feldman H. Flynn G. Fox N. Franklin E. Fujii H. Gant C. Gardener S. Ghetti B. Goate A. Goldman J. Gordon B. Gray J. Gurney J. Hassenstab J. Hirohara M. Holtzman D. Hornbeck R. DiBari S.H. Ikeuchi T. Ikonomovic S. Jerome G. Jucker M. Kasuga K. Kawarabayashi T. Klunk W. Koeppe R. Kuder-Buletta E. Laske C. Levin J. Marcus D. Martins R. Mason N.S. Maue-Dreyfus D. McDade E. Montoya L. Mori H. Nagamatsu A. Neimeyer K. Noble J. Norton J. Perrin R. Raichle M. Ringman J. Roh J.H. Schofield P. Shimada H. Shiroto T. Shoji M. Sigurdson W. Sohrabi H. Sparks P. Suzuki K. Swisher L. Taddei K. Wang J. Wang P. Weiner M. Wolfsberger M. Xiong C. Xu X. Salloway S. Masters C.L. Lee J-H. Graff-Radford N.R. Chhatwal J.P. Bateman R.J. Morris J.C. Karch C.M. Harari O. Cruchaga C. Dominantly Inherited Alzheimer Network (DIAN) An atlas of cortical circular RNA expression in Alzheimer disease brains demonstrates clinical and pathological associations. Nat. Neurosci. 2019 22 11 1903 1912 10.1038/s41593‑019‑0501‑5 31591557
    [Google Scholar]
  44. Lauria G. Curcio R. Tucci P. A machine learning approach for highlighting microRNAs as biomarkers linked to amyotrophic lateral sclerosis diagnosis and progression. Biomolecules 2023 14 1 47 10.3390/biom14010047 38254647
    [Google Scholar]
  45. Pegoraro V. Merico A. Angelini C. Micro-RNAs in ALS muscle: Differences in gender, age at onset and disease duration. J. Neurol. Sci. 2017 380 58 63 10.1016/j.jns.2017.07.008 28870590
    [Google Scholar]
  46. Chen S.L. Wu C.C. Li N. Weng T.H. Post-transcriptional regulation of myogenic transcription factors during muscle development and pathogenesis. J. Muscle Res. Cell Motil. 2024 45 1 21 39 10.1007/s10974‑023‑09663‑3 38206489
    [Google Scholar]
  47. Sobuś A. Baumert B. Litwińska Z. Gołąb-Janowska M. Stępniewski J. Kotowski M. Pius-Sadowska E. Kawa M.P. Gródecka-Szwajkiewicz D. Peregud-Pogorzelski J. Dulak J. Nowacki P. Machaliński B. Safety and feasibility of lin-cells administration to ALS patients: A novel view on humoral factors and miRNA profiles. Int. J. Mol. Sci. 2018 19 5 1312 10.3390/ijms19051312 29702606
    [Google Scholar]
  48. Williams A.H. Valdez G. Moresi V. Qi X. McAnally J. Elliott J.L. Bassel-Duby R. Sanes J.R. Olson E.N. MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice. Science 2009 326 5959 1549 1554 10.1126/science.1181046 20007902
    [Google Scholar]
  49. Baumert B. Sobuś A. Gołąb-Janowska M. Ulańczyk Z. Paczkowska E. Łuczkowska K. Zawiślak A. Milczarek S. Osękowska B. Meller A. Machowska-Sempruch K. Wełnicka A. Safranow K. Nowacki P. Machaliński B. Local and systemic humoral response to autologous lineage-negative cells intrathecal administration in ALS patients. Int. J. Mol. Sci. 2020 21 3 1070 10.3390/ijms21031070 32041109
    [Google Scholar]
  50. Tasca E. Pegoraro V. Merico A. Angelini C. Circulating microRNAs as biomarkers of muscle differentiation and atrophy in ALS. Clin. Neuropathol. 2016 35 1 22 30 10.5414/NP300889 26588026
    [Google Scholar]
  51. Raheja R. Regev K. Healy B.C. Mazzola M.A. Beynon V. Von Glehn F. Paul A. Diaz-Cruz C. Gholipour T. Glanz B.I. Kivisakk P. Chitnis T. Weiner H.L. Berry J.D. Gandhi R. Correlating serum micrornas and clinical parameters in amyotrophic lateral sclerosis. Muscle Nerve 2018 58 2 261 269 10.1002/mus.26106 29466830
    [Google Scholar]
  52. Malacarne C. Galbiati M. Giagnorio E. Cavalcante P. Salerno F. Andreetta F. Cagnoli C. Taiana M. Nizzardo M. Corti S. Pensato V. Venerando A. Gellera C. Fenu S. Pareyson D. Masson R. Maggi L. Dalla Bella E. Lauria G. Mantegazza R. Bernasconi P. Poletti A. Bonanno S. Marcuzzo S. Dysregulation of muscle-specific microRNAs as common pathogenic feature associated with muscle atrophy in ALS, SMA and SBMA: Evidence from animal models and human patients. Int. J. Mol. Sci. 2021 22 11 5673 10.3390/ijms22115673 34073630
    [Google Scholar]
  53. Daneshafrooz N. Joghataei M.T. Mehdizadeh M. Alavi A. Barati M. Panahi B. Teimourian S. Zamani B. Identification of let-7f and miR-338 as plasma-based biomarkers for sporadic amyotrophic lateral sclerosis using meta-analysis and empirical validation. Sci. Rep. 2022 12 1 1373 10.1038/s41598‑022‑05067‑4 35082326
    [Google Scholar]
  54. Sharma H. Kaushik M. Goswami P. Sreevani S. Chakraborty A. Ashique S. Pal R. Role of miRNAs in brain development. MicroRNA 2024 13 2 96 109 10.2174/0122115366287127240322054519 38571343
    [Google Scholar]
  55. Li C. Wei Q. Gu X. Chen Y. Chen X. Cao B. Ou R. Shang H. Decreased glycogenolysis by miR-338-3p promotes regional glycogen accumulation within the spinal cord of amyotrophic lateral sclerosis mice. Front. Mol. Neurosci. 2019 12 114 10.3389/fnmol.2019.00114 31133799
    [Google Scholar]
  56. De Felice B. Annunziata A. Fiorentino G. Borra M. Biffali E. Coppola C. Cotrufo R. Brettschneider J. Giordana M.L. Dalmay T. Wheeler G. D’Alessandro R. miR-338-3p is over-expressed in blood, CFS, serum and spinal cord from sporadic amyotrophic lateral sclerosis patients. Neurogenetics 2014 15 4 243 253 10.1007/s10048‑014‑0420‑2 25130371
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X330199250106081717
Loading
/content/journals/cscr/10.2174/011574888X330199250106081717
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: autologous bone marrow-derived mesenchymal stem cells ; mir338-3p ; mir206 ; FVC ; CSF ; ALS
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test