Skip to content
2000
Volume 19, Issue 8
  • ISSN: 1574-888X
  • E-ISSN: 2212-3946

Abstract

Background: Angiogenesis and energy metabolism mediated by adipose mesenchymal stem cell-derived exosomes (AMSC-exos) are promising therapeutics for vascular diseases. Objectives: The current study aimed to explore whether AMSC-exos have therapeutic effects on oxygen and glucose deprivation (OGD) human umbilical vein endothelial cells (HUVECs) injury by modulating the SIX1/HBO1 signaling pathway to upregulate endothelial cells (E.C.s) glycolysis and angiogenesis. Methods: AMSC-exos were isolated and characterized following standard protocols. AMSC-exos cytoprotective effects were evaluated in the HUVECs-OGD model. The proliferation, migration, and tube formation abilities of HUVECs were assessed. The glycolysis level was evaluated by detecting lactate production and ATP synthesis. The expressions of HK2, PKM2, VEGF, HIF-1α, SIX1, and HBO1 were determined by western blotting, and finally, the SIX1 overexpression vector or small interfering RNA (siRNA) was transfected into HUVECs to assess the change in HBO1 expression. Results: Our study revealed that AMSC-exos promotes E.C.s survival after OGD, reducing E.C.s apoptosis while strengthening E.C.'s angiogenic ability. AMSC-exos enhanced glycolysis and reduced OGD-induced ECs injury by modulation of the SIX1/HBO1 signaling pathway, which is a novel anti-endothelial cell injury role of AMSC-exos that regulates glycolysis activating the SIX1/HBO1 signaling pathway. Conclusion: The current study findings demonstrate a useful angiogenic therapeutic strategy for AMSC-exos treatment in vascular injury, thus providing new therapeutic ideas for treating ischaemic diseases.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X265623230921045240
2024-09-01
2025-01-07
Loading full text...

Full text loading...

/content/journals/cscr/10.2174/011574888X265623230921045240
Loading

  • Article Type:
    Research Article
Keyword(s): Adipose mesenchymal stem cell; endothelial cells; exosome; glucose; glycolysis; oxygen
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test