Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1573-3971
  • E-ISSN: 1875-6360

Abstract

ATP is involved in numerous physiological functions, such as neurotransmission, modulation, and secretion, as well as in cell proliferation, differentiation, and death. While ATP serves an essential intracellular role as a source of energy, it behaves differently in the extracellular environment, where it acts as a signaling molecule capable of activating specific purinergic receptors (P2YRs and P2XRs) that modulate the response to ATP. Extracellular ATP signaling is a dynamic area of research, with particular interest in ATP’s effects on inflammatory conditions and pain modulation. Clodronate differs from other bisphosphonates that contain an amino group in their structure (N-BPs), and it is metabolized within osteoclasts into a toxic ATP analog, AppCCl2p, which causes mitochondrial dysfunction and osteoclast apoptosis. This characteristic differentiates Clodronate from N-BPs, as the latters act by interfering with the mevalonate pathway. Clodronate has demonstrated anti-inflammatory and analgesic activity in various bone and musculoskeletal diseases through mechanisms involving macrophages, neutrophils, peripheral nociceptors, and the central nervous system. ATP produced inside cells is accumulated within transport vesicles, where it penetrates a VNUT channel and is then released extracellularly, playing an active role in acute and chronic inflammatory processes, neurotransmission of pain, and liver disease regulation. Clodronate influences these processes due to its strong inhibitory effect on VNUT-mediated ATP release. The aim of this review is to highlight the therapeutic potential offered by appropriate modulation of cellular ATP release and the inhibitory effects of Clodronate on the channel through which ATP penetrates transport vesicles.

Loading

Article metrics loading...

/content/journals/crr/10.2174/0115733971358895241216112008
2025-01-03
2026-02-21
Loading full text...

Full text loading...

References

  1. BurnstockG. Introduction to purinergic signaling.Methods Mol. Biol.2020204111510.1007/978‑1‑4939‑9717‑6_131646477
    [Google Scholar]
  2. GhildyalP. ManchandaR. Neurotransmission by ATP: New insights, novel mechanisms.Indian J. Biochem. Biophys.200239313714722905383
    [Google Scholar]
  3. BurnstockG. Purinergic signalling: Pathophysiology and therapeutic potential.Keio J. Med.2013623637310.2302/kjm.2013‑0003‑RE24067872
    [Google Scholar]
  4. PellegA. SirtoriE. RollandJ.F. MahadevanA. DT-0111: A novel P2X3 receptor antagonist.Purinergic Signal.202319346747910.1007/s11302‑023‑09930‑536944825
    [Google Scholar]
  5. AbbracchioM.P. BurnstockG. VerkhratskyA. ZimmermannH. Purinergic signalling in the nervous system: An overview.Trends Neurosci.2009321192910.1016/j.tins.2008.10.00119008000
    [Google Scholar]
  6. MahmoodA. IqbalJ. Purinergic receptors modulators: An emerging pharmacological tool for disease management.Med. Res. Rev.20224241661170310.1002/med.2188835561109
    [Google Scholar]
  7. OliveiraÁ. IllesP. UlrichH. Purinergic receptors in embryonic and adult neurogenesis.Neuropharmacology201610427228110.1016/j.neuropharm.2015.10.00826456352
    [Google Scholar]
  8. BurnstockG. Purine and purinergic receptors.Brain Neurosci. Adv.20182239821281881749410.1177/239821281881749432166165
    [Google Scholar]
  9. HaddadM. CherchiF. AlsalemM. Al-sarairehY.M. Madae’enS. Adenosine receptors as potential therapeutic analgesic targets.Int. J. Mol. Sci.202324171316010.3390/ijms24171316037685963
    [Google Scholar]
  10. Al-AqtashR. CollierD.M. Ionotropic purinergic receptor 7 (P2X7) channel structure and pharmacology provides insight regarding non-nucleotide agonism.Channels (Austin)2024181235515010.1080/19336950.2024.235515038762911
    [Google Scholar]
  11. MoriyamaY. NomuraM. Clodronate: A vesicular ATP release blocker.Trends Pharmacol. Sci.2018391132310.1016/j.tips.2017.10.00729146440
    [Google Scholar]
  12. RussellR.G.G. RogersM.J. Bisphosphonates: From the laboratory to the clinic and back again.Bone19992519710610.1016/S8756‑3282(99)00116‑710423031
    [Google Scholar]
  13. ReszkaA.A. RodanG.A. Mechanism of action of bisphosphonates.Curr. Osteoporos. Rep.200312455210.1007/s11914‑003‑0008‑516036064
    [Google Scholar]
  14. FredianiB. GiustiA. BianchiG. Dalle CarbonareL. MalavoltaN. CantariniL. SaviolaG. MolfettaL. Clodronate in the management of different musculoskeletal conditions.Minerva Med.2018109430032510.23736/S0026‑4806.18.05688‑429947493
    [Google Scholar]
  15. SaviolaG. Abdi-AliL. CominiL. Dalle-CarbonareL.G. Use of clodronate in the management of osteoarthritis: An update.J. Biol. Regul. Homeost. Agents20193351315132031591875
    [Google Scholar]
  16. FredianiB. ToscanoC. FalsettiP. NicosiaA. PierguidiS. MiglioreA. GiannottiS. CantariniL. ConticiniE. Intramuscular clodronate in long-term treatment of symptomatic knee osteoarthritis: A randomized controlled study.Drugs R D.2020201394510.1007/s40268‑020‑00294‑432078147
    [Google Scholar]
  17. SaviolaG. Da CampoG. BianchiniM.C. Abdi-AliL. CominiL. RosiniS. MolfettaL. Intra-articular clodronate in patients with knee osteoarthritis non-responder to intra-articular hyaluronic acid - A case report series of 9 patients with 8-month follow-up.Clin. Ter.2023174324524810.7417/CT.2023.252837199358
    [Google Scholar]
  18. OkadaS. KiyamaT. SatoE. Inhibition of phosphate transporters ameliorates the inflammatory and necrotic side effects of the nitrogen-containing bisphosphonate zoledronate in mice.Tohoku J. Exp. Med.2013231214515810.1620/tjem.231.145
    [Google Scholar]
  19. ShimaK. NemotoW. TsuchiyaM. Tan-NoK. Takano-YamamotoT. SugawaraS. EndoY. The bisphosphonates clodronate and etidronate exert analgesic effects by acting on glutamate- and/or ATP-related pain transmission pathways.Biol. Pharm. Bull.201639577077710.1248/bpb.b15‑0088227150146
    [Google Scholar]
  20. McCloskeyE. PatersonA.H. PowlesT. KanisJ.A. Clodronate.Bone202114311571510.1016/j.bone.2020.11571533127577
    [Google Scholar]
  21. ThompsonK. RogersM.J. CoxonF.P. CrockettJ.C. Cytosolic entry of bisphosphonate drugs requires acidification of vesicles after fluid-phase endocytosis.Mol. Pharmacol.20066951624163210.1124/mol.105.02077616501031
    [Google Scholar]
  22. MassE. The stunning clodronate.J. Exp. Med.20232206e2023033910.1084/jem.2023033936976179
    [Google Scholar]
  23. SpellbergB. EdwardsJ.E.Jr Type 1/type 2 immunity in infectious diseases.Clin. Infect. Dis.20013217610210.1086/31753711118387
    [Google Scholar]
  24. ZhangX. MorrisonD.C. Lipopolysaccharide-induced selective priming effects on tumor necrosis factor alpha and nitric oxide production in mouse peritoneal macrophages.J. Exp. Med.1993177251151610.1084/jem.177.2.5118426119
    [Google Scholar]
  25. MartinezF.O. HelmingL. GordonS. Alternative activation of macrophages: An immunologic functional perspective.Annu. Rev. Immunol.200927145148310.1146/annurev.immunol.021908.13253219105661
    [Google Scholar]
  26. RosiniS. SaviolaG. CominiL. MolfettaL. Mesenchymal cells are a promising -but still unsatisfying- anti- inflammatory therapeutic strategy for osteoarthritis: A narrative review.Curr. Rheumatol. Rev.202319328729310.2174/157339711866622092814162436173057
    [Google Scholar]
  27. Shapouri-MoghaddamA. MohammadianS. VaziniH. TaghadosiM. EsmaeiliS.A. MardaniF. SeifiB. MohammadiA. AfshariJ.T. SahebkarA. Macrophage plasticity, polarization, and function in health and disease.J. Cell. Physiol.201823396425644010.1002/jcp.2642929319160
    [Google Scholar]
  28. BurnstockG. Purinergic signalling: Past, present and future.Braz. J. Med. Biol. Res.20084213810.1590/S0100‑879X200800500003718853040
    [Google Scholar]
  29. PicciniA. CartaS. TassiS. LasigliéD. FossatiG. RubartelliA. ATP is released by monocytes stimulated with pathogen-sensing receptor ligands and induces IL-1β and IL-18 secretion in an autocrine way.Proc. Natl. Acad. Sci. USA2008105238067807210.1073/pnas.070968410518523012
    [Google Scholar]
  30. CorridenR InselPA Basal release of ATP: An autocrine- paracrine mechanism for cell regulation.Science Signaling201031041210.1126/scisignal.3104re1
    [Google Scholar]
  31. SperlághB. HaskóG. NémethZ. ViziE.S. ATP released by LPS increases nitric oxideproduction in raw 264.7 macrophage cell line via P2ZP2X7 receptors.Neurochem. Int.199833320921510.1016/S0197‑0186(98)00025‑49759915
    [Google Scholar]
  32. WangJ. TakemuraN. SaitohT. Macrophage response driven by extracellular ATP.Biol. Pharm. Bull.202144559960410.1248/bpb.b20‑0083133952816
    [Google Scholar]
  33. KatoY. OhsugiK. FukunoY. IwatsukiK. HaradaY. MiyajiT. Vesicular nucleotide transporter is a molecular target of eicosapentaenoic acid for neuropathic and inflammatory pain treatment.Proc. Natl. Acad. Sci. USA202211930e212215811910.1073/pnas.212215811935858418
    [Google Scholar]
  34. HagelauerN. PabstA.M. ZiebartT. UlbrichH. WalterC. in vitro effects of bisphosphonates on chemotaxis, phagocytosis, and oxidative burst of neutrophil granulocytes.Clin. Oral Investig.201519113914810.1007/s00784‑014‑1219‑024668343
    [Google Scholar]
  35. HyvönenP.M. KowolikM.J. Modification by clodronate and fluoride of hydroxyapatite-induced neutrophil chemiluminescence in vitro .J. Clin. Lab. Immunol.199546263728789129
    [Google Scholar]
  36. NusslerA.K. WittelU.A. NusslerN.C. BegerH.G. Leukocytes, the Janus cells in inflammatory disease.Langenbecks Arch. Surg.1999384222223210.1007/s00423005019610328179
    [Google Scholar]
  37. MalechH.L. DeLeoF.R. QuinnM.T. The role of neutrophils in the immune system: An overview.Methods Mol. Biol.2020208731010.1007/978‑1‑0716‑0154‑9_131728979
    [Google Scholar]
  38. HaradaY. KatoY. MiyajiT. OmoteH. MoriyamaY. HiasaM. Vesicular nucleotide transporter mediates ATP release and migration in neutrophils.J. Biol. Chem.2018293103770377910.1074/jbc.M117.81016829363573
    [Google Scholar]
  39. RosiniS. RosiniS. SaviolaG. MolfettaL. Adenosine triphosphate: A new player in complex regional pain syndrome type 1.Minerva Med.202410.23736/S0026‑4806.24.09345‑539101383
    [Google Scholar]
  40. KatoY. HiasaM. IchikawaR. HasuzawaN. KadowakiA. IwatsukiK. ShimaK. EndoY. KitaharaY. InoueT. NomuraM. OmoteH. MoriyamaY. MiyajiT. Identification of a vesicular ATP release inhibitor for the treatment of neuropathic and inflammatory pain.Proc. Natl. Acad. Sci. USA201711431E6297E630510.1073/pnas.170484711428720702
    [Google Scholar]
  41. IllesP. UlrichH. ChenJ.F. TangY. Purinergic receptors in cognitive disturbances.Neurobiol. Dis.202318510622910.1016/j.nbd.2023.10622937453562
    [Google Scholar]
  42. KohnoK. TsudaM. Role of microglia and P2X4 receptors in chronic pain.Pain Rep.202161e86410.1097/PR9.000000000000086433981920
    [Google Scholar]
  43. KohnoK. ShirasakaR. YoshiharaK. MikuriyaS. TanakaK. TakanamiK. InoueK. SakamotoH. OhkawaY. MasudaT. TsudaM. A spinal microglia population involved in remitting and relapsing neuropathic pain.Science20223766588869010.1126/science.abf680535357926
    [Google Scholar]
  44. InoueK. Microglia in neuropathic pain.Adv. Neurobiol.20243739940310.1007/978‑3‑031‑55529‑9_2239207704
    [Google Scholar]
  45. UlmannL. HatcherJ.P. HughesJ.P. ChaumontS. GreenP.J. ConquetF. BuellG.N. ReeveA.J. ChessellI.P. RassendrenF. Up-regulation of P2X4 receptors in spinal microglia after peripheral nerve injury mediates BDNF release and neuropathic pain.J. Neurosci.20082844112631126810.1523/JNEUROSCI.2308‑08.200818971468
    [Google Scholar]
  46. InoueK. Role of the P2X4 receptor in neuropathic pain.Curr. Opin. Pharmacol.201947333910.1016/j.coph.2019.02.00130878800
    [Google Scholar]
  47. CaloviS. Mut-ArbonaP. SperlághB. Microglia and the purinergic signaling system.Neuroscience201940513714710.1016/j.neuroscience.2018.12.02130582977
    [Google Scholar]
  48. SmithP.A. BDNF in neuropathic pain; The culprit that cannot be apprehended.Neuroscience2024543496410.1016/j.neuroscience.2024.02.02038417539
    [Google Scholar]
  49. KleinK. AeschlimannA. JordanS. GayR. GayS. SprottH. ATP induced brain-derived neurotrophic factor expression and release from osteoarthritis synovial fibroblasts is mediated by purinergic receptor P2X4.PLoS One201275e3669310.1371/journal.pone.003669322715356
    [Google Scholar]
  50. NaviauxR.K. Metabolic features of the cell danger response.Mitochondrion20141671710.1016/j.mito.2013.08.00623981537
    [Google Scholar]
  51. YeS.S. TangY. SongJ.T. ATP and adenosine in the retina and retinal diseases.Front. Pharmacol.20211265444510.3389/fphar.2021.65444534211393
    [Google Scholar]
  52. RawishE. LangerH.F. Platelets and the role of P2X receptors in nociception, pain, neuronal toxicity and thromboinflammation.Int. J. Mol. Sci.20222312658510.3390/ijms2312658535743029
    [Google Scholar]
  53. InoueK. The role of ATP receptors in pain signaling.Neurochem. Res.20224792454246810.1007/s11064‑021‑03516‑635094248
    [Google Scholar]
  54. MoehringF. CowieA.M. MenzelA.D. WeyerA.D. GrzybowskiM. ArzuaT. GeurtsA.M. PalyginO. StuckyC.L. Keratinocytes mediate innocuous and noxious touch via ATP-P2X4 signaling.eLife20187e3168410.7554/eLife.3168429336303
    [Google Scholar]
  55. TakahashiT. KimuraY. NiwaK. OhmiyaY. FujimuraT. YamasakiK. AibaS. In vivo imaging demonstrates ATP release from murine keratinocytes and its involvement in cutaneous inflammation after tape stripping.J. Invest. Dermatol.2013133102407241510.1038/jid.2013.16323552799
    [Google Scholar]
  56. FerrariD. CascianoF. SecchieroP. RealiE. Purinergic signaling and inflammasome activation in psoriasis pathogenesis.Int. J. Mol. Sci.20212217944910.3390/ijms2217944934502368
    [Google Scholar]
  57. MaruyamaK. TakayamaY. SugisawaE. YamanoiY. YokawaT. KondoT. IshibashiK. SahooB.R. TakemuraN. MoriY. KanemaruH. KumagaiY. MartinoM.M. YoshiokaY. NishijoH. TanakaH. SasakiA. OhnoN. IwakuraY. MoriyamaY. NomuraM. AkiraS. TominagaM. The ATP transporter VNUT mediates induction of dectin-1-triggered candida nociception.iScience2018630631810.1016/j.isci.2018.08.00730240621
    [Google Scholar]
  58. HasuzawaN. MoriyamaS. MoriyamaY. NomuraM. Physiopathological roles of vesicular nucleotide transporter (VNUT), an essential component for vesicular ATP release.Biochim. Biophys. Acta Biomembr.202018621218340810.1016/j.bbamem.2020.18340832652056
    [Google Scholar]
  59. MizuharaM. Kometani-GunjigakeK. Nakao-KuroishiK. ToyonoT. HitomiS. MoriiA. ShigaM. SetaY. OnoK. KawamotoT. Vesicular nucleotide transporter mediates adenosine triphosphate release in compressed human periodontal ligament fibroblast cells and participates in tooth movement-induced nociception in rats.Arch. Oral Biol.202011010460710.1016/j.archoralbio.2019.10460731810015
    [Google Scholar]
  60. HasuzawaN. TatsushimaK. WangL. KabashimaM. TokubuchiR. NagayamaA. AshidaK. OgawaY. MoriyamaY. NomuraM. Clodronate, an inhibitor of the vesicular nucleotide transporter, ameliorates steatohepatitis and acute liver injury.Sci. Rep.2021111519210.1038/s41598‑021‑83144‑w33664289
    [Google Scholar]
  61. BurnstockG. VaughnB. RobsonS.C. Purinergic signalling in the liver in health and disease.Purinergic Signal.2014101517010.1007/s11302‑013‑9398‑824271096
    [Google Scholar]
  62. VaughnB.P. RobsonS.C. BurnstockG. Pathological roles of purinergic signaling in the liver.J. Hepatol.201257491692010.1016/j.jhep.2012.06.00822709619
    [Google Scholar]
/content/journals/crr/10.2174/0115733971358895241216112008
Loading
/content/journals/crr/10.2174/0115733971358895241216112008
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test