Skip to content
2000
image of Innovative Therapies and Strategies for Rheumatoid Arthritis

Abstract

Background

Rheumatoid arthritis (RA) is a chronic inflammatory disease that requires early detection and treatment. Currently, we have three categories of slow-acting disease-modifying antirheumatic drugs (DMARDs): (1) conventional synthetic (csDMARD), (2) biologic (bDMARD), and (3) directed or targeted synthetic (tsDMARD).

Objective

This review explores innovative therapeutic modalities for RA, discussing their potential advantages and challenges. The objective is to assess the safety, efficacy, and feasibility of these novel therapies to improve the quality of life for RA patients. Also, focus has been laid on non-pharmacologic modalities in comparison to pharmacologic modalities.

Results

This review discusses several innovative therapies for RA, including acrylamide derivatives, coumarin derivatives, JAK1-selective inhibitors, monoclonal antibody adjuvants with methotrexate, the pros, and cons of NRF2 activation as adjunctive therapy, glucocorticoids, bioactive molecules, combination therapy, gene therapy, and other therapies. Each approach presents unique advantages and challenges, reflecting the complexity of RA and the need for personalized treatment strategies.

Conclusion

Ongoing research and clinical trials are crucial for assessing the safety, efficacy, and feasibility of these novel therapies. By overcoming the limitations of conventional treatments and tailoring treatment approaches to individual patients, these innovative therapies have the potential to enhance the quality of life for RA patients.

Loading

Article metrics loading...

/content/journals/crr/10.2174/0115733971340845250120054856
2025-01-27
2025-05-11
Loading full text...

Full text loading...

References

  1. Safiri S. Kolahi A.A. Hoy D. Smith E. Bettampadi D. Mansournia M.A. Hashiani A.A. Asgarabad A.A. Lakeh M.M. Qorbani M. Collins G. Woolf A.D. March L. Cross M. Global, regional and national burden of rheumatoid arthritis 1990–2017: a systematic analysis of the global burden of disease study 2017. Ann. Rheum. Dis. 2019 78 11 1463 1471 10.1136/annrheumdis‑2019‑215920 31511227
    [Google Scholar]
  2. Pianarosa E. Chomistek K. Hsiao R. Anwar S. Umaefulam V. Hazlewood G. Barnabe C. Global rural and remote patients with rheumatoid arthritis: a systematic review. Arthritis Care Res. 2022 74 4 598 606 10.1002/acr.24513 33181001
    [Google Scholar]
  3. Ciofoaia E.I. Pillarisetty A. Constantinescu F. Health disparities in rheumatoid arthritis. Ther. Adv. Musculoskelet. Dis. 2022 14 1759720X221137127 10.1177/1759720X221137127 36419481
    [Google Scholar]
  4. Black R.J. Cross M. Haile L.M. Culbreth G.T. Steinmetz J.D. Hagins H. Kopec J.A. Brooks P.M. Woolf A.D. Ong K.L. Giles K.D.R. Dreinhoefer K.E. Betteridge N. Aali A. Abbasifard M. Kangevari A.M. Abdurehman A.M. Abedi A. Abidi H. Aboagye R.G. Abolhassani H. Gharbieh A.E. Zaid A.A. Adamu K. Addo I.Y. Adesina M.A. Adnani Q.E.S. Afzal M.S. Ahmed A. Aithala J.P. Akhlaghdoust M. Alemayehu A. Alvand S. Zakzuk A.N.J. Amu H. Antony B. Arabloo J. Aravkin A.Y. Arulappan J. Ashraf T. Athari S.S. Azadnajafabad S. Badawi A. Baghcheghi N. Baig A.A. Balta A.B. Banach M. Banik P.C. Barrow A. Bashiri A. Bearne L.M. Bekele A. Bensenor I.M. Berhie A.Y. Bhagavathula A.S. Bhardwaj P. Bhat A.N. Bhojaraja V.S. Bitaraf S. Bodicha B.B.A. Botelho J.S. Briggs A.M. Buchbinder R. Orjuela C.C.A. Charalampous P. Chattu V.K. Coberly K. Martins C.N. Dadras O. Dai X. Luca D.K. Dessalegn F.N. Dessie G. Dhimal M. Digesa L.E. Diress M. Doku P.N. Edinur H.A. Ekholuenetale M. Elhadi M. Sherbiny E.Y.M. Etaee F. Ezzeddini R. Faghani S. Filip I. Fischer F. Fukumoto T. Ganesan B. Gebremichael M.A. Gerema U. Getachew M.E. Ghashghaee A. Gill T.K. Gupta B. Gupta S. Gupta V.B. Gupta V.K. Halwani R. Hannan M.A. Haque S. Harlianto N.I. Harorani M. Hasaballah A.I. Hassen M.B. Hay S.I. Hayat K. Heidari G. Hezam K. Hill C.L. Hiraike Y. Horita N. Hoveidaei A.H. Hsiao A.K. Hsieh E. Hussain S. Iavicoli I. Ilic I.M. Islam S.M.S. Ismail N.E. Iwagami M. Jakovljevic M. Jani C.T. Jeganathan J. Joseph N. Kadashetti V. Kandel H. Kanko T.K. Karaye I.M. Khajuria H. Khan M.J. Khan M.A.B. Khanali J. Khatatbeh M.M. Khubchandani J. Kim Y.J. Kisa A. Kolahi A-A. Kompani F. Koohestani H.R. Koyanagi A. Krishan K. Kuddus M. Kumar N. Kuttikkattu A. Larijani B. Lim S.S. Lo J. Machado V.S. Mahajan P.B. Majeed A. Rad M.E. Malik A.A. Mansournia M.A. Mathews E. Mendes J.J. Mentis A-F.A. Mesregah M.K. Mestrovic T. Mirghaderi S.P. Mirrakhimov E.M. Misganaw A. Mohamadkhani A. Mohammed S. Mokdad A.H. Moniruzzaman M. Montasir A.A. Mulu G.B. Zamora M.E. Murray C.J.L. Mustafa G. Naghavi M. Nair T.S. Naqvi A.A. Natto Z.S. Nayak B.P. Neupane S. Nguyen C.T. Niazi R.K. Nzoputam O.J. Oh I-H. Aliabad O.H. Okonji O.C. Olufadewa I.I. Owolabi M.O. Barrios P.K. Padubidri J.R. Patel J. Pathan A.R. Pawar S. Pedersini P. Perianayagam A. Petcu I-R. Qattea I. Radfar A. Rafiei A. Rahman M.H.U. Rahmanian V. Rashedi V. Rashidi M-M. Ratan Z.A. Rawaf S. Razeghinia M.S. Redwan E.M.M. Renzaho A.M.N. Rezaei N. Rezaei N. Riad A. Saad A.M.A. Saddik B. Saeed U. Safary A. Sahebazzamani M. Sahebkar A. Sahoo H. Farrokhi S.A. Saqib M.A.N. Seylani A. Shahabi S. Shaikh M.A. Shashamo B.B. Shetty A. Shetty J.K. Shigematsu M. Shivarov V. Shobeiri P. Sibhat M.M. Sinaei E. Singh A. Singh J.A. Singh P. Singh S. Siraj M.S. Skryabina A.A. Slater H. Smith A.E. Solomon Y. Zangbar S.M.S. Tabish M. Tan K-K. Tat N.Y. Banihashemi T.A. Tharwat S. Palone T.M.R. Tusa B.S. Tahbaz V.S. Valdez P.R. Valizadeh R. Vaziri S. Vollset S.E. Wu A-M. Yada D.Y. Yehualashet S.S. Yonemoto N. You Y. Yunusa I. Zangiabadian M. Zare I. Zarrintan A. Zhang Z-J. Zhong C. Zoladl M. Vos T. March L.M. Global, regional, and national burden of rheumatoid arthritis, 1990–2020, and projections to 2050: a systematic analysis of the global burden of disease study 2021. Lancet Rheumatol. 2023 5 10 e594 e610 10.1016/S2665‑9913(23)00211‑4 37795020
    [Google Scholar]
  5. Chopra A. Nasser A.A. Epidemiology of rheumatic musculoskeletal disorders in the developing world. Best Pract. Res. Clin. Rheumatol. 2008 22 4 583 604 10.1016/j.berh.2008.07.001 18783739
    [Google Scholar]
  6. Lwin M.N. Serhal L. Holroyd C. Edwards C.J. Rheumatoid arthritis: the impact of mental health on disease: a narrative review. Rheumatol. Ther. 2020 7 3 457 471 10.1007/s40744‑020‑00217‑4 32535834
    [Google Scholar]
  7. UpToDate Diagnosis and differential diagnosis of rheumatoid arthritis. Available from: https://www.uptodate.com/contents/diagnosis-and-differential-diagnosis-of-rheumatoid-arthritis/print 2024
  8. Schett G. Gravallese E. Bone erosion in rheumatoid arthritis: mechanisms, diagnosis and treatment. Nat. Rev. Rheumatol. 2012 8 11 656 664 10.1038/nrrheum.2012.153 23007741
    [Google Scholar]
  9. Anwar M.M. Tariq E.F. Khan U. Zaheer M. Ijaz S.H. Rheumatoid vasculitis: Is it always a late manifestation of rheumatoid arthritis? Cureus 2019 11 9 e5790 10.7759/cureus.5790 31728237
    [Google Scholar]
  10. Goldring S.R. Osteoporosis associated with rheumatologic disorders. Osteoporosis. Academic Press 2001 351 362 10.1016/B978‑012370544‑0.50058‑6
    [Google Scholar]
  11. Kishore S. Maher L. Majithia V. Rheumatoid vasculitis: a diminishing yet devastating menace. Curr. Rheumatol. Rep. 2017 19 7 39 10.1007/s11926‑017‑0667‑3 28631066
    [Google Scholar]
  12. MacGregor A.J. Characterizing the quantitative genetic contribution to rheumatoid arthritis using data from twins. Arthritis Rheum 2000 43 30 7
    [Google Scholar]
  13. Sevcikova L. Babjakova J. Jurkovicova J. Samohyl M. Stefanikova Z. Machacova E. Vondrova D. Janekova E. Hirosova K. Filova A. Weitzman M. Argalasova L. Exposure to environmental tobacco smoke in relation to behavioral, emotional, social and health indicators of Slovak school children. Int. J. Environ. Res. Public Health 2018 15 7 1374 10.3390/ijerph15071374 29966330
    [Google Scholar]
  14. Kurkó J. Besenyei T. Laki J. Glant T.T. Mikecz K. Szekanecz Z. Genetics of rheumatoid arthritis - A comprehensive review. Clin. Rev. Allergy Immunol. 2013 45 2 170 179 10.1007/s12016‑012‑8346‑7 23288628
    [Google Scholar]
  15. Arleevskaya M.I. Kravtsova O.A. Lemerle J. Renaudineau Y. Tsibulkin A.P. How rheumatoid arthritis can result from provocation of the immune system by microorganisms and viruses. Front. Microbiol. 2016 7 1296 10.3389/fmicb.2016.01296 27582741
    [Google Scholar]
  16. Dong Y. Yao J. Deng Q. Li X. He Y. Ren X. Zheng Y. Song R. Zhong X. Ma J. Shan D. Lv F. Wang X. Yuan R. She G. Relationship between gut microbiota and rheumatoid arthritis: A bibliometric analysis. Front. Immunol. 2023 14 1131933 10.3389/fimmu.2023.1131933 36936921
    [Google Scholar]
  17. Bullock J. Rizvi S.A.A. Saleh A.M. Ahmed S.S. Do D.P. Ansari R.A. Ahmed J. Rheumatoid arthritis: A brief overview of the treatment. Med. Princ. Pract. 2018 27 6 501 507 10.1159/000493390 30173215
    [Google Scholar]
  18. Guo Q. Wang Y. Xu D. Nossent J. Pavlos N.J. Xu J. Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies. Bone Res. 2018 6 1 15 10.1038/s41413‑018‑0016‑9 29736302
    [Google Scholar]
  19. Albiero L.R. Andrade D.M.F. Marchi L.F. Librandi L.A.P. Rinhel F.A.S.G. Carvalho C.A. Kabeya L.M. Oliveira D.R.D.R. Azzolini A.E.C.S. Pupo M.T. Emery S.F. Valim L.Y.M. Immunomodulating action of the 3-phenylcoumarin derivative 6,7-dihydroxy-3-[3′,4′-methylenedioxyphenyl]-coumarin in neutrophils from patients with rheumatoid arthritis and in rats with acute joint inflammation. Inflamm. Res. 2020 69 1 115 130 10.1007/s00011‑019‑01298‑w 31786615
    [Google Scholar]
  20. Kondo N. Kuroda T. Kobayashi D. Cytokine networks in the pathogenesis of rheumatoid arthritis. Int. J. Mol. Sci. 2021 b 22 20 10922 10.3390/ijms222010922 34681582
    [Google Scholar]
  21. Luo P. Wang P. Xu J. Hou W. Xu P. Xu K. Liu L. Immunomodulatory role of T helper cells in rheumatoid arthritis. Bone Joint Res. 2022 11 7 426 438 10.1302/2046‑3758.117.BJR‑2021‑0594.R1 35775145
    [Google Scholar]
  22. Ding Q. Hu W. Wang R. Yang Q. Zhu M. Li M. Cai J. Rose P. Mao J. Zhu Y.Z. Signaling pathways in rheumatoid arthritis: implications for targeted therapy. Signal Transduct. Target. Ther. 2023 8 1 68 10.1038/s41392‑023‑01331‑9 36797236
    [Google Scholar]
  23. Chemin K. Gerstner C. Malmström V. Effector functions of CD4+ T cells at the site of local autoimmune inflammation—lessons from rheumatoid arthritis. Front. Immunol. 2019 10 353 10.3389/fimmu.2019.00353 30915067
    [Google Scholar]
  24. Takeshita M. Suzuki K. Kondo Y. Morita R. Okuzono Y. Koga K. Kassai Y. Gamo K. Takiguchi M. Kurisu R. Mototani H. Ebisuno Y. Yoshimura A. Takeuchi T. Multi-dimensional analysis identified rheumatoid arthritis-driving pathway in human T cell. Ann. Rheum. Dis. 2019 78 10 1346 1356 10.1136/annrheumdis‑2018‑214885 31167762
    [Google Scholar]
  25. Sun W. Zhu C. Li Y. Wu X. Shi X. Liu W. B cell activation and autoantibody production in autoimmune diseases. Best Pract. Res. Clin. Rheumatol. 2024 38 2 101936 10.1016/j.berh.2024.101936 38326197
    [Google Scholar]
  26. Nandakumar K.S. Fang Q. Ågren W.I. Bejmo Z.F. Aberrant activation of immune and Non-Immune cells contributes to joint inflammation and bone degradation in rheumatoid arthritis. Int. J. Mol. Sci. 2023 24 21 15883 10.3390/ijms242115883 37958864
    [Google Scholar]
  27. Su D.L. Lu Z.M. Shen M.N. Li X. Sun L.Y. Roles of pro- and anti-inflammatory cytokines in the pathogenesis of SLE. J. Biomed. Biotechnol. 2012 2012 1 15 10.1155/2012/347141 22500087
    [Google Scholar]
  28. Avramidis G.P. Avramidou M.P. Papakostas G.A. Rheumatoid arthritis diagnosis: deep learning vs. humane. Appl. Sci. 2021 12 1 10 10.3390/app12010010
    [Google Scholar]
  29. Bridges S.L. National institute of arthritis and musculoskeletal and skin diseases. Arthritis Res. Ther. 2000 2 1 0003 10.1186/ar‑2000‑2‑webreport0003
    [Google Scholar]
  30. Ragab O.M. Zayed H.S. Abdelaleem E.A. Girgis A.E. Effect of early treatment with disease-modifying anti-rheumatic drugs and treatment adherence on disease outcome in rheumatoid arthritis patients. Egypt. Rheumatol. 2017 39 2 69 74 10.1016/j.ejr.2016.11.004
    [Google Scholar]
  31. Chan E.S.L. Cronstein B.N. Molecular action of methotrexate in inflammatory diseases. Arthritis Res. 2002 4 4 266 273 10.1186/ar419 12106498
    [Google Scholar]
  32. Nielsen O.H. Bukhave K. Elmgreen J. Rønne A.I. Inhibition of 5-lipoxygenase pathway of arachidonic acid metabolism in human neutrophils by sulfasalazine and 5-aminosalicylic acid. Dig. Dis. Sci. 1987 32 6 577 582 10.1007/BF01296156 2882965
    [Google Scholar]
  33. Breedveld F.C. Dayer J.M. Leflunomide: mode of action in the treatment of rheumatoid arthritis. Ann. Rheum. Dis. 2000 59 11 841 849 10.1136/ard.59.11.841 11053058
    [Google Scholar]
  34. Neto R.E.T. Kakehasi A.M. Pinheiro M.M. Ferreira G.A. Marques C.D.L. Mota D.L.M.H. Paiva S.E. Pileggi G.C.S. Sato E.I. Reis A.P.M.G. Xavier R.M. Provenza J.R. Revisiting hydroxychloroquine and chloroquine for patients with chronic immunity-mediated inflammatory rheumatic diseases. Adv. Rheumatol. 2020 60 1 32 10.1186/s42358‑020‑00134‑8 32517786
    [Google Scholar]
  35. Atenza Z.C. Torne D.C. Geli C. Lopez D.C. Ortiz M.A. Moya P. Castellví I. Nieto J.C. Cantó E. Casademont J. Juarez C. Llobet J.M. Vidal S. Adalimumab regulates intracellular TNFα production in patients with rheumatoid arthritis. Arthritis Res. Ther. 2014 16 4 R153 10.1186/ar4615 25037855
    [Google Scholar]
  36. Miserocchi E. Pontikaki I. Modorati G. Gattinara M. Meroni P.L. Gerloni V. Anti-CD 20 monoclonal antibody (rituximab) treatment for inflammatory ocular diseases. Autoimmun. Rev. 2011 11 1 35 39 10.1016/j.autrev.2011.07.001 21763790
    [Google Scholar]
  37. Korhonen R. Moilanen E. Abatacept, a novel CD80/86-CD28 T cell co-stimulation modulator, in the treatment of rheumatoid arthritis. Basic Clin. Pharmacol. Toxicol. 2009 104 4 276 284 10.1111/j.1742‑7843.2009.00375.x 19228144
    [Google Scholar]
  38. Mihara M. Ohsugi Y. Kishimoto T. Tocilizumab, a humanized anti-interleukin-6 receptor antibody, for treatment of rheumatoid arthritis. Open Access Rheumatol. 2011 3 19 29 10.2147/OARRR.S17118 27790001
    [Google Scholar]
  39. Cohen S.B. The use of anakinra, an interleukin-1 receptor antagonist, in the treatment of rheumatoid arthritis. Rheum. Dis. Clin. North Am. 2004 30 2 365 380, vii 10.1016/j.rdc.2004.01.005 15172046
    [Google Scholar]
  40. Padjen I. Crnogaj R.M. Anić B. Conventional disease-modifying agents in rheumatoid arthritis – A review of their current use and role in treatment algorithms. Reumatologia 2020 58 6 390 400 10.5114/reum.2020.101400 33456082
    [Google Scholar]
  41. Rückemann K. Fairbanks L.D. Carrey E.A. Hawrylowicz C.M. Richards D.F. Kirschbaum B. Simmonds H.A. Leflunomide inhibits pyrimidine de novo synthesis in mitogen-stimulated T-lymphocytes from healthy humans. J. Biol. Chem. 1998 b 273 34 21682 21691 10.1074/jbc.273.34.21682 9705303
    [Google Scholar]
  42. Kahlenberg J.M. Fox D.A. Advances in the medical treatment of rheumatoid arthritis. Hand Clin. 2011 27 1 11 20 10.1016/j.hcl.2010.09.002 21176795
    [Google Scholar]
  43. Beaumont H.G. Calatrava M.M.J. Castañeda S. Abatacept mechanism of action: concordance with its clinical profile. Reumatol. Clín. 2012 8 2 78 83 10.1016/j.reuma.2011.08.002 22104048
    [Google Scholar]
  44. Das B.K. Role of radiosynovectomy in the treatment of rheumatoid arthritis and hemophilic arthropathies. Biij 2007 3 4 e45 10.2349/biij.3.4.e45 21614297
    [Google Scholar]
  45. Radu A.F. Bungau S.G. Management of rheumatoid arthritis: an overview. Cells 2021 10 11 2857 10.3390/cells10112857 34831081
    [Google Scholar]
  46. Bindu S. Mazumder S. Bandyopadhyay U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective. Biochem. Pharmacol. 2020 180 114147 10.1016/j.bcp.2020.114147 32653589
    [Google Scholar]
  47. Suissa S. Ernst P. Hudson M. Bitton A. Kezouh A. Newer disease-modifying antirheumatic drugs and the risk of serious hepatic adverse events in patients with rheumatoid arthritis. Am. J. Med. 2004 117 2 87 92 10.1016/j.amjmed.2004.02.032 15234643
    [Google Scholar]
  48. Kraev K. Popova G.M.G. Hristov B.K. Uchikov P.A. Popova B.S.D. Kraeva M.I. Kraeva B.Y.M. Stoyanova N.S. Hristova M.V.T. Ivanova K.M.S. Taneva D.I. Ivanov A.S. Examining the safety profile of janus kinase (JAK) inhibitors in the management of immune-mediated diseases: a comprehensive review. Life 2023 13 12 2244 10.3390/life13122244 38137845
    [Google Scholar]
  49. Rice J.B. White A.G. Scarpati L.M. Wan G. Nelson W.W. Long-term systemic corticosteroid exposure: a systematic literature review. Clin. Ther. 2017 39 11 2216 2229 10.1016/j.clinthera.2017.09.011 29055500
    [Google Scholar]
  50. Volkow N.D. McLellan A.T. Opioid abuse in chronic pain — misconceptions and mitigation strategies. N. Engl. J. Med. 2016 374 13 1253 1263 10.1056/NEJMra1507771 27028915
    [Google Scholar]
  51. Zeng F. Li S. Yang G. Luo Y. Qi T. Liang Y. Yang T. Zhang L. Wang R. Zhu L. Li H. Xu X. Design, synthesis, molecular modeling, and biological evaluation of acrylamide derivatives as potent inhibitors of human dihydroorotate dehydrogenase for the treatment of rheumatoid arthritis. Acta Pharm. Sin. B 2021 11 3 795 809 10.1016/j.apsb.2020.10.008 33078092
    [Google Scholar]
  52. Wang D. Miller S.C. Liu X.M. Anderson B. Wang X.S. Goldring S.R. Novel dexamethasone-HPMA copolymer conjugate and its potential application in treatment of rheumatoid arthritis. Arthritis Res. Ther. 2007 9 1 R2 10.1186/ar2106 17233911
    [Google Scholar]
  53. Naeem A. Yu C. Liu Y. Feng Y. Fan J. Guan Y. Study of gelatin-grafted-2-acrylamido-2-methylpropane sulfonic acid hydrogels as a controlled release vehicle for amorphous solid dispersion of tripterygium wilfordii bioactive constituents. Arab. J. Chem. 2023 16 10 105139 10.1016/j.arabjc.2023.105139
    [Google Scholar]
  54. Vyas V.K. Ghate M. Recent developments in the medicinal chemistry and therapeutic potential of dihydroorotate dehydrogenase (DHODH) inhibitors. Mini Rev. Med. Chem. 2011 11 12 1039 1055 10.2174/138955711797247707 21861807
    [Google Scholar]
  55. Miao Y. Yang J. Yun Y. Sun J. Wang X. Synthesis and anti-rheumatoid arthritis activities of 3-(4-aminophenyl)-coumarin derivatives. J. Enzyme Inhib. Med. Chem. 2021 36 1 450 461 10.1080/14756366.2021.1873978 33557646
    [Google Scholar]
  56. Fairhurst A.M. Wallace P.K. Jawad A.S.M. Goulding N.J. Rheumatoid peripheral blood phagocytes are primed for activation but have impaired Fc-mediated generation of reactive oxygen species. Arthritis Res. Ther. 2007 9 2 R29 10.1186/ar2144 17355628
    [Google Scholar]
  57. Kornicka A. Balewski Ł. Lahutta M. Kokoszka J. Umbelliferone and its synthetic derivatives as suitable molecules for the development of agents with biological activities: a review of their pharmacological and therapeutic potential. Pharmaceuticals 2023 16 12 1732 10.3390/ph16121732 38139858
    [Google Scholar]
  58. Wanwimolruk S. Birkett D.J. Brooks P.M. Protein binding of some non-steroidal anti-inflammatory drugs in rheumatoid arthritis. Clin. Pharmacokinet. 1982 7 1 85 92 10.2165/00003088‑198207010‑00005 7075085
    [Google Scholar]
  59. Crader M.F. Johns T. Arnold J.K. Warfarin drug interactions. Treasure Island, FL StatPearls 2024
    [Google Scholar]
  60. Chough C. Joung M. Lee S. Lee J. Kim J.H. Kim B.M. Development of selective inhibitors for the treatment of rheumatoid arthritis: (R)-3-(3-(Methyl(7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)pyrrolidin-1-yl)-3-oxopropanenitrile as a JAK1-selective inhibitor. Bioorg. Med. Chem. 2018 26 8 1495 1510 10.1016/j.bmc.2018.01.021 29452839
    [Google Scholar]
  61. Angelini J. Talotta R. Roncato R. Fornasier G. Barbiero G. Cin D.L. Brancati S. Scaglione F. JAK-Inhibitors for the treatment of rheumatoid arthritis: a focus on the present and an outlook on the future. Biomolecules 2020 10 7 1002 10.3390/biom10071002 32635659
    [Google Scholar]
  62. Feist E. Fatenejad S. Grishin S. Korneva E. Luggen M.E. Nasonov E. Samsonov M. Smolen J.S. Fleischmann R.M. Olokizumab, a monoclonal antibody against interleukin-6, in combination with methotrexate in patients with rheumatoid arthritis inadequately controlled by tumour necrosis factor inhibitor therapy: efficacy and safety results of a randomised controlled phase III study. Ann. Rheum. Dis. 2022 81 12 1661 1668 10.1136/ard‑2022‑222630 36109142
    [Google Scholar]
  63. Mease P.J. Gladman D.D. Kavanaugh A. McGonagle D. Nash P. Guerette B. Articular and extra-articular benefits in ACR20 non-responders at week 104 treated with apremilast: pooled analysis of three randomized controlled trials. Rheumatol Ther 2021 8 4 1677 1691
    [Google Scholar]
  64. Mazurov V.I. Korolev M.A. Prystrom A.M. Kunder E.V. Soroka N.F. Kastanayan A.A. Povarova T.V. Plaksina T.V. Antipova O.V. Kretchikova D.G. Smakotina S.A. Tciupa O.A. Puntus E.V. Raskina T.A. Shilova L.N. Kropotina T.V. Nesmeyanova O.B. Popova T.A. Vinogradova I.B. Linkova Y.N. Dokukina E.A. Plotnikova A.V. Pukhtinskaia P.S. Orikhan Z.A.V. Eremeeva A.V. Lutckii A.A. Effectiveness and safety of levilimab in combination with methotrexate in treatment of patients with active rheumatoid arthritis resistant to methotrexate monotherapy (double-blinded randomized placebo controlled phase III clinical study SOLAR). Mod. Rheumatol. J. 2021 15 4 13 23 10.14412/1996‑7012‑2021‑4‑13‑23
    [Google Scholar]
  65. Association for Accessible Medicines The U.S. Generic & biosimilars medicines savings report. Available from: https://accessiblemeds.org/sites/default/files/2022-09/AAM-2022-Generic-Biosimilar-Medicines-Savings-Report 2022
    [Google Scholar]
  66. Association for Accessible Medicines The U.S. Generic & biosimilars medicines savings report. Available from: https://accessiblemeds.org/sites/default/files/2022-09/AAM-2022-Generic-Biosimilar-Medicines-Savings-Report 2022
    [Google Scholar]
  67. Avci A.B. Feist E. Burmester G.R. Targeting IL-6 or IL-6 receptor in rheumatoid arthritis: What have we learned? BioDrugs 2024 38 1 61 71 10.1007/s40259‑023‑00634‑1 37989892
    [Google Scholar]
  68. Gao Y. Gao Y. Wang M. Zhang Y. Zhang F. He Z. Chen W. Li H. Xie Z. Wen C. Efficacy and safety of tofacitinib combined with methotrexate in the treatment of rheumatoid arthritis: A systematic review and meta-analysis. Heliyon 2023 9 5 e15839 10.1016/j.heliyon.2023.e15839 37215854
    [Google Scholar]
  69. Manda G Milanesi E Genc S Niculite CM Neagoe IV Tastan B Pros and cons of NRF2 activation as adjunctive therapy in rheumatoid arthritis. Free Rad. Biol. Med. 2022 190 179 201 10.1016/j.freeradbiomed.2022.08.012
    [Google Scholar]
  70. Zhang A. Suzuki T. Adachi S. Yoshida E. Sakaguchi S. Yamamoto M. Nrf2 activation improves experimental rheumatoid arthritis. Free Radic. Biol. Med. 2023 207 279 295 10.1016/j.freeradbiomed.2023.07.016 37494986
    [Google Scholar]
  71. Hua C. Buttgereit F. Combe B. Glucocorticoids in rheumatoid arthritis: current status and future studies. RMD Open 2020 6 1 e000536 10.1136/rmdopen‑2017‑000536 31958273
    [Google Scholar]
  72. Collatz M.B. Rüdel R. Brinkmeier H. Intracellular calcium chelator BAPTA protects cells against toxic calcium overload but also alters physiological calcium responses. Cell Calcium 1997 21 6 453 459 10.1016/S0143‑4160(97)90056‑7 9223681
    [Google Scholar]
  73. Lin Y.J. Anzaghe M. Schülke S. Update on the pathomechanism, diagnosis, and treatment options for rheumatoid arthritis. Cells 2020 9 4 880 10.3390/cells9040880 32260219
    [Google Scholar]
  74. Jing X. Wang Q. Du T. Zhang W. Liu X. Liu Q. Li T. Wang G. Chen F. Cui X. Calcium chelator BAPTA‑AM protects against iron overload‑induced chondrocyte mitochondrial dysfunction and cartilage degeneration. Int. J. Mol. Med. 2021 48 4 196 10.3892/ijmm.2021.5029 34468013
    [Google Scholar]
  75. Chen P.K. Tang K.T. Chen D.Y. The NLRP3 inflammasome as a pathogenic player showing therapeutic potential in rheumatoid arthritis and its comorbidities: A Narrative review. Int. J. Mol. Sci. 2024 25 1 626 10.3390/ijms25010626 38203796
    [Google Scholar]
  76. Li W. Wang K. Liu Y. Wu H. He Y. Li C. Wang Q. Su X. Yan S. Su W. Zhang Y. Lin N. A novel drug combination of mangiferin and cinnamic acid alleviates rheumatoid arthritis by inhibiting TLR4/NFKB/NLRP3 activation-induced pyroptosis. Front. Immunol. 2022 13 912933 10.3389/fimmu.2022.912933 35799788
    [Google Scholar]
  77. Xu Y. Chen F. Acid-sensing ion channel-1A in articular chondrocytes and synovial fibroblasts: a novel therapeutic target for rheumatoid arthritis. Front. Immunol. 2021 11 580936 10.3389/fimmu.2020.580936 33584647
    [Google Scholar]
  78. Vyawahare A. Jori C. Kumar J. Kanika N. Fareed M. Ali N. Parida K. Khan R. A chlorogenic acid-conjugated nanomicelle attenuates disease severity in experimental arthritis. Biomater. Sci. 2024 12 13 3335 3344 10.1039/D3BM02129G 38787761
    [Google Scholar]
  79. Kang B.S. Choi B.Y. Kho A.R. Lee S.H. Hong D.K. Jeong J.H. Kang D.H. Park M.K. Suh S.W. An inhibitor of the sodium–hydrogen exchanger-1 (NHE-1), amiloride, reduced zinc accumulation and hippocampal neuronal death after ischemia. Int. J. Mol. Sci. 2020 21 12 4232 10.3390/ijms21124232 32545865
    [Google Scholar]
  80. Wang X. Zhu Y. Zheng S. Ni C. Zhao L. Liu C. Chen A. Xiao J. Amiloride inhibits osteoclastogenesis by suppressing nuclear factor-κB and mitogen-activated protein kinase activity in receptor activator of nuclear factor-κB-induced RAW264.7 cells. Mol. Med. Rep. 2015 11 5 3451 3456 10.3892/mmr.2015.3204 25592168
    [Google Scholar]
  81. Nawaz A. Jamal A. Arif A. Kiran S. Arshad S. Shahid M.N. Shamim Z. Quercetin and chlorogenic acid as bioactive compounds show promising docking site interaction and reveal these bioactive compounds as potential targets for rheumatoid arthritis. Inform. Med. Unlocked 2023 43 101388 10.1016/j.imu.2023.101388
    [Google Scholar]
  82. Huang J. Xie M. He L. Song X. Cao T. Chlorogenic acid: a review on its mechanisms of anti-inflammation, disease treatment, and related delivery systems. Front. Pharmacol. 2023 14 1218015 10.3389/fphar.2023.1218015 37781708
    [Google Scholar]
  83. Ge G. Bai J. Wang Q. Liang X. Tao H. Chen H. Wei M. Niu J. Yang H. Xu Y. Hao Y. Xue Y. Geng D. Punicalagin ameliorates collagen-induced arthritis by downregulating M1 macrophage and pyroptosis via NF-κB signaling pathway. Sci. China Life Sci. 2022 65 3 588 603 10.1007/s11427‑020‑1939‑1 34125371
    [Google Scholar]
  84. Huang M. Wu K. Zeng S. Liu W. Cui T. Chen Z. Lin L. Chen D. Ouyang H. Punicalagin inhibited inflammation and migration of Fibroblast-Like synoviocytes through NF-KB pathway in the experimental study of rheumatoid arthritis. J. Inflamm. Res. 2021 14 1901 1913 10.2147/JIR.S302929 34012288
    [Google Scholar]
  85. Cao J.F. Yang X. Xiong L. Wu M. Chen S. Xu H. Gong Y. Zhang L. Zhang Q. Zhang X. Exploring the mechanism of action of dapansutrile in the treatment of gouty arthritis based on molecular docking and molecular dynamics. Front. Physiol. 2022 13 990469 10.3389/fphys.2022.990469 36105284
    [Google Scholar]
  86. Roškar S. Bratkovič H.I. The role of inflammasomes in osteoarthritis and secondary joint degeneration diseases. Life 2022 12 5 731 10.3390/life12050731 35629398
    [Google Scholar]
  87. Marchetti C. Swartzwelter B. Gamboni F. Neff C.P. Richter K. Azam T. Carta S. Tengesdal I. Nemkov T. D’Alessandro A. Henry C. Jones G.S. Goodrich S.A. Laurent S.J.P. Jones T.M. Scribner C.L. Barrow R.B. Altman R.D. Skouras D.B. Gattorno M. Grau V. Janciauskiene S. Rubartelli A. Joosten L.A.B. Dinarello C.A. OLT1177, a β-sulfonyl nitrile compound, safe in humans, inhibits the NLRP3 inflammasome and reverses the metabolic cost of inflammation. Proc. Natl. Acad. Sci. 2018 115 7 E1530 E1539 10.1073/pnas.1716095115 29378952
    [Google Scholar]
  88. Toldo S. Mauro A.G. Cutter Z. Tassell V.B.W. Mezzaroma E. Buono D.M.G. Prestamburgo A. Potere N. Abbate A. The NLRP3 inflammasome inhibitor, OLT1177 (Dapansutrile), reduces infarct size and preserves contractile function after ischemia reperfusion injury in the mouse. J. Cardiovasc. Pharmacol. 2019 73 4 215 222 10.1097/FJC.0000000000000658 30747785
    [Google Scholar]
  89. Demarco B. Danielli S. Fischer F.A. Bezbradica J.S. How pyroptosis contributes to inflammation and fibroblast-macrophage cross-talk in rheumatoid arthritis. Cells 2022 11 8 1307 10.3390/cells11081307 35455985
    [Google Scholar]
  90. Li Y. Meng Q. Yang M. Liu D. Hou X. Tang L. Wang X. Lyu Y. Chen X. Liu K. Yu A.M. Zuo Z. Bi H. Current trends in drug metabolism and pharmacokinetics. Acta Pharm. Sin. B 2019 9 6 1113 1144 10.1016/j.apsb.2019.10.001 31867160
    [Google Scholar]
  91. Wu D. Li Y. Xu R. Can pyroptosis be a new target in rheumatoid arthritis treatment? Front. Immunol. 2023 14 1155606 10.3389/fimmu.2023.1155606 37426634
    [Google Scholar]
  92. Chen S. Luo Z. Chen X. Hsa_circ_0044235 regulates the pyroptosis of rheumatoid arthritis via mir-135b-5p-sirt1 axis. Cell Cycle 2021 20 12 1107 1121 10.1080/15384101.2021.1916272 34097558
    [Google Scholar]
  93. Wohlford G.F. Tassell V.B.W. Billingsley H.E. Kadariya D. Canada J.M. Carbone S. Mihalick V.L. Bonaventura A. Vecchié A. Chiabrando J.G. Bressi E. Thomas G. Ho A.C. Marawan A.A. Dell M. Trankle C.R. Turlington J. Markley R. Abbate A. Phase 1B, randomized, double-blinded, dose escalation, single-center, repeat dose safety and pharmacodynamics study of the oral NLRP3 inhibitor dapansutrile in subjects with NYHA II–III systolic heart failure. J. Cardiovasc. Pharmacol. 2021 77 1 49 60 10.1097/FJC.0000000000000931 33235030
    [Google Scholar]
  94. Ali A. Rahul N. Jori C. Kumar J. Kumar A. Kanika N. Ansari M.M. Ahmad A. Ali N. Yadav P. Parvez S. Navik U. Son Y.O. Khan R. Sinapic acid-pullulan based inflammation responsive nanomicelles for the local treatment of experimental inflammatory arthritis. Int. J. Biol. Macromol. 2024 278 Pt 3 134903 10.1016/j.ijbiomac.2024.134903 39168211
    [Google Scholar]
  95. Ali A. Jori C. Kanika Kumar A. Vyawahare A. Kumar J. Kumar B. Ahmad A. Fareed M. Ali N. Navik U. Khan R. A bioactive and biodegradable vitamin C stearate-based injectable hydrogel alleviates experimental inflammatory arthritis. Biomater. Sci. 2024 12 13 3389 3400 10.1039/D4BM00243A 38804911
    [Google Scholar]
  96. Jori C. Biomaterials-based combinatorial approach of aescin comprised zein coated gelatin nanoparticles alleviates synovial inflammation in experimental inflammatory arthritis. Nanoscale 2024 16 16 7965 7975 10.1039/D3NR06476J 38567436
    [Google Scholar]
  97. Vyawahare A. Prakash R. Jori C. Ali A. Raza S.S. Khan R. Caffeic acid modified nanomicelles inhibit articular cartilage deterioration and reduce disease severity in experimental inflammatory arthritis. ACS Nano 2022 16 11 18579 18591 10.1021/acsnano.2c07027 36222569
    [Google Scholar]
  98. Tortorella S. Maturi M. Buratti V.V. Vozzolo G. Locatelli E. Sambri L. Franchini C.M. Zein as a versatile biopolymer: different shapes for different biomedical applications. RSC Advances 2021 11 62 39004 39026 10.1039/D1RA07424E 35492476
    [Google Scholar]
  99. Liu X. Zhang M. Zhou X. Wan M. Cui A. Xiao B. Yang J. Liu H. Research advances in Zein-based nano-delivery systems. Front. Nutr. 2024 11 1379982 10.3389/fnut.2024.1379982 38798768
    [Google Scholar]
  100. Ansari M.M. Ahmad A. Mishra R.K. Raza S.S. Khan R. Zinc gluconate-loaded chitosan nanoparticles reduce severity of collagen-induced arthritis in wistar rats. ACS Biomater. Sci. Eng. 2019 5 7 3380 3397 10.1021/acsbiomaterials.9b00427 33405580
    [Google Scholar]
  101. Smolen J.S. Landewé R.B.M. Bergstra S.A. Kerschbaumer A. Sepriano A. Aletaha D. Caporali R. Edwards C.J. Hyrich K.L. Pope J.E. Souza D.S. Stamm T.A. Takeuchi T. Verschueren P. Winthrop K.L. Balsa A. Bathon J.M. Buch M.H. Burmester G.R. Buttgereit F. Cardiel M.H. Chatzidionysiou K. Codreanu C. Cutolo M. Broeder D.A.A. Aoufy E.K. Finckh A. Fonseca J.E. Gottenberg J.E. Haavardsholm E.A. Iagnocco A. Lauper K. Li Z. McInnes I.B. Mysler E.F. Nash P. Poor G. Ristic G.G. Rivellese F. Roth R.A. Koops S.H. Stoilov N. Strangfeld A. Mil H.A. Duuren V.E. Vlieland V.T.P.M. Westhovens R. Heijde V.D. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2022 update. Ann. Rheum. Dis. 2023 82 1 3 18 10.1136/ard‑2022‑223356 36357155
    [Google Scholar]
  102. Tsitrouli Z. Akritidou M.A. Genitsaris S. Willigen G. Treatment of rheumatoid arthritis with gene therapy applications: biosafety and bioethical considerations. BioTech 2021 10 3 11 10.3390/biotech10030011 35822765
    [Google Scholar]
  103. Jiang J.M. Mo M.L. Long X.P. Xie L.H. MiR-144-3p induced by SP1 promotes IL-1β-induced pyroptosis in chondrocytes via PTEN/PINK1/Parkin axis. Autoimmunity 2022 55 1 21 31 10.1080/08916934.2021.1983802 34730058
    [Google Scholar]
  104. Ren C. Chen J. Che Q. Jia Q. Lu H. Qi X. Zhang X. Shu Q. IL-37 alleviates TNF-α-induced pyroptosis of rheumatoid arthritis fibroblast-like synoviocytes by inhibiting the NF-κB/GSDMD signaling pathway. Immunobiology 2023 228 3 152382 10.1016/j.imbio.2023.152382 37075579
    [Google Scholar]
  105. Ma J. Meng Q. Zhan J. Wang H. Fan W. Wang Y. Zhang S. Bian H. Zheng F. Paeoniflorin suppresses rheumatoid arthritis development via modulating the CIRC-FAM120A/MIR-671-5P/MDM4 axis. Inflammation 2021 44 6 2309 2322 10.1007/s10753‑021‑01504‑0 34423389
    [Google Scholar]
  106. Hong Z. Zhang X. Zhang T. Hu L. Liu R. Wang P. Wang H. Yu Q. Mei D. Xue Z. Zhang F. Zhang L. The ROS/GRK2/HIF-1A/NLRP3 pathway mediates pyroptosis of Fibroblast-Like synoviocytes and the regulation of monomer derivatives of paeoniflorin. Oxid. Med. Cell. Longev. 2022 2022 1 15 10.1155/2022/4566851 35132350
    [Google Scholar]
  107. Smolen J.S. Landewé R.B.M. Bijlsma J.W.J. Burmester G.R. Dougados M. Kerschbaumer A. McInnes I.B. Sepriano A. Vollenhoven V.R.F. Wit D.M. Aletaha D. Aringer M. Askling J. Balsa A. Boers M. Broeder D.A.A. Buch M.H. Buttgereit F. Caporali R. Cardiel M.H. Cock D.D. Codreanu C. Cutolo M. Edwards C.J. Hustings E.Y. Emery P. Finckh A. Gossec L. Gottenberg J.E. Hetland M.L. Huizinga T.W.J. Koloumas M. Li Z. Mariette X. Ladner M.U. Mysler E.F. Silva D.J.A.P. Poór G. Pope J.E. Roth R.A. Witrand R.A. Saag K.G. Strangfeld A. Takeuchi T. Voshaar M. Westhovens R. van der Heijde D. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update. Ann. Rheum. Dis. 2020 79 6 685 699 10.1136/annrheumdis‑2019‑216655 31969328
    [Google Scholar]
  108. Ghosh S. Brown A.M. Jenkins C. Campbell K. Viral vector systems for gene therapy: a comprehensive literature review of progress and biosafety challenges. Appl. Biosaf. 2020 25 1 7 18 10.1177/1535676019899502 36033383
    [Google Scholar]
  109. Broeren M.G.A. Vries D.M. Bennink M.B. Arntz O.J. Blom A.B. Koenders M.I. Lent V.P.L.E.M. van der Kraan P.M. van den Berg W.B. van de Loo F.A.J. Disease-regulated gene therapy with anti-inflammatory interleukin-10 under the control of the CXCL10 promoter for the treatment of rheumatoid arthritis. Hum. Gene Ther. 2016 27 3 244 254 10.1089/hum.2015.127 26711533
    [Google Scholar]
  110. Deviatkin A.A. Vakulenko Y.A. Akhmadishina L.V. Tarasov V.V. Beloukhova M.I. Zamyatnin A.A. Jr Lukashev A.N. Emerging concepts and challenges in rheumatoid arthritis gene therapy. Biomedicines 2020 8 1 9 10.3390/biomedicines8010009 31936504
    [Google Scholar]
  111. Biswas M. Kumar S.R.P. Terhorst C. Herzog R.W. Gene therapy with regulatory T cells: a beneficial alliance. Front. Immunol. 2018 9 554 10.3389/fimmu.2018.00554 29616042
    [Google Scholar]
  112. Li T. Yang Y. Qi H. Cui W. Zhang L. Fu X. He X. Liu M. Li P. Yu T. CRISPR/Cas9 therapeutics: progress and prospects. Signal Transduct. Target. Ther. 2023 8 1 36 10.1038/s41392‑023‑01309‑7 36646687
    [Google Scholar]
  113. Baker C. Hayden M.S. Gene editing in dermatology: Harnessing CRISPR for the treatment of cutaneous disease. F1000 Res. 2020 9 281 10.12688/f1000research.23185.1 32528662
    [Google Scholar]
  114. Kim S. Hupperetz C. Lim S. Kim C.H. Genome editing of immune cells using CRISPR/Cas9. BMB Rep. 2021 54 1 59 69 10.5483/BMBRep.2021.54.1.245 33298251
    [Google Scholar]
  115. Liu W. Li L. Jiang J. Wu M. Lin P. Applications and challenges of CRISPR-Cas gene-editing to disease treatment in clinics. Precis. Clin. Med. 2021 4 3 179 191 10.1093/pcmedi/pbab014 34541453
    [Google Scholar]
  116. Larson R.C. Kann M.C. Bailey S.R. Haradhvala N.J. Llopis P.M. Bouffard A.A. Scarfó I. Leick M.B. Grauwet K. Berger T.R. Stewart K. Anekal P.V. Jan M. Joung J. Schmidts A. Ouspenskaia T. Law T. Regev A. Getz G. Maus M.V. CAR T cell killing requires the IFNγR pathway in solid but not liquid tumours. Nature 2022 604 7906 563 570 10.1038/s41586‑022‑04585‑5 35418687
    [Google Scholar]
  117. Langevitz P. Livneh A. Bank I. Pras M. Benefits and risks of minocycline in rheumatoid arthritis. Drug Saf. 2000 22 5 405 414 10.2165/00002018‑200022050‑00007 10830256
    [Google Scholar]
  118. Mejias S.G. Ramphul K. Penicillamine. Treasure Island, FL StatPearls 2024
    [Google Scholar]
  119. Almazor S.M.E. Spooner C. Belseck E. Azathioprine for treating rheumatoid arthritis. Cochrane Libr. 2000 2010 1 CD001461 10.1002/14651858.CD001461 11034720
    [Google Scholar]
  120. Raza K. Buckley C.E. Salmon M. Buckley C.D. Treating very early rheumatoid arthritis. Best Pract. Res. Clin. Rheumatol. 2006 20 5 849 863 10.1016/j.berh.2006.05.005 16980210
    [Google Scholar]
  121. Teimouri A. Ahmadi S.R. Ardakani A.S. Foroughian M. Cyclosporine-a-based immunosuppressive therapy-induced neurotoxicity: a case report. Open Access Emerg. Med. 2020 12 93 97 10.2147/OAEM.S241501 32431553
    [Google Scholar]
  122. Lin Y Oji S Miyamoto K Narita T Kameyama M Matsuo H Real-world application of plasmapheresis for neurological disease: results from the Japan-plasmapheresis outcome and practice patterns study. Ther. Apher. Dial. 2023 27 1 123 135 10.1111/1744‑9987.13906
    [Google Scholar]
  123. Almazor S.M.E. Belseck E. Shea B. Tugwell P. Wells G.A. Cyclophosphamide for treating rheumatoid arthritis. Cochrane Libr. 2000 2010 7 CD001157 10.1002/14651858.CD001157 11034702
    [Google Scholar]
  124. Arumugham V.B. Rayi A. Intravenous immunoglobulin (IVIG). Available from: https://www.ncbi.nlm.nih.gov/books/NBK554446/ 2024
  125. Majnik J. Nagy C.N. Böcskei G. Bender T. Nagy G. Non-pharmacological treatment in difficult-to-treat rheumatoid arthritis. Front. Med. 2022 9 991677 10.3389/fmed.2022.991677 36106320
    [Google Scholar]
  126. Roodenrijs N.M.T. Hamar A. Kedves M. Nagy G. Laar V.J.M. van der Heijde D. Welsing P.M.J. Pharmacological and non-pharmacological therapeutic strategies in difficult-to-treat rheumatoid arthritis: a systematic literature review informing the EULAR recommendations for the management of difficult-to-treat rheumatoid arthritis. RMD Open 2021 7 1 e001512 10.1136/rmdopen‑2020‑001512 33419871
    [Google Scholar]
/content/journals/crr/10.2174/0115733971340845250120054856
Loading
/content/journals/crr/10.2174/0115733971340845250120054856
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test