Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1573-3971
  • E-ISSN: 1875-6360

Abstract

Gouty arthritis is a common arthritic disease caused by the deposition of monosodium urate crystals in the joints and the tissues around it. The main pathogenesis of gout is the inflammation caused by the deposition of monosodium urate crystals. Omics studies help us evaluate global changes in gout during recent years, but most studies used only a single omics approach to illustrate the mechanisms of gout. In this review, we review the genomics, transcriptomics, epigenetics, proteomics, and metabolomics of gout, observing that different genes, DNA methylation, miRNAs, LncRNAs, circRNAs, proteins, and metabolites are found between hyperuricemia, acute gout arthritis, and chronic gout arthritis, and some of them are associated with disease activity, prognosis or treatment, which help us broaden our understanding of the pathogenesis and provide important clues for valuable biomarkers. To our knowledge, this is the first study that combines all omics studies from genomics to metabolomics and may serve as a reference for future studies to identify the key underlying pathways in gout.

Loading

Article metrics loading...

/content/journals/crr/10.2174/0115733971329652241119060025
2025-01-13
2026-02-21
Loading full text...

Full text loading...

References

  1. RoddyE. DohertyM. Gout. Epidemiology of gout.Arthritis Res. Ther.201012622310.1186/ar319921205285
    [Google Scholar]
  2. BodofskyS. MerrimanT.R. ThomasT.J. SchlesingerN. Advances in our understanding of gout as an auto-inflammatory disease.Semin. Arthritis Rheum.20205051089110010.1016/j.semarthrit.2020.06.01532916560
    [Google Scholar]
  3. MattiuzziC. LippiG. Recent updates on worldwide gout epidemiology.Clin. Rheumatol.20203941061106310.1007/s10067‑019‑04868‑931836936
    [Google Scholar]
  4. DehlinM. JacobssonL. RoddyE. Global epidemiology of gout: Prevalence, incidence, treatment patterns and risk factors.Nat. Rev. Rheumatol.202016738039010.1038/s41584‑020‑0441‑132541923
    [Google Scholar]
  5. SinghJ.A. GaffoA. Gout epidemiology and comorbidities.Semin. Arthritis Rheum.2020503S11S1610.1016/j.semarthrit.2020.04.00832620196
    [Google Scholar]
  6. ChenG. ChengJ. YuH. HuangX. BaoH. QinL. WangL. SongY. LiuX. PengA. Quantitative proteomics by iTRAQ-PRM based reveals the new characterization for gout.Proteome Sci.20211911210.1186/s12953‑021‑00180‑034635120
    [Google Scholar]
  7. BardinT. RichetteP. Impact of comorbidities on gout and hyperuricaemia: An update on prevalence and treatment options.BMC Med.201715112310.1186/s12916‑017‑0890‑928669352
    [Google Scholar]
  8. GuptaM.K. SinghJ.A. Cardiovascular disease in gout and the protective effect of treatments including urate-lowering therapy.Drugs201979553154110.1007/s40265‑019‑01081‑530868398
    [Google Scholar]
  9. XuY.T. LengY.R. LiuM.M. DongR.F. BianJ. YuanL.L. ZhangJ. XiaY.Z. KongL.Y. MicroRNA and long noncoding RNA involvement in gout and prospects for treatment.Int. Immunopharmacol.20208710684210.1016/j.intimp.2020.10684232738598
    [Google Scholar]
  10. JeongH. ChangY.S. JeonC.H. Gout comorbidities: Results from the Korean National health and nutrition examination survey.Adv. Rheumatol.20246417610.1186/s42358‑024‑00413‑839334489
    [Google Scholar]
  11. CipollettaE. NakaferoG. RichetteP. AveryA.J. MamasM.A. TataL.J. AbhishekA. Short-term risk of cardiovascular events in people newly diagnosed with gout.Arthritis Rheumatol.2024art.42986Epub ahead of print10.1002/art.4298639279144
    [Google Scholar]
  12. SilP. WicklumH. SurellC. RadaB. Macrophage-derived IL-1β enhances monosodium urate crystal-triggered NET formation.Inflamm. Res.201766322723710.1007/s00011‑016‑1008‑027853847
    [Google Scholar]
  13. DesaiJ. SteigerS. AndersH.J. Molecular pathophysiology of gout.Trends Mol. Med.201723875676810.1016/j.molmed.2017.06.00528732688
    [Google Scholar]
  14. MajorT.J. DalbethN. StahlE.A. MerrimanT.R. An update on the genetics of hyperuricaemia and gout.Nat. Rev. Rheumatol.201814634135310.1038/s41584‑018‑0004‑x29740155
    [Google Scholar]
  15. TsengC.C. LiaoW.T. WongM.C. ChenC.J. LeeS.C. YenJ.H. ChangS.J. Cell lineage-specific methylome and genome alterations in gout.Aging (Albany NY)20211333843386510.18632/aging.20235333493135
    [Google Scholar]
  16. Phipps-GreenA.J. Hollis-MoffattJ.E. DalbethN. MerrimanM.E. ToplessR. GowP.J. HarrisonA.A. HightonJ. JonesP.B.B. StampL.K. MerrimanT.R. A strong role for the ABCG2 gene in susceptibility to gout in New Zealand Pacific Island and Caucasian, but not Māori, case and control sample sets.Hum. Mol. Genet.201019244813481910.1093/hmg/ddq41220858603
    [Google Scholar]
  17. MerrimanT.R. DalbethN. The genetic basis of hyperuricaemia and gout.Joint Bone Spine2011781354010.1016/j.jbspin.2010.02.02720472486
    [Google Scholar]
  18. ReginatoA.M. MountD.B. YangI. ChoiH.K. The genetics of hyperuricaemia and gout.Nat. Rev. Rheumatol.201281061062110.1038/nrrheum.2012.14422945592
    [Google Scholar]
  19. KöttgenA. AlbrechtE. TeumerA. VitartV. KrumsiekJ. HundertmarkC. PistisG. RuggieroD. O’SeaghdhaC.M. HallerT. YangQ. TanakaT. JohnsonA.D. KutalikZ. SmithA.V. ShiJ. StruchalinM. MiddelbergR.P.S. BrownM.J. GaffoA.L. PirastuN. LiG. HaywardC. ZemunikT. HuffmanJ. YengoL. ZhaoJ.H. DemirkanA. FeitosaM.F. LiuX. MalerbaG. LopezL.M. van der HarstP. LiX. KleberM.E. HicksA.A. NolteI.M. JohanssonA. MurgiaF. WildS.H. BakkerS.J.L. PedenJ.F. DehghanA. SteriM. TenesaA. LagouV. SaloP. ManginoM. RoseL.M. LehtimäkiT. WoodwardO.M. OkadaY. TinA. MüllerC. OldmeadowC. PutkuM. CzamaraD. KraftP. FrogheriL. ThunG.A. GrotevendtA. GislasonG.K. HarrisT.B. LaunerL.J. McArdleP. ShuldinerA.R. BoerwinkleE. CoreshJ. SchmidtH. SchallertM. MartinN.G. MontgomeryG.W. KuboM. NakamuraY. TanakaT. MunroeP.B. SamaniN.J. JacobsD.R.Jr LiuK. D’AdamoP. UliviS. RotterJ.I. PsatyB.M. VollenweiderP. WaeberG. CampbellS. DevuystO. NavarroP. KolcicI. HastieN. BalkauB. FroguelP. EskoT. SalumetsA. KhawK.T. LangenbergC. WarehamN.J. IsaacsA. KrajaA. ZhangQ. WildP.S. ScottR.J. Hollidaye.g. OrgE. ViigimaaM. BandinelliS. MetterJ.E. LupoA. TrabettiE. SoriceR. DöringA. LattkaE. StrauchK. TheisF. WaldenbergerM. WichmannH.E. DaviesG. GowA.J. BruinenbergM. StolkR.P. KoonerJ.S. ZhangW. WinkelmannB.R. BoehmB.O. LucaeS. PenninxB.W. SmitJ.H. CurhanG. MudgalP. PlengeR.M. PortasL. PersicoI. KirinM. WilsonJ.F. LeachI.M. van GilstW.H. GoelA. OngenH. HofmanA. RivadeneiraF. UitterlindenA.G. ImbodenM. von EckardsteinA. CuccaF. NagarajaR. PirasM.G. NauckM. SchurmannC. BuddeK. ErnstF. FarringtonS.M. TheodoratouE. ProkopenkoI. StumvollM. JulaA. PerolaM. SalomaaV. ShinS.Y. SpectorT.D. SalaC. RidkerP.M. KähönenM. ViikariJ. HengstenbergC. NelsonC.P. MeschiaJ.F. NallsM.A. SharmaP. SingletonA.B. KamataniN. ZellerT. BurnierM. AttiaJ. LaanM. KloppN. HillegeH.L. KloiberS. ChoiH. PirastuM. ToreS. Probst-HenschN.M. VölzkeH. GudnasonV. ParsaA. SchmidtR. WhitfieldJ.B. FornageM. GaspariniP. SiscovickD.S. PolašekO. CampbellH. RudanI. Bouatia-NajiN. MetspaluA. LoosR.J.F. van DuijnC.M. BoreckiI.B. FerrucciL. GambaroG. DearyI.J. WolffenbuttelB.H.R. ChambersJ.C. MärzW. PramstallerP.P. SniederH. GyllenstenU. WrightA.F. NavisG. WatkinsH. WittemanJ.C.M. SannaS. SchipfS. DunlopM.G. TönjesA. RipattiS. SoranzoN. TonioloD. ChasmanD.I. RaitakariO. KaoW.H.L. CiulloM. FoxC.S. CaulfieldM. BochudM. GiegerC. LifeLines Cohort Study CARDIoGRAM Consortium DIAGRAM Consortium ICBP Consortium MAGIC Consortium Genome-wide association analyses identify 18 new loci associated with serum urate concentrations.Nat. Genet.201345214515410.1038/ng.250023263486
    [Google Scholar]
  20. MerrimanT.R. An update on the genetic architecture of hyperuricemia and gout.Arthritis Res. Ther.20151719810.1186/s13075‑015‑0609‑225889045
    [Google Scholar]
  21. MatsuoH. YamamotoK. NakaokaH. NakayamaA. SakiyamaM. ChibaT. TakahashiA. NakamuraT. NakashimaH. TakadaY. DanjohI. ShimizuS. AbeJ. KawamuraY. TerashigeS. OgataH. TatsukawaS. YinG. OkadaR. MoritaE. NaitoM. TokumasuA. OnoueH. IwayaK. ItoT. TakadaT. InoueK. KatoY. NakamuraY. SakuraiY. SuzukiH. KanaiY. HosoyaT. HamajimaN. InoueI. KuboM. IchidaK. OoyamaH. ShimizuT. ShinomiyaN. Genome-wide association study of clinically defined gout identifies multiple risk loci and its association with clinical subtypes.Ann. Rheum. Dis.201675465265910.1136/annrheumdis‑2014‑20619125646370
    [Google Scholar]
  22. MerrimanT. Genomic influences on hyperuricemia and Gout.Rheum. Dis. Clin. North Am.201743338939910.1016/j.rdc.2017.04.00428711141
    [Google Scholar]
  23. TaiV. MerrimanT.R. DalbethN. Genetic advances in gout: Potential applications in clinical practice.Curr. Opin. Rheumatol.201931214415110.1097/BOR.000000000000057130575597
    [Google Scholar]
  24. LeeM.G. HsuT.C. ChenS.C. LeeY.C. KuoP.H. YangJ.H. ChangH.H. LeeC.C. Integrative genome-wide association studies of eQTL and GWAS data for gout disease susceptibility.Sci. Rep.201991498110.1038/s41598‑019‑41434‑430899057
    [Google Scholar]
  25. KawamuraY. NakaokaH. NakayamaA. OkadaY. YamamotoK. HigashinoT. SakiyamaM. ShimizuT. OoyamaH. OoyamaK. NagaseM. HidakaY. ShirahamaY. HosomichiK. NishidaY. ShimoshikiryoI. HishidaA. Katsuura-KamanoS. ShimizuS. KawaguchiM. UemuraH. IbusukiR. HaraM. NaitoM. TakaoM. NakajimaM. IwasawaS. NakashimaH. OhnakaK. NakamuraT. StiburkovaB. MerrimanT.R. NakatochiM. IchiharaS. YokotaM. TakadaT. SaitohT. KamataniY. TakahashiA. ArisawaK. TakezakiT. TanakaK. WakaiK. KuboM. HosoyaT. IchidaK. InoueI. ShinomiyaN. MatsuoH. Genome-wide association study revealed novel loci which aggravate asymptomatic hyperuricaemia into gout.Ann. Rheum. Dis.201978101430143710.1136/annrheumdis‑2019‑21552131289104
    [Google Scholar]
  26. NarangR.K. ToplessR. CadzowM. GambleG. StampL.K. MerrimanT.R. DalbethN. Interactions between serum urate-associated genetic variants and sex on gout risk: Analysis of the UK biobank.Arthritis Res. Ther.20192111310.1186/s13075‑018‑1787‑530626429
    [Google Scholar]
  27. TsengC.C. WongM.C. LiaoW.T. ChenC.J. LeeS.C. YenJ.H. ChangS.J. Systemic investigation of promoter-wide methylome and genome variations in Gout.Int. J. Mol. Sci.20202113470210.3390/ijms2113470232630231
    [Google Scholar]
  28. TsengC.C. ChenC.J. YenJ.H. HuangH.Y. ChangJ.G. ChangS.J. LiaoW.T. Next-generation sequencing profiling of mitochondrial genomes in gout.Arthritis Res. Ther.201820113710.1186/s13075‑018‑1637‑529976239
    [Google Scholar]
  29. MatsuoH. ChibaT. NagamoriS. NakayamaA. DomotoH. PhetdeeK. WiriyasermkulP. KikuchiY. OdaT. NishiyamaJ. NakamuraT. MorimotoY. KamakuraK. SakuraiY. NonoyamaS. KanaiY. ShinomiyaN. Mutations in glucose transporter 9 gene SLC2A9 cause renal hypouricemia.Am. J. Hum. Genet.200883674475110.1016/j.ajhg.2008.11.00119026395
    [Google Scholar]
  30. WoodwardO.M. KöttgenA. CoreshJ. BoerwinkleE. GugginoW.B. KöttgenM. Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout.Proc. Natl. Acad. Sci. USA200910625103381034210.1073/pnas.090124910619506252
    [Google Scholar]
  31. PreitnerF. BonnyO. LaverrièreA. RotmanS. FirsovD. Da CostaA. MetrefS. ThorensB. Glut9 is a major regulator of urate homeostasis and its genetic inactivation induces hyperuricosuria and urate nephropathy.Proc. Natl. Acad. Sci. USA200910636155011550610.1073/pnas.090441110619706426
    [Google Scholar]
  32. NakayamaA. MatsuoH. ShimizuT. OgataH. TakadaY. NakashimaH. NakamuraT. ShimizuS. ChibaT. SakiyamaM. UshiyamaC. TakadaT. InoueK. KawaiS. HishidaA. WakaiK. HamajimaN. IchidaK. SakuraiY. KatoY. ShimizuT. ShinomiyaN. A common missense variant of monocarboxylate transporter 9 (MCT9/SLC16A9) gene is associated with renal overload gout, but not with all gout susceptibility.Hum. Cell201326413313610.1007/s13577‑013‑0073‑823990105
    [Google Scholar]
  33. NakayamaA. NakaokaH. YamamotoK. SakiyamaM. ShaukatA. ToyodaY. OkadaY. KamataniY. NakamuraT. TakadaT. InoueK. YasujimaT. YuasaH. ShirahamaY. NakashimaH. ShimizuS. HigashinoT. KawamuraY. OgataH. KawaguchiM. OhkawaY. DanjohI. TokumasuA. OoyamaK. ItoT. KondoT. WakaiK. StiburkovaB. PavelkaK. StampL.K. DalbethN. SakuraiY. SuzukiH. HosoyamadaM. FujimoriS. YokooT. HosoyaT. InoueI. TakahashiA. KuboM. OoyamaH. ShimizuT. IchidaK. ShinomiyaN. MerrimanT.R. MatsuoH. Eurogout Consortium Eurogout Consortium GWAS of clinically defined gout and subtypes identifies multiple susceptibility loci that include urate transporter genes.Ann. Rheum. Dis.201776586987710.1136/annrheumdis‑2016‑20963227899376
    [Google Scholar]
  34. SakiyamaM. MatsuoH. NakaokaH. KawamuraY. KawaguchiM. HigashinoT. NakayamaA. AkashiA. UeyamaJ. KondoT. WakaiK. SakuraiY. YamamotoK. OoyamaH. ShinomiyaN. Common variant of BCAS3 is associated with gout risk in Japanese population: The first replication study after gout GWAS in Han Chinese.BMC Med. Genet.20181919610.1186/s12881‑018‑0583‑z29879923
    [Google Scholar]
  35. YananF. RuiL. XiaoyingL. ShuangZ. FengZ. YingnanW. TianshuangJ. XuanY. XiaoleiY. LitaoS. Association between ACVR2A gene polymorphisms and risk of hypertensive disorders of pregnancy in the northern Chinese population.Placenta2020901810.1016/j.placenta.2019.11.00431790936
    [Google Scholar]
  36. WangH.D. ZhangC.S. LiM.W. LinQ. ZhangQ. LiuD.F. MaZ.Y. DongJ. The Association of Trp64Arg polymorphism in the beta-adrenergic receptor with insulin resistance: Meta-analysis.Front. Endocrinol. (Lausanne)20211270813910.3389/fendo.2021.70813934512548
    [Google Scholar]
  37. LiY. JinL. JiangF. YanJ. LuY. YangQ. ZhangY. ZhangH. YuH. ZhangY. HeZ. ZhangR. YangJ. HuC. Mutations of NRG4 Contribute to the pathogenesis of nonalcoholic fatty liver disease and related metabolic disorders.Diabetes202170102213222410.2337/db21‑006434261740
    [Google Scholar]
  38. Dávalos-RodríguezN.O. Rincón-SánchezA.R. Madrigal RuizP.M. Flores-AlvaradoL.J. López-ToledoS. Villafán-BernalJ.R. Castro-JuárezC.J. Guzmán-LópezR. Siliceo-MurrietaJ.I. Ramirez-GarciaS.A. VNTR (CAG)n polymorphism of the ATXN2 gene and metabolic parameters of cardiovascular risk associated with the degree of obesity in the Amerindian population of Oaxaca.Endocrinol Diabetes Nutr2022691152410.1016/j.endien.2021.04.00135232555
    [Google Scholar]
  39. DeatonA.M. DubeyA. WardL.D. DornbosP. FlannickJ. YeeE. TicauS. NoetzliL. ParkerM.M. HoffingR.A. WillisC. PlekanM.E. HollemanA.M. HinkleG. FitzgeraldK. VaishnawA.K. NioiP. AMP-T2D-GENES Consortium Rare loss of function variants in the hepatokine gene INHBE protect from abdominal obesity.Nat. Commun.2022131431910.1038/s41467‑022‑31757‑835896531
    [Google Scholar]
  40. SongY. RaheelT.M. JiaA. DaiG. LiuL. LongX. HeC. rs10865710 polymorphism in PPARG promoter is associated with the severity of type 2 diabetes mellitus and coronary artery disease in a Chinese population.Postgrad. Med. J.202298116477878710.1136/postgradmedj‑2021‑14035437062988
    [Google Scholar]
  41. LeeE.S. GuoT. SrivastavaR.K. ShabbirA. IbáñezC.F. Activin receptor ALK4 promotes adipose tissue hyperplasia by suppressing differentiation of adipocyte precursors.J. Biol. Chem.2023299110271610.1016/j.jbc.2022.10271636403856
    [Google Scholar]
  42. XiongL. LiuH. ZhouC. YangX. HuangL. JieH. ZengZ. ZhengX. LiW. LiuZ. KangL. LiangZ. A novel protein encoded by circINSIG1 reprograms cholesterol metabolism by promoting the ubiquitin-dependent degradation of INSIG1 in colorectal cancer.Mol. Cancer20232217210.1186/s12943‑023‑01773‑337087475
    [Google Scholar]
  43. RasheedH. Phipps-GreenA. ToplessR. Hollis-MoffattJ.E. HindmarshJ.H. FranklinC. DalbethN. JonesP.B. WhiteD.H.N. StampL.K. MerrimanT.R. Association of the lipoprotein receptor-related protein 2 gene with gout and non-additive interaction with alcohol consumption.Arthritis Res. Ther.2013156R17710.1186/ar436624286387
    [Google Scholar]
  44. SakiyamaM. MatsuoH. NakaokaH. YamamotoK. NakayamaA. NakamuraT. KawaiS. OkadaR. OoyamaH. ShimizuT. ShinomiyaN. Identification of rs671, a common variant of ALDH2, as a gout susceptibility locus.Sci. Rep.2016612536010.1038/srep2536027181629
    [Google Scholar]
  45. RasheedH. StampL.K. DalbethN. MerrimanT.R. Interaction of the GCKR and A1CF loci with alcohol consumption to influence the risk of gout.Arthritis Res. Ther.201719116110.1186/s13075‑017‑1369‑y28679452
    [Google Scholar]
  46. ZhongZ. HuangY. HuangQ. ZhengS. HuangZ. DengW. LiT. Serum metabolic profiling analysis of gout patients based on UPLC-Q-TOF/MS.Clin. Chim. Acta2021515526010.1016/j.cca.2020.12.02833388309
    [Google Scholar]
  47. Hollis-MoffattJ.E. GowP.J. HarrisonA.A. HightonJ. JonesP.B.B. StampL.K. DalbethN. MerrimanT.R. The SLC2A9 nonsynonymous Arg265His variant and gout: Evidence for a population-specific effect on severity.Arthritis Res. Ther.2011133R8510.1186/ar335621658257
    [Google Scholar]
  48. GaoS. LuoH. ZhangH. ZuoX. WangL. ZhuH. Using multi- omics methods to understand dermatomyositis/polymyositis.Autoimmun. Rev.201716101044104810.1016/j.autrev.2017.07.02128778709
    [Google Scholar]
  49. WangZ. ZhaoY. Phipps-GreenA. Liu-BryanR. CeponisA. BoyleD.L. WangJ. MerrimanT.R. WangW. TerkeltaubR. Differential DNA methylation of networked signaling, transcriptional, innate and adaptive immunity, and osteoclastogenesis genes and pathways in Gout.Arthritis Rheumatol.202072580281410.1002/art.4117331738005
    [Google Scholar]
  50. BohatáJ. HorváthováV. PavlíkováM. StibůrkováB. Circulating microRNA alternations in primary hyperuricemia and gout.Arthritis Res. Ther.202123118610.1186/s13075‑021‑02569‑w34246297
    [Google Scholar]
  51. AuneT.M. SpurlockC.F.III Long non-coding RNAs in innate and adaptive immunity.Virus Res.201621214616010.1016/j.virusres.2015.07.00326166759
    [Google Scholar]
  52. ErnstE.H. NielsenJ. IpsenM.B. VillesenP. Lykke-HartmannK. Transcriptome analysis of long non-coding rnas and genes encoding paraspeckle proteins during human ovarian follicle development.Front. Cell Dev. Biol.201867810.3389/fcell.2018.0007830087896
    [Google Scholar]
  53. YuY. ZhangW. LiA. ChenY. OuQ. HeZ. ZhangY. LiuR. YaoH. SongE. Association of long noncoding RNA Biomarkers With Clinical immune subtype and prediction of immunotherapy response in patients with cancer.JAMA Netw. Open202034e20214910.1001/jamanetworkopen.2020.214932259264
    [Google Scholar]
  54. QingY.F. ZhengJ.X. TangY.P. DaiF. DongZ.R. ZhangQ.B. LncRNAs Landscape in the patients of primary gout by microarray analysis.PLoS One2021162e023291810.1371/journal.pone.023291833600466
    [Google Scholar]
  55. ZhouW.Y. CaiZ.R. LiuJ. WangD.S. JuH.Q. XuR.H. Circular RNA: Metabolism, functions and interactions with proteins.Mol. Cancer202019117210.1186/s12943‑020‑01286‑333317550
    [Google Scholar]
  56. DaiF. ZhangQ.B. TangY.P. HeY.X. YiT. QingY.F. Expression profile and potential function of circular rnas in peripheral blood mononuclear cells in male patients with primary Gout.Front. Genet.20211272809110.3389/fgene.2021.72809134764979
    [Google Scholar]
  57. HuoS. WangH. YanM. XuP. SongT. LiC. TianR. ChenX. BaoK. XieY. XuP. ZhuW. LiuF. MaoW. ShaoC. Urinary proteomic characteristics of hyperuricemia and their possible links with the occurrence of its concomitant diseases.ACS Omega20216149500950810.1021/acsomega.0c0622933869930
    [Google Scholar]
  58. ZhangY. ZhangH. ChangD. GuoF. PanH. YangY. Metabolomics approach by 1H NMR spectroscopy of serum reveals progression axes for asymptomatic hyperuricemia and gout.Arthritis Res. Ther.201820111110.1186/s13075‑018‑1600‑529871692
    [Google Scholar]
  59. HuangY. XiaoM. OuJ. LvQ. WeiQ. ChenZ. WuJ. TuL. JiangY. ZhangX. QiJ. QiuM. CaoS. GuJ. Identification of the urine and serum metabolomics signature of gout.Rheumatology (Oxford)202059102960296910.1093/rheumatology/keaa01832134107
    [Google Scholar]
  60. ShenX. WangC. LiangN. LiuZ. LiX. ZhuZ.J. MerrimanT.R. DalbethN. TerkeltaubR. LiC. YinH. Serum metabolomics identifies dysregulated pathways and potential metabolic biomarkers for hyperuricemia and Gout.Arthritis Rheumatol.20217391738174810.1002/art.4173333760368
    [Google Scholar]
  61. SuhY.S. NohH.S. KimH.J. CheonY.H. KimM. LeeH. KimH.O. LeeS.I. Differences in clinical and dietary characteristics, serum adipokine levels, and metabolomic profiles between early- and late-onset Gout.Metabolites202111639910.3390/metabo1106039934207250
    [Google Scholar]
  62. LuoY. WangL. LiuX.Y. ChenX. SongY.X. LiX.H. JiangC. PengA. LiuJ.Y. Plasma profiling of amino acids distinguishes acute gout from asymptomatic hyperuricemia.Amino Acids201850111539154810.1007/s00726‑018‑2627‑230073607
    [Google Scholar]
  63. LiQ. WeiS. WuD. WenC. ZhouJ. Urinary metabolomics study of patients with Gout using gas chromatography-mass spectrometry.BioMed Res. Int.201820181910.1155/2018/346157230410926
    [Google Scholar]
  64. ShaoT. ShaoL. LiH. XieZ. HeZ. WenC. Combined signature of the fecal microbiome and metabolome in patients with Gout.Front. Microbiol.2017826810.3389/fmicb.2017.0026828270806
    [Google Scholar]
/content/journals/crr/10.2174/0115733971329652241119060025
Loading
/content/journals/crr/10.2174/0115733971329652241119060025
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): biomarkers; epigenetics; genetics; Gouty arthritis; metabolomics; proteomics; transcriptomics
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test