Skip to content
2000
Volume 3, Issue 1
  • ISSN: 1570-1603
  • E-ISSN: 1570-1603

Abstract

The ADP-ribosyltransferase (ADPRT) gene encodes the poly(ADP-ribose)polymerase-1 (PARP-1) enzyme, which plays critical roles in DNA-damage signaling and repair, cell death, maintenance of genomic stability, and carcinogenesis. It may also serve as a potential target for cancer therapy. In this review, we evaluate findings from animal model systems and molecular epidemiological studies to demonstrate the potential role of ADPRT/PARP-1 in aging and carcinogenesis. With increasing interest in associating human cancer risk with single nucleotide polymorphisms (SNPs) and/or dysfunction of ADPRT/PARP-1, several important technical challenges will need to be overcome. These challenges include developing specific functional assays, selecting SNPs with potential functional impact, and exploring statistical methods for gene-gene and gene-environmental interactions. Therefore, this review also highlights strategies to evaluate the functional significance of ADPRT/PARP-1 SNPs in human cancer risk assessment. In summary, dysfunction of PARP-1 may play a critical role in abnormal cellular functions; its molecular mechanism in aging and cancer susceptibility is an issue which needs urgently to be elucidated.

Loading

Article metrics loading...

/content/journals/cpg/10.2174/1570160053175054
2005-03-01
2025-05-03
Loading full text...

Full text loading...

/content/journals/cpg/10.2174/1570160053175054
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test