Skip to content
2000
Volume 1, Issue 3
  • ISSN: 1877-9468
  • E-ISSN: 1877-9476

Abstract

Acenes, especially rubrene and pentacene are bricks-and-mortar of modern organic electronics, while smaller members of the family (anthracene derivatives) are common components of luminescent sensors and molecular logic gates. Recent development in semiconductor-based molecular scale devices has turned our attention towards acenes as modifiers of semiconducting surfaces. This review presents some recent achievements in the field of surface-modified titanium dioxide and provides basic tools and data towards understanding acene-titanium dioxide system at molecular level. A review of experimental data is supplemented with some DFT calculations of geometries, electronic structures and spectral properties of acene derivatives equipped with anchoring groups suitable for TiO2 modification. Surprisingly, higher acenes cannot support optical electron transfer with TiO2 surfaces on excitation of the lowest electronic transitions, as it was observed in the case of catechol and naphthalenediol. These systems, however can be still involved in photoinduced electron transfer, which altogether makes them useful surface dopants of wide band gap semiconductors.

Loading

Article metrics loading...

/content/journals/cpc/10.2174/1877946811101030242
2011-08-01
2025-05-24
Loading full text...

Full text loading...

/content/journals/cpc/10.2174/1877946811101030242
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test