Skip to content
2000
Volume 10, Issue 3
  • ISSN: 1877-9468
  • E-ISSN: 1877-9476

Abstract

Background: The liquid molar volume (V) and the heat of vaporization (ΔHVAP) of four fatty acids (n-Heptanoic acid, Hexadecanoic acid, n-Hexanoic acid and n- Dodecanoic acid) have been estimated. Objective: This paper aims to calculate the liquid molar volume and the heat of vaporization of four fatty acids under the critical point using two traditional equations of state: Peng-Robinson (PR) [21] and Soave-Redlich-Kwong. Methods: The area rules method applicable to obtaining the saturation pressure of the compounds has been used. The properties of the acids investigated in this work have been compared with those provided by literature. For molar volumes, the equations of state have given improved predictions when compared to traditional equations such as Rackett equation and so on. According to the vapor enthalpy calculations, no reference value was required. Results: In general, the Clausius-Clapeyron equation provides a better estimation of the vaporization enthalpy of fatty acids when Soave-Redlich-Kwong (SRK) equation was used. The heat of vaporization for fatty acids can be calculated with good reliability in comparison with the Watson equation if suitable equation of state is used. Conclusion: Accurate results for heat of vaporization can be reached in comparison with the Watson equation if the reliable equation of state is used.

Loading

Article metrics loading...

/content/journals/cpc/10.2174/1877946809666191129110018
2020-12-01
2025-06-07
Loading full text...

Full text loading...

/content/journals/cpc/10.2174/1877946809666191129110018
Loading

  • Article Type:
    Research Article
Keyword(s): Biodiesel; equation of state; fatty acids; large chain; maxwell rule; vaporization enthalpy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test