Skip to content
2000
Volume 4, Issue 3
  • ISSN: 1877-9468
  • E-ISSN: 1877-9476

Abstract

Rechargeable magnesium batteries have attracted attention for use in the nextgeneration power storage applications. V2O5 xerogel, which has a high capacity, is expected to be an active cathode material for magnesium rechargeable batteries. However, it faces the problem of degradation due to desorption of structural water. A vanadium pentoxide xerogel containing sulfur (S-V2O5 gel) was prepared by a new composition process and evaluated by structural analysis, and its electrode performance was analyzed. Structural analysis by X-ray diffraction, differential thermal analysis, and scanning electron microscopy showed that the bulk S-V2O5 gel adopted a V2O5 xerogel-like structure with a layer structure in a stable planar direction with added sulfur, and that the surface was a reformed hard amorphous structure due to treatment with a low-temperature plasma generated using carbon felt (CF-MWP). Charge-discharge tests revealed a specific capacity of 450 mAh g-1, and cyclic voltammetry was almost perfectly stabilized after the second cycle.

Loading

Article metrics loading...

/content/journals/cpc/10.2174/1877946805666150311234806
2014-08-01
2025-05-31
Loading full text...

Full text loading...

/content/journals/cpc/10.2174/1877946805666150311234806
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test