Skip to content
2000
image of Physicochemical Exploration of Some Biologically Potent Molecules Prevailing in Aqueous Solution of an Anticoagulant Drug with the Manifestation of Solvation Consequences

Abstract

Aims

Our research aims to uncover how solute-solvent and solute-solute interactions behave in aqueous solutions, exploring how temperature variations and concentration changes influence these interactions. This can provide deeper insights into the behavior of molecules in different environments, potentially leading to applications in fields such as drug delivery, chemical reactions, and material science.

Background

In the aqueous ternary system, the physicochemical interactions between a medically powerful pharmacological molecule and two naturally occurring amino acids were explored. The investigations were performed in a dilute to infinite dilute medium to study the interactions between the solutes and solvent extensively.

Objective

The objective of this research is to systematically investigate the nature of solute-solvent and solute-solute interactions in aqueous solutions across a range of temperatures and concentrations. By doing so, we aim to elucidate the underlying principles governing these interactions, which could contribute to a deeper understanding of solution chemistry. This knowledge is intended to inform the development of more efficient and effective applications in various scientific and industrial fields, including drug formulation, catalysis, and material design.

Method

To characterize and calculate the interactions in the ternary system, various models and formulas were considered and applied. Based on various parameters, including viscosity B-coefficient, apparent molar volume, and molar conductance from viscosity, density, and conductance studies, varying temperatures and concentrations were used to elucidate the molecular interactions. To elucidate the interactions between solute with co-solute and with solvent, the limiting apparent molar volumes and the experimental slopes, derived from the Masson equation, and the Viscosity constants A and B, obtained the Jones-Doles equation, were examined. To illustrate the structure- breaking/making character of the solutes in the solution, Hepler’s method and dB/dT values were applied.

Results

The results indicated that hydrophobic-hydrophobic interaction plays a significant role in the system.

Conclusion

These amino acid interaction models may explain the properties of a variety of physiologically active compounds, and the mechanism can be expanded to comprehend the nature of similar systems. Furthermore, the research could lead to advancements in areas such as pharmaceutical sciences, where controlling solute interactions is crucial for drug delivery systems, and in environmental chemistry, where understanding pollutant behavior in water is essential for remediation efforts.

Loading

Article metrics loading...

/content/journals/cpc/10.2174/0118779468350510241108110131
2024-11-25
2025-04-22
Loading full text...

Full text loading...

References

  1. Balcão V.M. Vila M.M.D.C. Structural and functional stabilization of protein entities: State-of-theart. Adv. Drug Deliv. Rev. 2015 93 25 41 10.1016/j.addr.2014.10.005 25312675
    [Google Scholar]
  2. Orozco M. Luque F.J. Theoretical methods for the description of the solvent effect in biomolecular systems. Chem. Rev. 2000 100 11 4187 4226 10.1021/cr990052a 11749344
    [Google Scholar]
  3. Chopra G. Summa C.M. Levitt M. Solvent dramatically affects protein structure refinement. Proc. Natl. Acad. Sci. USA 2008 105 51 20239 20244 10.1073/pnas.0810818105 19073921
    [Google Scholar]
  4. Ramalho T.C. da Cunha E.F.F. Thermodynamic framework of the interaction between protein and solvent drives protein folding. J. Biomol. Struct. Dyn. 2011 28 4 645 646 10.1080/073911011010524975 21142247
    [Google Scholar]
  5. Shulgin I.L. Ruckenstein E. Relationship between preferential interaction of a protein in an aqueous mixed solvent and its solubility. Biophys. Chem. 2005 118 2-3 128 134 10.1016/j.bpc.2005.07.008 16260079
    [Google Scholar]
  6. Rubinstein A. Sherman S. Influence of the solvent structure on the electrostatic interactions in proteins. Biophys. J. 2004 87 3 1544 1557 10.1529/biophysj.103.038620 15345535
    [Google Scholar]
  7. Oprzeska-Zingrebe E.A. Smiatek J. Aqueous ionic liquids in comparison with standard co-solutes. Biophys. Rev. 2018 10 3 809 824 10.1007/s12551‑018‑0414‑7 29611033
    [Google Scholar]
  8. Ali F. Manzoor U. Azam M. Ansari N.A. 2017 Protein-osmolyte interactions: Molecular insights. Cellular Osmolytes Springer Singapore Singh R. Dar T. 35 53 10.1007/978‑981‑10‑3707‑8_2
    [Google Scholar]
  9. Castellanos I. Crespo R. Griebenow K. Poly(ethylene glycol) as stabilizer and emulsifying agent: A novel stabilization approach preventing aggregation and inactivation of proteins upon encapsulation in bioerodible polyester microspheres. J. Control. Release 2003 88 1 135 145 10.1016/S0168‑3659(02)00488‑1 12586511
    [Google Scholar]
  10. Arnold F.H. Zhang J.H. Metal-mediated protein stabilization. Trends Biotechnol. 1994 12 5 189 192 10.1016/0167‑7799(94)90081‑7 7764902
    [Google Scholar]
  11. Walkey C.D. Chan W.C.W. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem. Soc. Rev. 2012 41 7 2780 2799 10.1039/C1CS15233E 22086677
    [Google Scholar]
  12. Shemetov A.A. Nabiev I. Sukhanova A. Molecular interaction of proteins and peptides with nanoparticles. ACS Nano 2012 6 6 4585 4602 10.1021/nn300415x 22621430
    [Google Scholar]
  13. Kumar H. Kaur K. Investigation on molecular interaction of amino acids in antibacterial drug ampicillin solutions with reference to volumetric and compressibility measurements. J. Mol. Liq. 2012 173 130 136 10.1016/j.molliq.2012.07.008
    [Google Scholar]
  14. Zarei H.A. Jalili F. Densities and derived thermodynamic properties of (2-methoxyethanol+1-propanol, or 2-propanol, or 1,2-propandiol) at temperatures from T=(293.15 to 343.15)K. J. Chem. Thermodyn. 2007 39 1 55 66 10.1016/j.jct.2006.06.001
    [Google Scholar]
  15. Hass W.K. Easton J.D. New York, NY Springer Ticlopidine, Platelets and Vascular Disease 1993 10.1007/978‑1‑4613‑8306‑2
    [Google Scholar]
  16. Savi P. Herbert J.M. Clopidogrel and ticlopidine: P2Y12 adenosine diphosphate-receptor antagonists for the prevention of atherothrombosis. Semin. Thromb. Hemost. 2005 31 2 174 183 10.1055/s‑2005‑869523 15852221
    [Google Scholar]
  17. Kamarova M. Baig S. Patel H. Monks K. Wasay M. Ali A. Redgrave J. Majid A. Bell S.M. Antiplatelet use in ischemic stroke. Ann. Pharmacother. 2022 56 10 1159 1173 10.1177/10600280211073009 35094598
    [Google Scholar]
  18. Pongrácz E. Káposzta Z. Antiplatelet therapy in ischemic stroke. Expert Rev. Neurother. 2005 5 4 541 549 10.1586/14737175.5.4.541 16026237
    [Google Scholar]
  19. Van De Graaff E. Steinhubl S.R. Antiplatelet medications and their indications in preventing and treating coronary thrombosis. Ann. Med. 2000 32 8 561 571 10.3109/07853890008998836 11127934
    [Google Scholar]
  20. Jacobson A.K. Platelet ADP receptor antagonists: ticlopidine and clopidogrel. Best Pract. Res. Clin. Haematol. 2004 17 1 55 64 10.1016/j.beha.2004.03.002 15171957
    [Google Scholar]
  21. Kamishirado H. Inoue T. Mizoguchi K. Uchida T. Nakata T. Sakuma M. Takayanagi K. Morooka S. Randomized comparison of cilostazol versus ticlopidine hydrochloride for antiplatelet therapy after coronary stent implantation for prevention of late restenosis. Am. Heart J. 2002 144 2 303 308 10.1067/mjh.2002.122874 12177649
    [Google Scholar]
  22. Leon M.B. Baim D.S. Popma J.J. Gordon P.C. Cutlip D.E. Ho K.K.L. Giambartolomei A. Diver D.J. Lasorda D.M. Williams D.O. Pocock S.J. Kuntz R.E. A clinical trial comparing three antithrombotic-drug regimens after coronary-artery stenting. N. Engl. J. Med. 1998 339 23 1665 1671 10.1056/NEJM199812033392303 9834303
    [Google Scholar]
  23. Segel G.B. Halterman J.S. Neutropenia in pediatric practice. Pediatr. Rev. 2008 29 1 12 24 10.1542/pir.29‑1‑12 18166617
    [Google Scholar]
  24. Dakik H.A. Salti I. Haidar R. Uthman I.W. Drug points: Ticlopidine associated with acute arthritis. BMJ 2002 324 7328 27 27 10.1136/bmj.324.7328.27 11777802
    [Google Scholar]
  25. Roy S. Guin P.S. Mahali K. Hossain A. Dolui B.K. Evaluation and correlation of solubility and solvation thermodynamics of glycine, dl -alanine and dl -valine in aqueous sodium sulphate solutions at two different temperatures. J. Mol. Liq. 2017 234 124 128 10.1016/j.molliq.2017.03.068
    [Google Scholar]
  26. Mallick K. Roy D. Roy P. Tudu A. Dey M. Debnath S. Bomzan P. Choudhury S. Nath Ghosh N. Nath Roy M. Interpreting various molecular interactions of two amino acids prevalent in aqueous antiplatelet drug by experimental and computational methodologies. J. Mol. Liq. 2024 414 126129 126129 10.1016/j.molliq.2024.126129
    [Google Scholar]
  27. Lind J.E. Zwolenik J.J. Fuoss R.M. Calibration of conductance cells at 25° with aqueous solutions of potassium chloride. J. Am. Chem. Soc. 1959 81 7 1557 1559 10.1021/ja01516a010
    [Google Scholar]
  28. Nain A.K. Solute-solute and solute-solvent interactions of drug sodium salicylate in aqueous-glucose/sucrose solutions at temperatures from 293.15 to 318.15 K: A physicochemical study. J. Mol. Liq. 2020 298 112006 112006
    [Google Scholar]
  29. Roy M.N. Dewan R. Roy P.K. Biswas D. Apparent molar volumes and viscosity B-coefficients of carbohydrates in aqueous cetrimonium bromide solutions at (298.15, 308.15, and 318.15) K. J. Chem. Eng. Data 2010 55 9 3617 3624 10.1021/je100211s
    [Google Scholar]
  30. Ankita Nain A.K. Volumetric, acoustic and viscometric studies of solute-solute and solute-solvent interactions of isoniazid in aqueous-glucose/sucrose solutions at temperatures from 293.15 K to 318.15 K. J. Chem. Thermodyn. 2019 133 123 134 10.1016/j.jct.2019.01.024
    [Google Scholar]
  31. Nain A.K. Pal R. Neetu Volumetric, ultrasonic and viscometric studies of solute–solute and solute–solvent interactions of l-threonine in aqueous-sucrose solutions at different temperatures. J. Chem. Thermodyn. 2013 64 172 181 10.1016/j.jct.2013.05.012
    [Google Scholar]
  32. Masson I. The Making of an Epoch. Nature 1929 123 3093 195 197 10.1038/123195a0
    [Google Scholar]
  33. Roy D. Mallick K. Roy P. Mondal M. Saha B. Dey M. Hossain A. Roy P. Choudhury S. Nath Roy M. Physicochemical and computational investigations of some essential amino acids prevailing in aqueous solutions of a food preservative (SBz) with the manifestation of hydrophobic and hydrophilic interactions at different temperatures. J. Mol. Liq. 2024 408 125238 125238 10.1016/j.molliq.2024.125238
    [Google Scholar]
  34. Marcus Y. Hefter G. Standard partial molar volumes of electrolytes and ions in nonaqueous solvents. Chem. Rev. 2004 104 7 3405 3452 10.1021/cr030047d 15250746
    [Google Scholar]
  35. Plyasunov A.V. O’Connell J.P. Wood R.H. Infinite dilution partial molar properties of aqueous solutions of nonelectrolytes. I. Equations for partial molar volumes at infinite dilution and standard thermodynamic functions of hydration of volatile nonelectrolytes over wide ranges of conditions. Geochim. Cosmochim. Acta 2000 64 3 495 512 10.1016/S0016‑7037(99)00322‑1
    [Google Scholar]
  36. Dhondge S.S. Paliwal R.L. Bhave N.S. Pandhurnekar C.P. Study of thermodynamic properties of aqueous binary mixtures of glycine, l-alanine and β-alanine at low temperatures (T=275.15, 279.15, and 283.15)K. J. Chem. Thermodyn. 2012 45 1 114 121 10.1016/j.jct.2011.09.016
    [Google Scholar]
  37. Ekka D. Roy M.N. Molecular interactions of α-amino acids insight into aqueous β-cyclodextrin systems. Amino Acids 2013 45 4 755 777 10.1007/s00726‑013‑1519‑8 23760675
    [Google Scholar]
  38. Marcus Y. Solvent Extraction Principles and Practice, Revised and Expanded CRC Press Boca Raton 2nd ed 2004
    [Google Scholar]
  39. Barman S. Saha B. Majumder S. Saha S. Dakua V.K. Choudhury S. Roy M.N. Exploration of solvation consequences of nicotinic acid (vitamin B3) prevailing in two significant aqueous ionic liquid solutions by physicochemical and computational studies. J. Chem. Eng. Data 2024 69 6 2167 2187 10.1021/acs.jced.4c00082
    [Google Scholar]
  40. Roy M.N. Dakua V.K. Sinha B. Partial molar volumes, viscosity B-coefficients, and adiabatic compressibilities of sodium molybdate in aqueous 1,3-dioxolane mixtures from 303.15 to 323.15 K. Int. J. Thermophys. 2007 28 4 1275 1284 10.1007/s10765‑007‑0220‑0
    [Google Scholar]
  41. Roy M.N. De P. Sikdar P.S. Probing solute-solvent interactions of some bio-active solutes in aqueous barium nitrate solution on the basis of physicochemical contrivances. Thermochim. Acta 2013 566 268 273 10.1016/j.tca.2013.06.017
    [Google Scholar]
  42. Hepler L.G. Thermal expansion and structure in water and aqueous solutions. Can. J. Chem. 1969 47 24 4613 4617 10.1139/v69‑762
    [Google Scholar]
  43. Koneshan S. Rasaiah J.C. Lynden-Bell R.M. Lee S.H. Solvent structure, dynamics, and ion mobility in aqueous solutions at 25 °C. J. Phys. Chem. B 1998 102 21 4193 4204 10.1021/jp980642x
    [Google Scholar]
  44. Silva W. Zanatta M. Ferreira A.S. Corvo M.C. Cabrita E.J. Revisiting ionic liquid structure-property relationship: A critical analysis. Int. J. Mol. Sci. 2020 21 20 7745 10.3390/ijms21207745 33086771
    [Google Scholar]
  45. Andreev M. de Pablo J.J. Chremos A. Douglas J.F. Influence of ion solvation on the properties of electrolyte solutions. J. Phys. Chem. B 2018 122 14 4029 4034 10.1021/acs.jpcb.8b00518 29611710
    [Google Scholar]
  46. Rajbanshi B. Das K. Lepcha K. Das S. Roy D. Kundu M. Roy M.N. Minimization of the dosage of food preservatives mixing with ionic liquids for controlling risky effect in human body: Physicochemical, antimicrobial and computational study. J. Mol. Liq. 2019 282 415 427 10.1016/j.molliq.2019.03.034
    [Google Scholar]
  47. Roy D. Majumder S. Mallick K. Roy N. Saha B. Saha S. Sinha B. Exploration of solvation consequences of ionic liquids prevalent in the aqueous media of food additive azo dye tartrazine by physicochemical and computational studies. J. Chem. Eng. Data 2024 69 1 38 58 10.1021/acs.jced.3c00460
    [Google Scholar]
  48. Dhondge S.S. Dahasahasra P.N. Paliwal L.J. Tangde V.M. Deshmukh D.W. Volumetric and viscometric study of thiamine hydrochloride, pyridoxine hydrochloride and sodium ascorbate at T=(275.15, 277.15 and 279.15)K in dilute aqueous solutions. J. Chem. Thermodyn. 2017 107 189 200 10.1016/j.jct.2016.12.033
    [Google Scholar]
  49. Millero F.J. Lo Surdo A. Shin C. The apparent molal volumes and adiabatic compressibilities of aqueous amino acids at 25.degree.C. J. Phys. Chem. 1978 82 7 784 792 10.1021/j100496a007
    [Google Scholar]
  50. Gering K.L. Prediction of electrolyte viscosity for aqueous and non-aqueous systems: Results from a molecular model based on ion solvation and a chemical physics framework. Electrochim. Acta 2006 51 15 3125 3138 10.1016/j.electacta.2005.09.011
    [Google Scholar]
  51. Pitkänen I. Suuronen J. Nurmi J. Partial molar volume, ionization, viscosity and structure of glycine betaine in aqueous solutions. J. Solution Chem. 2010 39 11 1609 1626 10.1007/s10953‑010‑9618‑6
    [Google Scholar]
  52. Mason L.S. Kampmeyer P.M. Robinson A.L. The viscosities of aqueous solutions of amino acids at 25 and 35°. J. Am. Chem. Soc. 1952 74 5 1287 1290 10.1021/ja01125a043
    [Google Scholar]
  53. Singh M. Pandey M. Viscometric study of glycine with aqueous chloride and iodide salts of IA alkali metals. Phys. Chem. Liquids 2011 49 6 699 707 10.1080/00319104.2010.494245
    [Google Scholar]
  54. Shekaari H. Jebali F. Solute–solvent interactions of amino acids in aqueous 1-propyl-3-methylimidazolium bromide ionic liquid solutions at 298.15 K. J. Solution Chem. 2010 39 10 1409 1427 10.1007/s10953‑010‑9597‑7
    [Google Scholar]
  55. Roy P. Mondal M. Roy D. Mallick K. Basak S. Roy D. Hossain A. Choudhury S. Ray T. Roy M.N. Exploring diverse amino acid-polyol interactions prevailing in aqueous systems at different temperatures by physicochemical contrivance simultaneously optimized by DFT. J. Chem. Eng. Data 2024 69 4 1468 1483 10.1021/acs.jced.3c00671
    [Google Scholar]
  56. Saha N. Das B. Apparent molar volumes of some symmetrical tetraalkylammonium bromides in acetonitrile at (298.15, 308.15, and 318.15) K. J. Chem. Eng. Data 1997 42 2 227 229 10.1021/je960205g
    [Google Scholar]
  57. Klofutar C. Paljk Š. Golc-Teger S. Thermodynamic functions of activation for viscous flow of cholesterol in some non-aqueous solutions. Thermochim. Acta 1992 206 19 32 10.1016/0040‑6031(92)85280‑9
    [Google Scholar]
  58. Tong J. Zhang D. Li K. Chen X. Liu L. Qu Y. The thermodynamics of the activation for viscous flow of aqueous [C 6 mim][Ala] (1-hexyl-3-methylimidazolium alanine salt). J. Chem. Thermodyn. 2016 101 356 362 10.1016/j.jct.2016.06.022
    [Google Scholar]
  59. Contreras S M. Densities and Viscosities of Binary Mixtures of 1,4-Dioxane with 1-Propanol and 2-Propanol at (25, 30, 35, and 40) °C. J. Chem. Eng. Data 2001 46 5 1149 1152 10.1021/je010045v
    [Google Scholar]
  60. Poddar A. Rajbanshi B. Majumder S. Choudhury S. Hossain A. Roy M.N. Physico-chemical and spectroscopic study of some biologically potent molecules in aqueous solution of an anti-malarial drug molecule with reference to diverse molecular interactions simultaneously optimized by DFT. Fluid Phase Equilib. 2024 579 114025 114025 10.1016/j.fluid.2024.114025
    [Google Scholar]
  61. Falkenhagen H. RH. Stokes und R. Mills: Viscosity of electrolytes and related properties. Aus der Serie “The International Encyclopedia of Physical Chemistry and Chemical Physics”, volume 3. pergamon Press, Oxford, Edinburgh, New York und Frankfurt a. M. 1965. X, 151 Seiten. Preis: 50/‐sh. Ber. Bunsenges. Phys. Chem 1965 69 8 750 750 10.1002/bbpc.19650690824
    [Google Scholar]
  62. Hossain A. Mondal M. Rajbanshi B. Tudu A. Roy P. Alam F. Majumder S. Poddar A. Choudhury S. Ghosh R. Bomzan P. Nath Roy M. Physicochemical studies of some bioactive molecules in aqueous solution of tetrabutylammonium methanesulphonate (TBAMS) to investigate assorted molecular interaction at different temperatures simultaneously optimized by computational approach. J. Mol. Liq. 2024 395 123818 123818 10.1016/j.molliq.2023.123818
    [Google Scholar]
  63. Feakins D. Bates F.M. Waghorne W.E. Lawrence K.G. Relative viscosities and quasi-thermodynamics of solutions of tert-butyl alcohol in the methanol–water system: A different view of the alkyl–water interaction. J. Chem. Soc., Faraday Trans. 1993 89 18 3381 3388 10.1039/FT9938903381
    [Google Scholar]
  64. Mallick K. Mondal M. Roy D. Roy P. Ali S. Roy D. Saha B. Choudhury S. Debnath S. Roy N. Saha S. Roy M.N. Exploring various molecular interactions of two essential amino acids prevalent in aqueous solutions of an ionic liquid by density, viscosity, refractive index, conductance, surface tension, nuclear magnetic resonance, ultraviolet, and computational studies. J. Chem. Eng. Data 2023 68 12 3045 3061 10.1021/acs.jced.3c00308
    [Google Scholar]
  65. Ali A. Hyder S. Sabir S. Chand D. Nain A.K. Volumetric, viscometric, and refractive index behaviour of α-amino acids and their groups’ contribution in aqueous d-glucose solution at different temperatures. J. Chem. Thermodyn. 2006 38 2 136 143 10.1016/j.jct.2005.04.011
    [Google Scholar]
  66. Saha B. Barman S. Majumder S. Ghosh B. Mallick K. Choudhury S. Roy M.N. Investigation of intermolecular interactions of l-Valine and l-Phenylalanine with muscle relaxant drug mephenesin molecule prevalent in aqueous solution by various physico-chemical methods at T=298.15K–313.15K. Heliyon 2024 10 1 e23562 10.1016/j.heliyon.2023.e23562 38173535
    [Google Scholar]
  67. Ghosh B. Sinha A. Roy N. Rajbanshi B. Mondal M. Roy D. Das A. Ghosh N.N. Dakua V.K. Roy M.N. Molecular interactions of some bioactive molecules prevalent in aqueous ionic liquid solutions at different temperatures investigated by experimental and computational contrivance. Fluid Phase Equilib. 2022 557 113415 113415 10.1016/j.fluid.2022.113415
    [Google Scholar]
  68. Ali A. Malik N.A. Uzair S. Ali M. Conductometric and fluorometric studies of sodium dodecyl sulphate in aqueous solution and in the presence of amino acids. Mol. Phys. 2014 112 20 2681 2693 10.1080/00268976.2014.905720
    [Google Scholar]
  69. Shen X.M. Zhang F. Dryhurst G. Oxidation of dopamine in the presence of cysteine: Characterization of new toxic products. Chem. Res. Toxicol. 1997 10 2 147 155 10.1021/tx960145c 9049425
    [Google Scholar]
  70. Yasmin A. Barman S. Barman B.K. Roy M.N. Investigation of diverse interactions of amino acids (Asp and Glu) in aqueous Dopamine hydrochloride with the manifestation of the catecholamine molecule recognition tool in solution phase. J. Mol. Liq. 2018 271 715 729 10.1016/j.molliq.2018.08.114
    [Google Scholar]
  71. Dee G.T. Sauer B.B. The surface tension of polymer liquids. Adv. Phys. 1998 47 2 161 205 10.1080/000187398243546
    [Google Scholar]
  72. Romero C.M. Jiménez E. Suárez F. Effect of temperature on the behavior of surface properties of alcohols in aqueous solution. J. Chem. Thermodyn. 2009 41 4 513 516 10.1016/j.jct.2008.11.004
    [Google Scholar]
  73. Romero C.M. Paéz M.S. Surface tension of aqueous solutions of alcohol and polyols at 298.15 K. Phys. Chem. Liquids 2006 44 1 61 65 10.1080/01421590500315360
    [Google Scholar]
  74. Mondal M. Basak S. Choudhury S. Ghosh N.N. Roy M.N. Investigation of molecular interactions insight into some biologically active amino acids and aqueous solutions of an anti-malarial drug by physicochemical and theoretical approach. J. Mol. Liq. 2021 341 116933 116933 10.1016/j.molliq.2021.116933
    [Google Scholar]
/content/journals/cpc/10.2174/0118779468350510241108110131
Loading
/content/journals/cpc/10.2174/0118779468350510241108110131
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test