Skip to content
2000
image of Review: Solid Dispersion Formulation Methods and Applications in Drug Delivery

Abstract

About 44% of the active medicinal components in all previously disclosed chemical units are hydrophobic and do not extend shop because of their limited water solubility. One of the factors limiting the rate at which oral medications can reach the appropriate concentration in the systemic circulation for pharmacological action is their solubility. Our medical preparation scientists and researchers are constantly surrounded by issues relating to drug release, drug targeting, solubility, overdosing, permeability and bioavailability. Thus, creating or improving frameworks for drug delivery is a territory of ongoing research. Solid dispersion, micronization, salt formation, are some of the vital methods usually employed to improve the solubility of poorly soluble drugs, but each method has some drawbacks and benefits. This review focuses on different methods of improving drug solubility in order to lower the proportion of medication candidates that are removed from development due to poor solubility. The popular solution for all problems related to aspects of solubility and in-vitro release rate of certain poorly water-soluble drugs, is solid dispersion. Solid dispersions smear the standard to drug release via producing a combination of a poorly water-soluble API and greatly soluble coformers. The solid dispersion method has been commonly used to increase the drug release, solubility, and bioavailability of poorly water-soluble drugs. The focus of this review paper is on carriers, BCS classification, and solubility. This page also summarizes some of the most current technological advancements and offers a variety of preparation methods for solid dispersion. The various solid dispersions were highlighted according to their molecular configuration and carrier type. It also provides an overview of the solid dispersion methodologies and their mechanics, as well as the marketed medications that can be made utilizing them.

Loading

Article metrics loading...

/content/journals/cpc/10.2174/0118779468337741241126094712
2024-12-23
2025-05-25
Loading full text...

Full text loading...

References

  1. Savjani K.T. Gajjar A.K. Savjani J.K. Drug solubility: Importance and enhancement techniques. ISRN Pharm. 2012 2012 1 10 10.5402/2012/195727 22830056
    [Google Scholar]
  2. Bhatia M. Devi S. Co-crystallization: A green approach for the solubility enhancement of poorly soluble drugs. CrystEngComm 2024 26 3 293 311 10.1039/D3CE01047C
    [Google Scholar]
  3. Bhujbal S.V. Mitra B. Jain U. Gong Y. Agrawal A. Karki S. Taylor L.S. Kumar S. Tony Zhou Q. Pharmaceutical amorphous solid dispersion: A review of manufacturing strategies. Acta Pharm. Sin. B 2021 11 8 2505 2536 10.1016/j.apsb.2021.05.014 34522596
    [Google Scholar]
  4. Tran P. Pyo Y.C. Kim D.H. Lee S.E. Kim J.K. Park J.S. Overview of the manufacturing methods of solid dispersion technology for improving the solubility of poorly water-soluble drugs and application to anticancer drugs. Pharmaceutics 2019 11 3 132 10.3390/pharmaceutics11030132 30893899
    [Google Scholar]
  5. Pindelska E. Sokal A. Kolodziejski W. Pharmaceutical cocrystals, salts and polymorphs: Advanced characterization techniques. Adv. Drug Deliv. Rev. 2017 117 111 146 10.1016/j.addr.2017.09.014 28931472
    [Google Scholar]
  6. Cerreia Vioglio P. Chierotti M.R. Gobetto R. Pharmaceutical aspects of salt and cocrystal forms of APIs and characterization challenges. Adv. Drug Deliv. Rev. 2017 117 86 110 10.1016/j.addr.2017.07.001 28687273
    [Google Scholar]
  7. Saokham P. Muankaew C. Jansook P. Loftsson T. Solubility of cyclodextrins and drug/cyclodextrin complexes. Molecules 2018 23 5 1161 10.3390/molecules23051161 29751694
    [Google Scholar]
  8. Jacob S. Nair A.B. Cyclodextrin complexes: Perspective from drug delivery and formulation. Drug Dev. Res. 2018 79 5 201 217 10.1002/ddr.21452 30188584
    [Google Scholar]
  9. Veseli A. Žakelj S. Kristl A. A review of methods for solubility determination in biopharmaceutical drug characterization. Drug Dev. Ind. Pharm. 2019 45 11 1717 1724 10.1080/03639045.2019.1665062 31512934
    [Google Scholar]
  10. Ainurofiq A. Putro D. Ramadhani D. Putra G. Do Espirito Santo L.D.C. A review on solubility enhancement methods for poorly water-soluble drugs. J. Rep. Pharm. Sci. 2021 10 1 137 147 10.4103/jrptps.JRPTPS_134_19
    [Google Scholar]
  11. Thapa R.K. Choi H.G. Kim J.O. Yong C.S. Analysis and optimization of drug solubility to improve pharmacokinetics. J. Pharm. Investig. 2017 47 2 95 110 10.1007/s40005‑016‑0299‑z
    [Google Scholar]
  12. Danaei M. Dehghankhold M. Ataei S. Hasanzadeh Davarani F. Javanmard R. Dokhani A. Khorasani S. Mozafari M.R. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 2018 10 2 57 10.3390/pharmaceutics10020057 29783687
    [Google Scholar]
  13. Norhasri M.S.M. Hamidah M.S. Fadzil A.M. Applications of using nano material in concrete: A review. Constr. Build. Mater. 2017 133 91 97 10.1016/j.conbuildmat.2016.12.005
    [Google Scholar]
  14. Soukoulis C. Bohn T. A comprehensive overview on the micro- and nano-technological encapsulation advances for enhancing the chemical stability and bioavailability of carotenoids. Crit. Rev. Food Sci. Nutr. 2018 58 1 1 36 10.1080/10408398.2014.971353 26065668
    [Google Scholar]
  15. Rashwan A.K. Karim N. Xu Y. Xie J. Cui H. Mozafari M.R. Chen W. Potential micro-/nano-encapsulation systems for improving stability and bioavailability of anthocyanins: An updated review. Crit. Rev. Food Sci. Nutr. 2023 63 19 3362 3385 10.1080/10408398.2021.1987858 34661483
    [Google Scholar]
  16. Akharume F.U. Aluko R.E. Adedeji A.A. Modification of plant proteins for improved functionality: A review. Compr. Rev. Food Sci. Food Saf. 2021 20 1 198 224 10.1111/1541‑4337.12688 33393195
    [Google Scholar]
  17. Maleki A. Kettiger H. Schoubben A. Rosenholm J.M. Ambrogi V. Hamidi M. Mesoporous silica materials: From physico-chemical properties to enhanced dissolution of poorly water-soluble drugs. J. Control. Release 2017 262 329 347 10.1016/j.jconrel.2017.07.047 28778479
    [Google Scholar]
  18. Ahire E. Thakkar S. Darshanwad M. Misra M. Parenteral nanosuspensions: A brief review from solubility enhancement to more novel and specific applications. Acta Pharm. Sin. B 2018 8 5 733 755 10.1016/j.apsb.2018.07.011 30245962
    [Google Scholar]
  19. Karakucuk A. Teksin Z.S. Eroglu H. Celebi N. Evaluation of improved oral bioavailability of ritonavir nanosuspension. Eur. J. Pharm. Sci. 2019 131 153 158 10.1016/j.ejps.2019.02.028 30790704
    [Google Scholar]
  20. He J. Han Y. Xu G. Yin L. Ngandeu Neubi M. Zhou J. Ding Y. Preparation and evaluation of celecoxib nanosuspensions for bioavailability enhancement. RSC Advances 2017 7 22 13053 13064 10.1039/C6RA28676C
    [Google Scholar]
  21. Bhakay A. Rahman M. Dave R.N. Bilgili E. Bioavailability enhancement of poorly water-soluble drugs via nanocomposites: Formulation–Processing aspects and challenges. Pharmaceutics 2018 10 3 86 10.3390/pharmaceutics10030086 29986543
    [Google Scholar]
  22. Gupta D. Jamwal D. Rana D. Katoch A. Microwave synthesized nanocomposites for enhancing oral bioavailability of drugs. Applications of Nanocomposite Materials in Drug Delivery Woodhead Publishing 2018 619 632 10.1016/B978‑0‑12‑813741‑3.00027‑3
    [Google Scholar]
  23. Barradas T.N. de Holanda e Silva K.G. Nanoemulsions of essential oils to improve solubility, stability and permeability: A review. Environ. Chem. Lett. 2021 19 2 1153 1171 10.1007/s10311‑020‑01142‑2
    [Google Scholar]
  24. Piazzini V. Monteforte E. Luceri C. Bigagli E. Bilia A.R. Bergonzi M.C. Nanoemulsion for improving solubility and permeability of Vitex agnus-castus extract: Formulation and in vitro evaluation using PAMPA and Caco-2 approaches. Drug Deliv. 2017 24 1 380 390 10.1080/10717544.2016.1256002 28165811
    [Google Scholar]
  25. Harwansh R.K. Deshmukh R. Rahman M.A. Nanoemulsion: Promising nanocarrier system for delivery of herbal bioactives. J. Drug Deliv. Sci. Technol. 2019 51 224 233 10.1016/j.jddst.2019.03.006
    [Google Scholar]
  26. Pandey P. Gulati N. Makhija M. Purohit D. Dureja H. Nanoemulsion: a novel drug delivery approach for enhancement of bioavailability. Recent Pat. Nanotechnol. 2020 14 4 276 293 10.2174/1872210514666200604145755 32496999
    [Google Scholar]
  27. Varshosaz J. Ghassami E. Ahmadipour S. Crystal engineering for enhanced solubility and bioavailability of poorly soluble drugs. Curr. Pharm. Des. 2018 24 21 2473 2496 10.2174/1381612824666180712104447 29998799
    [Google Scholar]
  28. Chistyakov D. Sergeev G. The polymorphism of drugs: New approaches to the synthesis of nanostructured polymorphs. Pharmaceutics 2020 12 1 34 10.3390/pharmaceutics12010034 31906357
    [Google Scholar]
  29. Baghel S. Cathcart H. O’Reilly N.J. Polymeric amorphous solid dispersions: A review of amorphization, crystallization, stabilization, solid-state characterization, and aqueous solubilization of biopharmaceutical classification system class II drugs. J. Pharm. Sci. 2016 105 9 2527 2544 10.1016/j.xphs.2015.10.008 26886314
    [Google Scholar]
  30. Vo C.L.N. Park C. Lee B.J. Current trends and future perspectives of solid dispersions containing poorly water-soluble drugs. Eur. J. Pharm. Biopharm. 2013 85 3 799 813 10.1016/j.ejpb.2013.09.007 24056053
    [Google Scholar]
  31. Tran P. Park J.S. Application of supercritical fluid technology for solid dispersion to enhance solubility and bioavailability of poorly water-soluble drugs. Int. J. Pharm. 2021 610 121247 10.1016/j.ijpharm.2021.121247 34740762
    [Google Scholar]
  32. Jakubowska E. Lulek J. The application of freeze-drying as a production method of drug nanocrystals and solid dispersions – A review. J. Drug Deliv. Sci. Technol. 2021 62 102357 10.1016/j.jddst.2021.102357
    [Google Scholar]
  33. Pandi P. Bulusu R. Kommineni N. Khan W. Singh M. Amorphous solid dispersions: An update for preparation, characterization, mechanism on bioavailability, stability, regulatory considerations and marketed products. Int. J. Pharm. 2020 586 119560 10.1016/j.ijpharm.2020.119560 32565285
    [Google Scholar]
  34. Schittny A. Huwyler J. Puchkov M. Mechanisms of increased bioavailability through amorphous solid dispersions: A review. Drug Deliv. 2020 27 1 110 127 10.1080/10717544.2019.1704940 31885288
    [Google Scholar]
  35. Kaur S. Jena S.K. Samal S.K. Saini V. Sangamwar A.T. Freeze dried solid dispersion of exemestane: A way to negate an aqueous solubility and oral bioavailability problems. Eur. J. Pharm. Sci. 2017 107 54 61 10.1016/j.ejps.2017.06.032 28663037
    [Google Scholar]
  36. Charalabidis A. Sfouni M. Bergström C. Macheras P. The biopharmaceutics classification system (BCS) and the biopharmaceutics drug disposition classification system (BDDCS): Beyond guidelines. Int. J. Pharm. 2019 566 264 281 10.1016/j.ijpharm.2019.05.041 31108154
    [Google Scholar]
  37. Mehta M.U. Uppoor R.S. Conner D.P. Seo P. Vaidyanathan J. Volpe D.A. Stier E. Chilukuri D. Dorantes A. Ghosh T. Mandula H. Raines K. Dhanormchitphong P. Woodcock J. Yu L.X. Impact of the US FDA “Biopharmaceutics Classification System”(BCS) guidance on global drug development. Mol. Pharm. 2017 14 12 4334 4338 10.1021/acs.molpharmaceut.7b00687 29076742
    [Google Scholar]
  38. Bou-Chacra N. Melo K.J.C. Morales I.A.C. Stippler E.S. Kesisoglou F. Yazdanian M. Löbenberg R. Evolution of choice of solubility and dissolution media after two decades of biopharmaceutical classification system. AAPS J. 2017 19 4 989 1001 10.1208/s12248‑017‑0085‑5 28516359
    [Google Scholar]
  39. Sherje A.P. Londhe V. Development and evaluation of pH-responsive cyclodextrin-based in situ gel of paliperidone for intranasal delivery. AAPS PharmSciTech 2018 19 1 384 394 10.1208/s12249‑017‑0844‑8 28748368
    [Google Scholar]
  40. Xie C.M. Lu X. Wang K.F. Meng F.Z. Jiang O. Zhang H.P. Zhi W. Fang L.M. Silver nanoparticles and growth factors incorporated hydroxyapatite coatings on metallic implant surfaces for enhancement of osteoinductivity and antibacterial properties. ACS Appl. Mater. Interfaces 2014 6 11 8580 8589 10.1021/am501428e 24720634
    [Google Scholar]
  41. Vithani K. Hawley A. Jannin V. Pouton C. Boyd B.J. Solubilisation behaviour of poorly water-soluble drugs during digestion of solid SMEDDS. Eur. J. Pharm. Biopharm. 2018 130 236 246 10.1016/j.ejpb.2018.07.006 29981444
    [Google Scholar]
  42. Aloisio C. Antimisiaris S.G. Longhi M.R. Liposomes containing cyclodextrins or meglumine to solubilize and improve the bioavailability of poorly soluble drugs. J. Mol. Liq. 2017 229 106 113 10.1016/j.molliq.2016.12.035
    [Google Scholar]
  43. Dwichandra Putra O. Umeda D. Fujita E. Haraguchi T. Uchida T. Yonemochi E. Uekusa H. Solubility improvement of benexate through salt formation using artificial sweetener. Pharmaceutics 2018 10 2 64 10.3390/pharmaceutics10020064 29861459
    [Google Scholar]
  44. Kawakami K. Oda N. Miyoshi K. Funaki T. Ida Y. Solubilization behavior of a poorly soluble drug under combined use of surfactants and cosolvents. Eur. J. Pharm. Sci. 2006 28 1-2 7 14 10.1016/j.ejps.2005.11.012 16406526
    [Google Scholar]
  45. Priemel P.A. Laitinen R. Grohganz H. Rades T. Strachan C.J. In situ amorphisation of indomethacin with Eudragit® E during dissolution. Eur. J. Pharm. Biopharm. 2013 85 3 1259 1265 10.1016/j.ejpb.2013.09.010 24056054
    [Google Scholar]
  46. Chiou W.L. Riegelman S. Preparation and dissolution characteristics of several fast-release solid dispersions of griseofulvin. J. Pharm. Sci. 1969 58 12 1505 1510 10.1002/jps.2600581218 5353269
    [Google Scholar]
  47. Yu L.X. Amidon G.L. A compartmental absorption and transit model for estimating oral drug absorption. Int. J. Pharm. 1999 186 2 119 125 10.1016/S0378‑5173(99)00147‑7 10486429
    [Google Scholar]
  48. Sekiguchi K. Obi N. Ueda Y. Studies on Absorption of Eutectic Mixture. II. Absorption of fused Conglomerates of Chloramphenicol and Urea in Rabbits. Chem. Pharm. Bull. (Tokyo) 1964 12 2 134 144 10.1248/cpb.12.134 14126741
    [Google Scholar]
  49. Varshosaz J. Enteshari S. Solubility enhancement of domperidone by solvent change in situ micronization technique. Adv. Biomed. Res. 2018 7 1 109 10.4103/abr.abr_219_17 30069440
    [Google Scholar]
  50. Chiou W.L. Riegelman S. Pharmaceutical applications of solid dispersion systems. J. Pharm. Sci. 1971 60 9 1281 1302 10.1002/jps.2600600902 4935981
    [Google Scholar]
  51. Jacob S. Nair A.B. Shah J. Emerging role of nanosuspensions in drug delivery systems. Biomater. Res. 2020 24 1 3 10.1186/s40824‑020‑0184‑8 31969986
    [Google Scholar]
  52. Attari Z. Bhandari A. Jagadish P.C. Lewis S. Enhanced ex vivo intestinal absorption of olmesartan medoxomil nanosuspension: Preparation by combinative technology. Saudi Pharm. J. 2016 24 1 57 63 10.1016/j.jsps.2015.03.008 26903769
    [Google Scholar]
  53. Junyaprasert V.B. Morakul B. Nanocrystals for enhancement of oral bioavailability of poorly water-soluble drugs. Asian J. Pharm. Sci. 2015 10 1 13 23 10.1016/j.ajps.2014.08.005
    [Google Scholar]
  54. Hecq J. Deleers M. Fanara D. Vranckx H. Amighi K. Preparation and characterization of nanocrystals for solubility and dissolution rate enhancement of nifedipine. Int. J. Pharm. 2005 299 1-2 167 177 10.1016/j.ijpharm.2005.05.014 15996838
    [Google Scholar]
  55. Jermain S.V. Brough C. Williams R.O. III Amorphous solid dispersions and nanocrystal technologies for poorly water-soluble drug delivery – An update. Int. J. Pharm. 2018 535 1-2 379 392 10.1016/j.ijpharm.2017.10.051 29128423
    [Google Scholar]
  56. Kotta S. Khan A.W. Pramod K. Ansari S.H. Sharma R.K. Ali J. Exploring oral nanoemulsions for bioavailability enhancement of poorly water-soluble drugs. Expert Opin. Drug Deliv. 2012 9 5 585 598 10.1517/17425247.2012.668523 22512597
    [Google Scholar]
  57. Shakeel F. Faisal M.S. Nanoemulsion: A promising tool for solubility and dissolution enhancement of celecoxib. Pharm. Dev. Technol. 2010 15 1 53 56 10.3109/10837450902967954 19552546
    [Google Scholar]
  58. Kfoury M. Landy D. Fourmentin S. Characterization of cyclodextrin/volatile inclusion complexes: A review. Molecules 2018 23 5 1204 10.3390/molecules23051204 29772824
    [Google Scholar]
  59. Loh G.O. Tan Y.T. Peh K.K. Enhancement of norfloxacin solubility via inclusion complexation with β-cyclodextrin and its derivative hydroxypropyl-β-cyclodextrin. Asian J. Pharm. Sci. 2016 11 4 536 546 10.1016/j.ajps.2016.02.009
    [Google Scholar]
  60. Shi H. Xie Y. Xu J. Zhu J. Wang C. Wang H. Solubility enhancement, solvent effect and thermodynamic analysis of pazopanib in co-solvent mixtures. J. Chem. Thermodyn. 2021 155 106343 10.1016/j.jct.2020.106343
    [Google Scholar]
  61. Seedher N. Kanojia M. Co-solvent solubilization of some poorly-soluble antidiabetic drugs. Pharm. Dev. Technol. 2009 14 2 185 192 10.1080/10837450802498894 19519190
    [Google Scholar]
  62. Lu Q. Dun J. Chen J.M. Liu S. Sun C.C. Improving solid-state properties of berberine chloride through forming a salt cocrystal with citric acid. Int. J. Pharm. 2019 554 14 20 10.1016/j.ijpharm.2018.10.062 30385378
    [Google Scholar]
  63. Wu W. Löbmann K. Rades T. Grohganz H. On the role of salt formation and structural similarity of co-formers in co-amorphous drug delivery systems. Int. J. Pharm. 2018 535 1-2 86 94 10.1016/j.ijpharm.2017.10.057 29102703
    [Google Scholar]
  64. Serajuddin A.T.M. Salt formation to improve drug solubility. Adv. Drug Deliv. Rev. 2007 59 7 603 616 10.1016/j.addr.2007.05.010 17619064
    [Google Scholar]
  65. Chaudhari S.P. Dugar R.P. Application of surfactants in solid dispersion technology for improving solubility of poorly water soluble drugs. J. Drug Deliv. Sci. Technol. 2017 41 68 77 10.1016/j.jddst.2017.06.010
    [Google Scholar]
  66. Balakrishnan A. Rege B.D. Amidon G.L. Polli J.E. Surfactant-mediated dissolution: Contributions of solubility enhancement and relatively low micelle diffusivity. J. Pharm. Sci. 2004 93 8 2064 2075 10.1002/jps.20118 15236455
    [Google Scholar]
  67. Ngo H.V. Tran P.H.L. Lee B.J. Tran T.T.D. The roles of a surfactant in zein-HPMC blend solid dispersions for improving drug delivery. Int. J. Pharm. 2019 563 169 173 10.1016/j.ijpharm.2019.04.009 30954672
    [Google Scholar]
  68. Aitipamula S. Banerjee R. Bansal A.K. Biradha K. Cheney M.L. Choudhury A.R. Desiraju G.R. Dikundwar A.G. Dubey R. Duggirala N. Ghogale P.P. Ghosh S. Goswami P.K. Goud N.R. Jetti R.R.K.R. Karpinski P. Kaushik P. Kumar D. Kumar V. Moulton B. Mukherjee A. Mukherjee G. Myerson A.S. Puri V. Ramanan A. Rajamannar T. Reddy C.M. Rodriguez-Hornedo N. Rogers R.D. Row T.N.G. Sanphui P. Shan N. Shete G. Singh A. Sun C.C. Swift J.A. Thaimattam R. Thakur T.S. Kumar Thaper R. Thomas S.P. Tothadi S. Vangala V.R. Variankaval N. Vishweshwar P. Weyna D.R. Zaworotko M.J. Polymorphs, salts, and cocrystals: What’s in a name? Cryst. Growth Des. 2012 12 5 2147 2152 10.1021/cg3002948
    [Google Scholar]
  69. Ganesh M. Ubaidulla U. Rathnam G. Jang H.T. Chitosan-telmisartan polymeric cocrystals for improving oral absorption: In vitro and in vivo evaluation. Int. J. Biol. Macromol. 2019 131 879 885 10.1016/j.ijbiomac.2019.03.141 30905757
    [Google Scholar]
  70. Hasmukh Mehta C. Pooja Srinivas P. Sb A. Fathy Mahany K.B. Koteshwara K.B. Yogendra Nayak U. Computational and Experimental Insights in Design and Development of Aceclofenac Co-Crystals. Res. J. Pharm. Technol. 2022 15 8 3709 3716 10.52711/0974‑360X.2022.00622
    [Google Scholar]
  71. Zhang Y.X. Wang L.Y. Dai J.K. Liu F. Li Y.T. Wu Z.Y. Yan C.W. The comparative study of cocrystal/salt in simultaneously improving solubility and permeability of acetazolamide. J. Mol. Struct. 2019 1184 225 232 10.1016/j.molstruc.2019.01.090
    [Google Scholar]
  72. Chen P. Song L. Liu Y. Fang Y. Synthesis of silver nanoparticles by γ-ray irradiation in acetic water solution containing chitosan. Radiat. Phys. Chem. 2007 76 7 1165 1168 10.1016/j.radphyschem.2006.11.012
    [Google Scholar]
  73. Agi A. Junin R. Gbadamosi A. Abbas A. Azli N.B. Oseh J. Influence of nanoprecipitation on crystalline starch nanoparticle formed by ultrasonic assisted weak-acid hydrolysis of cassava starch and the rheology of their solutions. Chem. Eng. Process. 2019 142 107556 10.1016/j.cep.2019.107556
    [Google Scholar]
  74. Belkacem N. Sheikh Salem M.A. AlKhatib H.S. Effect of ultrasound on the physico-chemical properties of poorly soluble drugs: Antisolvent sonocrystallization of ketoprofen. Powder Technol. 2015 285 16 24 10.1016/j.powtec.2015.06.058
    [Google Scholar]
  75. Sharma C. Desai M.A. Patel S.R. Anti-solvent sonocrystallization for nano-range particle size of telmisartan through Taguchi and Box–Behnken design. Chem. Pap. 2020 74 1 323 331 10.1007/s11696‑019‑00886‑8
    [Google Scholar]
  76. Melo T.B.L. de Batista R.S.A. Júnior J.V.C. de Andrade F.H.D. de Souza F.S. de Macêdo R.O. Recrystallisation of ferulic acid using the anti-solvent and sonocrystallisation processes. J. Therm. Anal. Calorim. 2019 138 5 3757 3764 10.1007/s10973‑019‑08925‑y
    [Google Scholar]
  77. Bund R.K. Pandit A.B. Sonocrystallization: Effect on lactose recovery and crystal habit. Ultrason. Sonochem. 2007 14 2 143 152 10.1016/j.ultsonch.2006.06.003 16904362
    [Google Scholar]
  78. Craig D.Q.M. The mechanisms of drug release from solid dispersions in water-soluble polymers. Int. J. Pharm. 2002 231 2 131 144 10.1016/S0378‑5173(01)00891‑2 11755266
    [Google Scholar]
  79. Bhatia M. Devi R. Enhanced solubility and drug release of ketoprofen using lyophilized bovine serum albumin solid dispersion. ACTA Pharmaceutica Sciencia 2019 57 1 33 10.23893/1307‑2080.APS.05703
    [Google Scholar]
  80. Türk M. Hils P. Helfgen B. Schaber K. Martin H.J. Wahl M.A. Micronization of pharmaceutical substances by the Rapid Expansion of Supercritical Solutions (RESS): A promising method to improve bioavailability of poorly soluble pharmaceutical agents. J. Supercrit. Fluids 2002 22 1 75 84 10.1016/S0896‑8446(01)00109‑7
    [Google Scholar]
  81. Kim N.A. Oh H.K. Lee J.C. Choi Y.H. Jeong S.H. Comparison of solubility enhancement by solid dispersion and micronized butein and its correlation with in vivo study. J. Pharm. Investig. 2021 51 1 53 60 10.1007/s40005‑020‑00486‑9
    [Google Scholar]
  82. Varshosaz J. Talari R. Mostafavi S.A. Nokhodchi A. Dissolution enhancement of gliclazide using in situ micronization by solvent change method. Powder Technol. 2008 187 3 222 230 10.1016/j.powtec.2008.02.018
    [Google Scholar]
  83. Vogt M. Kunath K. Dressman J.B. Dissolution enhancement of fenofibrate by micronization, cogrinding and spray-drying: Comparison with commercial preparations. Eur. J. Pharm. Biopharm. 2008 68 2 283 288 10.1016/j.ejpb.2007.05.010 17574403
    [Google Scholar]
  84. Ning X. Sun J. Han X. Wu Y. Yan Z. Han J. He Z. Strategies to improve dissolution and oral absorption of glimepiride tablets: Solid dispersion versus micronization techniques. Drug Dev. Ind. Pharm. 2011 37 6 727 736 10.3109/03639045.2010.538061 21204747
    [Google Scholar]
  85. Fu Q. Li B. Zhang D. Fang M. Shao J. Guo M. Guo Z. Li M. Sun J. Zhai Y. Comparative studies of the in vitro dissolution and in vivo pharmacokinetics for different formulation strategies (solid dispersion, micronization, and nanocrystals) for poorly water-soluble drugs: A case study for lacidipine. Colloids Surf. B Biointerfaces 2015 132 171 176 10.1016/j.colsurfb.2015.05.010 26047880
    [Google Scholar]
  86. Wang L. Liu S. Chen J. Wang Y. Sun C.C. Novel Salt-Cocrystals of Berberine Hydrochloride with Aliphatic Dicarboxylic Acids: Odd–Even Alternation in Physicochemical Properties. Mol. Pharm. 2021 18 4 1758 1767 10.1021/acs.molpharmaceut.0c01250 33656348
    [Google Scholar]
  87. Crisan M. Petric M. Vlase G. Vlase T. Siminel A.V. Bourosh P.N. Croitor L. Organic salt versus salt cocrystal: Thermal behavior, structural and photoluminescence investigations. J. Therm. Anal. Calorim. 2022 147 2 1203 1213 10.1007/s10973‑020‑10438‑y
    [Google Scholar]
  88. Tariq Q.N. Bi Y. Manzoor S. Tariq M.N. Cao W.L. Dong W.S. Zhang J.G. Synthesis, Performance, and Thermal Behavior of Two Insensitive 3,4-Dinitropyrazole-Based Energetic Cocrystals. Cryst. Growth Des. 2023 23 1 112 119 10.1021/acs.cgd.2c00809
    [Google Scholar]
  89. Nugrahani I. Kumalasari R.A. Auli W.N. Horikawa A. Uekusa H. Salt cocrystal of diclofenac sodium-l-proline: Structural, pseudopolymorphism, and pharmaceutics performance study. Pharmaceutics 2020 12 7 690 10.3390/pharmaceutics12070690 32708314
    [Google Scholar]
  90. Luo Y. Chen S. Zhou J. Chen J. Tian L. Gao W. Zhang Y. Ma A. Li L. Zhou Z. Luteolin cocrystals: Characterization, evaluation of solubility, oral bioavailability and theoretical calculation. J. Drug Deliv. Sci. Technol. 2019 50 248 254 10.1016/j.jddst.2019.02.004
    [Google Scholar]
  91. Bhatia M. Kumar A. Verma V. Devi S. Development of ketoprofen-p-aminobenzoic acid co-crystal: formulation, characterization, optimization, and evaluation. Med. Chem. Res. 2021 30 2090 2102 10.1007/s00044‑021‑02794‑7
    [Google Scholar]
  92. Devi S. Kumar A. Kapoor A. Verma V. Yadav S. Bhatia M. Ketoprofen–FA co-crystal: In vitro and in vivo investigation for the solubility enhancement of drug by design of expert. AAPS PharmSciTech 2022 23 4 101 10.1208/s12249‑022‑02253‑5 35348937
    [Google Scholar]
  93. Devi S. Bahmani K. Chitosan co-crystal for enhancing the solubity and dissolution rate of diclofenac sodium. Int. J. Pharm. Sci. Res. 2023 14 1 357 365 10.13040/IJPSR.0975‑8232
    [Google Scholar]
  94. Choi J.S. Design of cilostazol nanocrystals for improved solubility. J. Pharm. Innov. 2020 15 3 416 423 10.1007/s12247‑019‑09391‑7
    [Google Scholar]
  95. Huang Z. Staufenbiel S. Bodmeier R. Combination of co-crystal and nanocrystal techniques to improve the solubility and dissolution rate of poorly soluble drugs. Pharm. Res. 2022 39 5 949 961 10.1007/s11095‑022‑03243‑9 35552985
    [Google Scholar]
  96. Nagai N. Ogata F. Ike A. Shimomae Y. Osako H. Nakazawa Y. Yamamoto N. Kawasaki N. Oral formulation based on irbesartan nanocrystals improve drug solubility, absorbability, and efficacy. Pharmaceutics 2022 14 2 387 10.3390/pharmaceutics14020387 35214118
    [Google Scholar]
  97. Lopez-Vidal L. Parodi P. Actis M.R. Camacho N. Real D.A. Paredes A.J. Irazoqui F.J. Real J.P. Palma S.D. Formulation and optimization of pH-sensitive nanocrystals for improved oral delivery. Drug Deliv. Transl. Res. 2023 14 5 1301 1308 10.1007/s13346‑023‑01463‑z 37953429
    [Google Scholar]
  98. Aghrbi I. Fülöp V. Jakab G. Kállai-Szabó N. Balogh E. Antal I. Nanosuspension with improved saturated solubility and dissolution rate of cilostazol and effect of solidification on stability. J. Drug Deliv. Sci. Technol. 2021 61 102165 10.1016/j.jddst.2020.102165
    [Google Scholar]
  99. Zhou W. Zhang Y. Li R. Peng S. Ruan R. Li J. Liu W. Fabrication of caseinate stabilized thymol nanosuspensions via the ph-driven method: Enhancement in water solubility of thymol. Foods 2021 10 5 1074 10.3390/foods10051074 34066210
    [Google Scholar]
  100. Rashed M. Dadashzadeh S. Bolourchian N. The impact of process and formulation parameters on the fabrication of efavirenz nanosuspension to improve drug solubility and dissolution. Iran. J. Pharm. Res. 2022 21 1 e129409 10.5812/ijpr‑129409 36942076
    [Google Scholar]
  101. Shah R. Soni T. Shah U. Suhagia B.N. Patel M.N. Patel T. Gabr G.A. Gorain B. Kesharwani P. Formulation development and characterization of lumefantrine nanosuspension for enhanced antimalarial activity. J. Biomater. Sci. Polym. Ed. 2021 32 7 833 857 10.1080/09205063.2020.1870378 33380264
    [Google Scholar]
  102. Xu R. Jiang C. Zhou L. Li B. Hu Y. Guo Y. Xiao X. Lu S. Fabrication of stable apigenin nanosuspension with PEG 400 as antisolvent for enhancing the solubility and bioavailability. AAPS PharmSciTech 2022 23 1 12 10.1208/s12249‑021‑02164‑x 34881399
    [Google Scholar]
  103. Yazdani M. Tavakoli O. Khoobi M. Wu Y.S. Faramarzi M.A. Gholibegloo E. Farkhondeh S. Beta-carotene/cyclodextrin-based inclusion complex: Improved loading, solubility, stability, and cytotoxicity. J. Incl. Phenom. Macrocycl. Chem. 2022 102 1-2 55 64 10.1007/s10847‑021‑01100‑7
    [Google Scholar]
  104. Sid D. Baitiche M. Elbahri Z. Djerboua F. Boutahala M. Bouaziz Z. Le Borgne M. Solubility enhancement of mefenamic acid by inclusion complex with β-cyclodextrin: in silico modelling, formulation, characterisation, and in vitro studies. J. Enzyme Inhib. Med. Chem. 2021 36 1 605 617 10.1080/14756366.2020.1869225 33557644
    [Google Scholar]
  105. Gao S. Jiang J. Li X. Ye F. Fu Y. Zhao L. An environmentally safe formulation with enhanced solubility and fungicidal activity: Self-assembly and characterization of Difenoconazole-β-CD inclusion complex. J. Mol. Liq. 2021 327 114874 10.1016/j.molliq.2020.114874
    [Google Scholar]
  106. Li H. Chang S.L. Chang T.R. You Y. Wang X.D. Wang L.W. Yuan X.F. Tan M.H. Wang P.D. Xu P.W. Gao W.B. Zhao Q-S. Zhao B. Inclusion complexes of cannabidiol with β-cyclodextrin and its derivative: Physicochemical properties, water solubility, and antioxidant activity. J. Mol. Liq. 2021 334 116070 10.1016/j.molliq.2021.116070
    [Google Scholar]
  107. Aytac Z. Ipek S. Erol I. Durgun E. Uyar T. Fast-dissolving electrospun gelatin nanofibers encapsulating ciprofloxacin/cyclodextrin inclusion complex. Colloids Surf. B Biointerfaces 2019 178 129 136 10.1016/j.colsurfb.2019.02.059 30852264
    [Google Scholar]
  108. Rezaei A. Varshosaz J. Fesharaki M. Farhang A. Jafari S.M. Improving the solubility and in vitro cytotoxicity (anticancer activity) of ferulic acid by loading it into cyclodextrin nanosponges. Int. J. Nanomedicine 2019 14 4589 4599 10.2147/IJN.S206350 31296988
    [Google Scholar]
  109. Khalid Q. Ahmad M. Minhas M.U. Batool F. Malik N.S. Rehman M. Novel β-cyclodextrin nanosponges by chain growth condensation for solubility enhancement of dexibuprofen: Characterization and acute oral toxicity studies. J. Drug Deliv. Sci. Technol. 2021 61 102089 10.1016/j.jddst.2020.102089
    [Google Scholar]
  110. Rizvi S.S.B. Akhtar N. Minhas M.U. Mahmood A. Khan K.U. Synthesis and characterization of carboxymethyl chitosan nanosponges with cyclodextrin blends for drug solubility improvement. Gels 2022 8 1 55 10.3390/gels8010055 35049590
    [Google Scholar]
  111. Sharma K. Kadian V. Kumar A. Mahant S. Rao R. Evaluation of solubility, photostability and antioxidant activity of ellagic acid cyclodextrin nanosponges fabricated by melt method and microwave-assisted synthesis. J. Food Sci. Technol. 2022 59 3 898 908 10.1007/s13197‑021‑05085‑6 35153320
    [Google Scholar]
  112. Mashaqbeh H. Obaidat R. Al-Shar’i N. Evaluation and characterization of curcumin-β-cyclodextrin and cyclodextrin-based nanosponge inclusion complexation. Polymers 2021 13 23 4073 10.3390/polym13234073 34883577
    [Google Scholar]
  113. Alvani-Alamdari S. Rezaei H. Rahimpour E. Hemmati S. Martinez F. Barzegar-Jalali M. Jouyban A. Mesalazine solubility in the binary mixtures of ethanol and water at various temperatures. Phys. Chem. Liquids 2021 59 1 12 25 10.1080/00319104.2019.1675157
    [Google Scholar]
  114. Zhang C. Jouyban A. Zhao H. Farajtabar A. Acree W.E. Jr Equilibrium solubility, Hansen solubility parameter, dissolution thermodynamics, transfer property and preferential solvation of zonisamide in aqueous binary mixtures of ethanol, acetonitrile, isopropanol and N,N-dimethylformamide. J. Mol. Liq. 2021 326 115219 10.1016/j.molliq.2020.115219
    [Google Scholar]
  115. Yu S. Yuan J. Cheng Y. Du S. Wang Y. Xue F. Xing W. Solid-liquid phase equilibrium of clozapine in aqueous binary solvent mixtures. J. Mol. Liq. 2021 329 115371 10.1016/j.molliq.2021.115371
    [Google Scholar]
  116. Jin C. Zhang X. Geng Z. Pang X. Wang X. Ji J. Wang G. Liu H. Effects of various co-solvents on the solubility between blends of soybean oil with either methanol or ethanol. Fuel 2019 244 461 471 10.1016/j.fuel.2019.01.187
    [Google Scholar]
  117. Lv R. Zhang X. Xing R. Shi W. Zhao H. Li W. Jouyban A. Acree W.E. Comprehensive understanding on solubility and solvation performance of curcumin (form I) in aqueous co-solvent blends. J. Chem. Thermodyn. 2022 167 106718 10.1016/j.jct.2021.106718
    [Google Scholar]
  118. Cong Y. Du C. Xing K. Bian Y. Li X. Wang M. Investigation on co-solvency, solvent effect, Hansen solubility parameter and preferential solvation of fenbufen dissolution and models correlation. J. Mol. Liq. 2022 348 118415 10.1016/j.molliq.2021.118415
    [Google Scholar]
  119. Bergqvist S.W. Sandberg A.S. Carlsson N.G. Andlid T. Improved iron solubility in carrot juice fermented by homo- and hetero-fermentative lactic acid bacteria. Food Microbiol. 2005 22 1 53 61 10.1016/j.fm.2004.04.006
    [Google Scholar]
  120. Panda P.K. Dash P. Chang Y.H. Yang J.M. Improvement of chitosan water solubility by fumaric acid modification. Mater. Lett. 2022 316 132046 10.1016/j.matlet.2022.132046
    [Google Scholar]
  121. Malkawi R. Malkawi W.I. Al-Mahmoud Y. Tawalbeh J. Current trends on solid dispersions: Past, present, and future. Adv. Pharmacol. Pharm. Sci. 2022 2022 1 17 10.1155/2022/5916013 36317015
    [Google Scholar]
  122. Lee H.J. Kim J.Y. Park S.H. Rhee Y.S. Park C.W. Park E.S. Controlled-release oral dosage forms containing nimodipine solid dispersion and hydrophilic carriers. J. Drug Deliv. Sci. Technol. 2017 37 28 37 10.1016/j.jddst.2016.11.001
    [Google Scholar]
  123. kommavarapu P. Maruthapillai A. Palanisamy K. Sunkara M. Preparation and characterization of rilpivirine solid dispersions with the application of enhanced solubility and dissolution rate. Beni. Suef Univ. J. Basic Appl. Sci. 2015 4 1 71 79 10.1016/j.bjbas.2015.02.010
    [Google Scholar]
  124. Gumaste S.G. Gupta S.S. Serajuddin A.T.M. Investigation of polymer-surfactant and polymer-drug-surfactant miscibility for solid dispersion. AAPS J. 2016 18 5 1131 1143 10.1208/s12248‑016‑9939‑5 27301752
    [Google Scholar]
  125. Meng F. Gala U. Chauhan H. Classification of solid dispersions: Correlation to (i) stability and solubility (ii) preparation and characterization techniques. Drug Dev. Ind. Pharm. 2015 41 9 1401 1415 10.3109/03639045.2015.1018274 25853292
    [Google Scholar]
  126. Jaiswar D.R. Jha D. Amin P.D. Preparation and characterizations of stable amorphous solid solution of azithromycin by hot melt extrusion. J. Pharm. Investig. 2016 46 7 655 668 10.1007/s40005‑016‑0248‑x
    [Google Scholar]
  127. Chokshi R.J. Zia H. Sandhu H.K. Shah N.H. Malick W.A. Improving the dissolution rate of poorly water soluble drug by solid dispersion and solid solution: Pros and cons. Drug Deliv. 2007 14 1 33 45 10.1080/10717540600640278 17107929
    [Google Scholar]
  128. Saberi A. Kouhjani M. Yari D. Jahani A. Asare-Addo K. Kamali H. Nokhodchi A. Development, recent advances, and updates in binary, ternary co-amorphous systems, and ternary solid dispersions. J. Drug Deliv. Sci. Technol. 2023 86 104746 10.1016/j.jddst.2023.104746
    [Google Scholar]
  129. Nikam V.K. Shete S.K. Khapare J.P. Most promising solid dispersion technique of oral dispersible tablet. Beni. Suef Univ. J. Basic Appl. Sci. 2020 9 1 62 10.1186/s43088‑020‑00086‑4
    [Google Scholar]
  130. Yadav P.S. Kumar V. Singh U.P. Bhat H.R. Mazumder B. Physicochemical characterization and in vitro dissolution studies of solid dispersions of ketoprofen with PVP K30 and d-mannitol. Saudi Pharm. J. 2013 21 1 77 84 10.1016/j.jsps.2011.12.007 24109206
    [Google Scholar]
  131. Bhatnagar P. Dhote V. Mahajan S. Mishra P. Mishra D. Solid dispersion in pharmaceutical drug development: From basics to clinical applications. Curr. Drug Deliv. 2014 11 2 155 171 10.2174/15672018113109990044 23859356
    [Google Scholar]
  132. Mishra D.K. Dhote V. Bhargava A. Jain D.K. Mishra P.K. Amorphous solid dispersion technique for improved drug delivery: Basics to clinical applications. Drug Deliv. Transl. Res. 2015 5 6 552 565 10.1007/s13346‑015‑0256‑9 26306524
    [Google Scholar]
  133. Kumar P. Mohan C. Shankar M.K. Gulati M. Physiochemical characterization and release rate studies of soliddispersions of ketoconazole with pluronic f127 and pvp k-30. Iranian journal of pharmaceutical research. IJPR 2011 10 4 685 24250403
    [Google Scholar]
  134. Barmpalexis P. Koutsidis I. Karavas E. Louka D. Papadimitriou S.A. Bikiaris D.N. Development of PVP/PEG mixtures as appropriate carriers for the preparation of drug solid dispersions by melt mixing technique and optimization of dissolution using artificial neural networks. Eur. J. Pharm. Biopharm. 2013 85 3 1219 1231 10.1016/j.ejpb.2013.03.013 23541514
    [Google Scholar]
  135. Nguyen T.N.G. Tran P.H.L. Tran T.V. Vo T.V. Truong-DinhTran T. Development of a modified – Solid dispersion in an uncommon approach of melting method facilitating properties of a swellable polymer to enhance drug dissolution. Int. J. Pharm. 2015 484 1-2 228 234 10.1016/j.ijpharm.2015.02.064 25735669
    [Google Scholar]
  136. Wu J.X. Yang M. Berg F. Pajander J. Rades T. Rantanen J. Influence of solvent evaporation rate and formulation factors on solid dispersion physical stability. Eur. J. Pharm. Sci. 2011 44 5 610 620 10.1016/j.ejps.2011.10.008 22024381
    [Google Scholar]
  137. Lakshman J.P. Cao Y. Kowalski J. Serajuddin A.T.M. Application of melt extrusion in the development of a physically and chemically stable high-energy amorphous solid dispersion of a poorly water-soluble drug. Mol. Pharm. 2008 5 6 994 1002 10.1021/mp8001073 19434852
    [Google Scholar]
  138. Tran P.H.L. Lee B.J. Tran T.T.D. Recent studies on the processes and formulation impacts in the development of solid dispersions by hot-melt extrusion. Eur. J. Pharm. Biopharm. 2021 164 13 19 10.1016/j.ejpb.2021.04.009 33887388
    [Google Scholar]
  139. Fule R. Meer T. Amin P. Dhamecha D. Ghadlinge S. Preparation and characterisation of lornoxicam solid dispersion systems using hot melt extrusion technique. J. Pharm. Investig. 2014 44 1 41 59 10.1007/s40005‑013‑0099‑7
    [Google Scholar]
  140. AL-Japairai K. Hamed Almurisi S. Mahmood S. Madheswaran T. Chatterjee B. Sri P. Azra Binti Ahmad Mazlan N. Al Hagbani T. Alheibshy F. Strategies to improve the stability of amorphous solid dispersions in view of the hot melt extrusion (HME) method. Int. J. Pharm. 2023 647 123536 10.1016/j.ijpharm.2023.123536
    [Google Scholar]
  141. Hitzer P. Bäuerle T. Drieschner T. Ostertag E. Paulsen K. van Lishaut H. Lorenz G. Rebner K. Process analytical techniques for hot-melt extrusion and their application to amorphous solid dispersions. Anal. Bioanal. Chem. 2017 409 18 4321 4333 10.1007/s00216‑017‑0292‑z 28343348
    [Google Scholar]
  142. Betageri G. Makarla K.R. Enhancement of dissolution of glyburide by solid dispersion and lyophilization techniques. Int. J. Pharm. 1995 126 1-2 155 160 10.1016/0378‑5173(95)04114‑1
    [Google Scholar]
  143. Zajc N. Srčič S. Binary melting phase diagrams of nifedipine-PEG 4000 and nifedipine-mannitol systems. J. Therm. Anal. Calorim. 2004 77 2 571 580 10.1023/B:JTAN.0000038995.76480.74
    [Google Scholar]
  144. Zhao Y. Xin T. Ye T. Yang X. Pan W. Solid dispersion in the development of a nimodipine delayed-release tablet formulation. Asian J. Pharm. Sci. 2014 9 1 35 41 10.1016/j.ajps.2013.11.006
    [Google Scholar]
  145. Medarević D.P. Kachrimanis K. Mitrić M. Djuriš J. Djurić Z. Ibrić S. Dissolution rate enhancement and physicochemical characterization of carbamazepine-poloxamer solid dispersions. Pharm. Dev. Technol. 2016 21 3 268 276 10.3109/10837450.2014.996899 25582577
    [Google Scholar]
  146. Shamsuddin Fazil M. Ansari S. Ali J. Development and evaluation of solid dispersion of spironolactone using fusion method. Int. J. Pharm. Investig. 2016 6 1 63 68 10.4103/2230‑973X.176490 27014621
    [Google Scholar]
  147. Guo Z. Boyce C. Rhodes T. Liu L. Salituro G.M. Lee K. Bak A. Leung D.H. A novel method for preparing stabilized amorphous solid dispersion drug formulations using acoustic fusion. Int. J. Pharm. 2021 592 120026 10.1016/j.ijpharm.2020.120026 33137448
    [Google Scholar]
  148. Eloy J.O. Marchetti J.M. Solid dispersions containing ursolic acid in Poloxamer 407 and PEG 6000: A comparative study of fusion and solvent methods. Powder Technol. 2014 253 98 106 10.1016/j.powtec.2013.11.017
    [Google Scholar]
  149. Gorajana A. Garg S. Koh P.T. Chuah J.N. Talekar M. Formulation development and dissolution rate enhancement of efavirenz by solid dispersion systems. Indian J. Pharm. Sci. 2013 75 3 291 301 10.4103/0250‑474X.117434 24082345
    [Google Scholar]
  150. Bhatia M. Devi S. Development, characterisation and evaluation of pvp k-30/peg solid dispersion containing ketoprofen. ACTA Pharmaceutica Sciencia 2020 58 1 83 10.23893/1307‑2080.APS.05806
    [Google Scholar]
  151. Kanaujia P. Lau G. Ng W.K. Widjaja E. Hanefeld A. Fischbach M. Maio M. Tan R.B.H. Nanoparticle formation and growth during in vitro dissolution of ketoconazole solid dispersion. J. Pharm. Sci. 2011 100 7 2876 2885 10.1002/jps.22491 21290385
    [Google Scholar]
  152. Liu C. Desai K.G.H. Liu C. Enhancement of dissolution rate of valdecoxib using solid dispersions with polyethylene glycol 4000. Drug Dev. Ind. Pharm. 2005 31 1 1 10 10.1081/DDC‑43918 15704852
    [Google Scholar]
  153. Sarode A.L. Sandhu H. Shah N. Malick W. Zia H. Hot melt extrusion (HME) for amorphous solid dispersions: Predictive tools for processing and impact of drug–polymer interactions on supersaturation. Eur. J. Pharm. Sci. 2013 48 3 371 384 10.1016/j.ejps.2012.12.012 23267847
    [Google Scholar]
  154. Alshahrani S.M. Lu W. Park J.B. Morott J.T. Alsulays B.B. Majumdar S. Langley N. Kolter K. Gryczke A. Repka M.A. Stability-enhanced hot-melt extruded amorphous solid dispersions via combinations of Soluplus® and HPMCAS-HF. AAPS PharmSciTech 2015 16 4 824 834 10.1208/s12249‑014‑0269‑6 25567525
    [Google Scholar]
  155. He H. Yang R. Tang X. In vitro and in vivo evaluation of fenofibrate solid dispersion prepared by hot-melt extrusion. Drug Dev. Ind. Pharm. 2010 36 6 681 687 10.3109/03639040903449720 20136483
    [Google Scholar]
  156. Fan W. Zhang X. Zhu W. Di L. The preparation of curcumin sustained-release solid dispersion by hot-melt extrusion - Ⅱ. Optimization of preparation process and evaluation in vitro and in vivo. J. Pharm. Sci. 2020 109 3 1253 1260 10.1016/j.xphs.2019.11.020 31794699
    [Google Scholar]
  157. Verreck G. Six K. Van den Mooter G. Baert L. Peeters J. Brewster M.E. Characterization of solid dispersions of itraconazole and hydroxypropylmethylcellulose prepared by melt extrusion - Part I. Int. J. Pharm. 2003 251 1-2 165 174 10.1016/S0378‑5173(02)00591‑4 12527186
    [Google Scholar]
  158. Zheng X. Yang R. Tang X. Zheng L. Part I: Characterization of solid dispersions of nimodipine prepared by hot-melt extrusion. Drug Dev. Ind. Pharm. 2007 33 7 791 802 10.1080/03639040601050213 17654028
    [Google Scholar]
  159. Ponnammal P. Kanaujia P. Yani Y. Ng W. Tan R. Orally disintegrating tablets containing melt extruded amorphous solid dispersion of tacrolimus for dissolution enhancement. Pharmaceutics 2018 10 1 35 10.3390/pharmaceutics10010035 29547585
    [Google Scholar]
  160. Maniruzzaman M. Nair A. Scoutaris N. Bradley M.S.A. Snowden M.J. Douroumis D. One-step continuous extrusion process for the manufacturing of solid dispersions. Int. J. Pharm. 2015 496 1 42 51 10.1016/j.ijpharm.2015.09.048 26403386
    [Google Scholar]
  161. Emara L.H. Abdelfattah F.M. Taha N.F. Hot melt extrusion method for preparation of ibuprofen/sucroester WE15 solid dispersions: Evaluation and stability assessment. J. Appl. Pharm. Sci. 2017 7 8 156 167 10.7324/JAPS.2017.70822
    [Google Scholar]
  162. Cui B. Wang C. Zhao X. Yao J. Zeng Z. Wang Y. Sun C. Liu G. Cui H. Characterization and evaluation of avermectin solid nanodispersion prepared by microprecipitation and lyophilisation techniques. PLoS One 2018 13 1 e0191742 10.1371/journal.pone.0191742 29360866
    [Google Scholar]
  163. Choudhary A. Rana A.C. Aggarwal G. Kumar V. Zakir F. Development and characterization of an atorvastatin solid dispersion formulation using skimmed milk for improved oral bioavailability. Acta Pharm. Sin. B 2012 2 4 421 428 10.1016/j.apsb.2012.05.002
    [Google Scholar]
  164. Shirsath N.R. Goswami A.K. Design and development of solid dispersion of valsartan by a lyophilization technique: A 32 factorial design approach. Micro Nanosyst. 2021 13 1 90 102 10.2174/1876402912666200206155430
    [Google Scholar]
  165. Elgindy N. Elkhodairy K. Molokhia A. Elzoghby A. Lyophilization monophase solution technique for preparation of amorphous flutamide dispersions. Drug Dev. Ind. Pharm. 2011 37 7 754 764 10.3109/03639045.2010.539232 21204753
    [Google Scholar]
  166. Dhore P.W. Dave V.S. Saoji S.D. Bobde Y.S. Mack C. Raut N.A. Enhancement of the aqueous solubility and permeability of a poorly water soluble drug ritonavir via lyophilized milk-based solid dispersions. Pharm. Dev. Technol. 2017 22 1 90 102 10.1080/10837450.2016.1193193 27291246
    [Google Scholar]
  167. Ansari M.T. Hussain A. Nadeem S. Majeed H. Saeed-Ul-Hassan S. Tariq I. Mahmood Q. Khan A.K. Murtaza G. Preparation and characterization of solid dispersions of artemether by freeze-dried method. BioMed Res. Int. 2015 2015 1 11 10.1155/2015/109563 26097842
    [Google Scholar]
  168. Mahmoudi Z.N. Upadhye S.B. Ferrizzi D. Rajabi-Siahboomi A.R. In vitro characterization of a novel polymeric system for preparation of amorphous solid drug dispersions. AAPS J. 2014 16 4 685 697 10.1208/s12248‑014‑9590‑y 24789531
    [Google Scholar]
  169. Zhang W. Zhang C. He Y. Duan B. Yang G. Ma W. Zhang Y. Factors affecting the dissolution of indomethacin solid dispersions. AAPS PharmSciTech 2017 18 8 3258 3273 10.1208/s12249‑017‑0813‑2 28584898
    [Google Scholar]
  170. Barzegar-jalali M. Ghanbarzadeh S. Adibkia K. Valizadeh H. Bibak S. Mohammadi G. Siahi-Shadbad M. Development and characterization of solid dispersion of piroxicam for improvement of dissolution rate using hydrophilic carriers. Bioimpacts 2017 4 3 141 148 10.15171/bi.2014.007 25337467
    [Google Scholar]
  171. Seo S.W. Han H.K. Chun M.K. Choi H.K. Preparation and pharmacokinetic evaluation of curcumin solid dispersion using Solutol® HS15 as a carrier. Int. J. Pharm. 2012 424 1-2 18 25 10.1016/j.ijpharm.2011.12.051 22226878
    [Google Scholar]
  172. Sethia S. Squillante E. Solid dispersion of carbamazepine in PVP K30 by conventional solvent evaporation and supercritical methods. Int. J. Pharm. 2004 272 1-2 1 10 10.1016/j.ijpharm.2003.11.025 15019063
    [Google Scholar]
  173. Choi J.S. Lee S.E. Jang W.S. Byeon J.C. Park J.S. Solid dispersion of dutasteride using the solvent evaporation method: Approaches to improve dissolution rate and oral bioavailability in rats. Mater. Sci. Eng. C 2018 90 387 396 10.1016/j.msec.2018.04.074 29853105
    [Google Scholar]
  174. Chavan R.B. Lodagekar A. Yadav B. Shastri N.R. Amorphous solid dispersion of nisoldipine by solvent evaporation technique: Preparation, characterization, in vitro, in vivo evaluation, and scale up feasibility study. Drug Deliv. Transl. Res. 2020 10 4 903 918 10.1007/s13346‑020‑00775‑8 32378174
    [Google Scholar]
  175. Douroumis D. Bouropoulos N. Fahr A. Physicochemical characterization of solid dispersions of three antiepileptic drugs prepared by solvent evaporation method. J. Pharm. Pharmacol. 2007 59 5 645 653 10.1211/jpp.59.5.0004 17524229
    [Google Scholar]
  176. Arora S.C. Sharma P.K. Irchhaiya R. Khatkar A. Singh N. Gagoria J. Development, characterization and solubility study of solid dispersions of cefuroxime axetil by the solvent evaporation method. J. Adv. Pharm. Technol. Res. 2010 1 3 326 329 10.4103/2231‑4040.72427 22247865
    [Google Scholar]
  177. Arora S.C. Sharma P.K. Irchhaiya R. Khatkar A. Singh N. Gagoria J. Development, characterization and solubility study of solid dispersions of azithromycin dihydrate by solvent evaporation method. J. Adv. Pharm. Technol. Res. 2010 1 2 221 228 10.4103/2231‑4040.72262 22247849
    [Google Scholar]
  178. Verma V. Sharma P. Sharma J. Kaur Lamba A. Lamba H.S. Development, characterization and solubility study of solid dispersion of Quercetin by solvent evaporation method. Mater. Today Proc. 2017 4 9 10128 10133 10.1016/j.matpr.2017.06.334 32289020
    [Google Scholar]
  179. He Y. Ho C. Amorphous solid dispersions: utilization and challenges in drug discovery and development. J. Pharm. Sci. 2015 104 10 3237 3258 10.1002/jps.24541 26175316
    [Google Scholar]
  180. Tambe S. Jain D. Meruva S.K. Rongala G. Juluri A. Nihalani G. Mamidi H.K. Nukala P.K. Bolla P.K. Recent advances in amorphous solid dispersions: Preformulation, formulation strategies, technological advancements and characterization. Pharmaceutics 2022 14 10 2203 10.3390/pharmaceutics14102203 36297638
    [Google Scholar]
  181. Ellenberger D.J. Miller D.A. Williams R.O. III Expanding the application and formulation space of amorphous solid dispersions with KinetiSol®: A review. AAPS PharmSciTech 2018 19 5 1933 1956 10.1208/s12249‑018‑1007‑2 29846889
    [Google Scholar]
  182. Ngo T.D. Kashani A. Imbalzano G. Nguyen K.T.Q. Hui D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos., Part B Eng. 2018 143 172 196 10.1016/j.compositesb.2018.02.012
    [Google Scholar]
  183. Verreck G. Chun I. Peeters J. Rosenblatt J. Brewster M.E. Preparation and characterization of nanofibers containing amorphous drug dispersions generated by electrostatic spinning. Pharm. Res. 2003 20 5 810 817 10.1023/A:1023450006281 12751639
    [Google Scholar]
  184. Bai Y. Wang D. Zhang Z. Pan J. Cui Z. Yu D.G. Annie Bligh S-W. Testing of fast dissolution of ibuprofen from its electrospun hydrophilic polymer nanocomposites. Polym. Test. 2021 93 106872 10.1016/j.polymertesting.2020.106872
    [Google Scholar]
  185. Nagy Z.K. Balogh A. Vajna B. Farkas A. Patyi G. Kramarics Á. Marosi G. Comparison of electrospun and extruded Soluplus®-based solid dosage forms of improved dissolution. J. Pharm. Sci. 2012 101 1 322 332 10.1002/jps.22731 21918982
    [Google Scholar]
  186. Nair A.R. Lakshman Y.D. Anand V.S.K. Sree K.S.N. Bhat K. Dengale S.J. Overview of extensively employed polymeric carriers in solid dispersion technology. AAPS PharmSciTech 2020 21 8 309 10.1208/s12249‑020‑01849‑z 33161493
    [Google Scholar]
  187. Srinarong P. Kouwen S. Visser M.R. Hinrichs W.L.J. Frijlink H.W. Effect of drug-carrier interaction on the dissolution behavior of solid dispersion tablets. Pharm. Dev. Technol. 2010 15 5 460 468 10.3109/10837450903286529 20735300
    [Google Scholar]
  188. Tekade A.R. Yadav J.N. A review on solid dispersion and carriers used therein for solubility enhancement of poorly water soluble drugs. Adv. Pharm. Bull. 2020 10 3 359 369 10.34172/apb.2020.044 32665894
    [Google Scholar]
  189. Debotton N. Dahan A. Applications of polymers as pharmaceutical excipients in solid oral dosage forms. Med. Res. Rev. 2017 37 1 52 97 10.1002/med.21403 27502146
    [Google Scholar]
  190. Jones D. Pharmaceutical Applications of Polymers for Drug Delivery Rapra Technology
    [Google Scholar]
  191. Kadajji V.G. Betageri G.V. Water soluble polymers for pharmaceutical applications. Polymers 2011 3 4 1972 2009 10.3390/polym3041972
    [Google Scholar]
  192. Freiberg S. Zhu X.X. Polymer microspheres for controlled drug release. Int. J. Pharm. 2004 282 1-2 1 18 10.1016/j.ijpharm.2004.04.013 15336378
    [Google Scholar]
  193. Fu Y. Kao W.J. Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Expert Opin. Drug Deliv. 2010 7 4 429 444 10.1517/17425241003602259 20331353
    [Google Scholar]
  194. Sharma D. Dev D. Prasad D.N. Hans M. Sustained release drug delivery system with the role of natural polymers: A review. J. Drug Deliv. Ther. 2019 9 3-s 913 923 10.22270/jddt.v9i3‑s.2859
    [Google Scholar]
  195. Maderuelo C. Zarzuelo A. Lanao J.M. Critical factors in the release of drugs from sustained release hydrophilic matrices. J. Control. Release 2011 154 1 2 19 10.1016/j.jconrel.2011.04.002 21497624
    [Google Scholar]
/content/journals/cpc/10.2174/0118779468337741241126094712
Loading
/content/journals/cpc/10.2174/0118779468337741241126094712
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: solid dispersion ; co-formers ; bioavailability ; Solubility ; polymers
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test