Skip to content
2000
image of Green Synthesis, Structural Insights, and Antimicrobial Potential of Zinc Oxide Nanoparticles Synthesized via Sustainable Method

Abstract

Background

Green synthesized nanoparticles have gained wide interest in today’s world due to their inherent features like rapidity, eco-friendliness, and cost-effectiveness [4].In this study, zinc oxide (ZnO) nanoparticles were synthesized using an aqueous extract of Ixora coccinea leaves. X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM) studies were used to analyze the structural and morphological properties of prepared Zinc Oxide nanoparticles.

Methods

The sol-gel method of synthesis the green route was introduced to synthesize pure Zinc oxide nanoparticles. Silver-doped Zinc Oxide nanoparticles were also prepared using the same method.

Result

The XRD studies showed the crystalline nature and revealed the purity of Zinc Oxide nanoparticles. The specific functional groups responsible for reduction, stabilization, and capping agents present in the nanoparticles were examined using Fourier Transform Infrared Spectroscopy (FTIR) spectroscopy. The bacterial destruction was better for ZnO nanoparticles than reported for plant extracts and standard drugs.

Conclusion

This study proves that Zinc Oxide nanoparticles contain natural anti-microbial agents through green synthesis, which may serve to produce drugs for antimicrobial therapeutics.

Loading

Article metrics loading...

/content/journals/cpc/10.2174/0118779468329256241007070941
2024-11-04
2025-04-12
Loading full text...

Full text loading...

References

  1. Yedurkar S. Maurya C. Mahanwar P. Biosynthesis of zinc oxide nanoparticles using ixora coccinea leaf extract—A green approach. Open J. Synth. Theory Appl 2016 5 1 1 14 10.4236/ojsta.2016.51001
    [Google Scholar]
  2. Yıldırım Ö.A. Unalan H.E. Durucan C. Highly efficient room temperature synthesis of silver‐doped zinc oxide ( ZnO : Ag ) nanoparticles: structural, optical, and photocatalytic properties. J. Am. Ceram. Soc. 2013 96 3 766 773 10.1111/jace.12218
    [Google Scholar]
  3. Sharma N. Kumar J. Thakur S. Sharma S. Shrivastava V. Antibacterial study of silver doped zinc oxide nanoparticles against Staphylococcus aureus and Bacillus subtilis. Drug Invent. Today. 2013 5 1 50 54 10.1016/j.dit.2013.03.007
    [Google Scholar]
  4. Bala N. Saha S. Chakraborty M. Maiti M. Das S. Basu R. Nandy P. Green synthesis of zinc oxide nanoparticles using Hibiscus subdariffa leaf extract: effect of temperature on synthesis, anti-bacterial activity and anti-diabetic activity. RSC Adv. 2015 5 7 4993 5003 10.1039/C4RA12784F
    [Google Scholar]
  5. Sachin J. Jaishree Singh N. Singh R. Shah K. Pramanik B.K. Green synthesis of zinc oxide nanoparticles using lychee peel and its application in anti-bacterial properties and CR dye removal from wastewater. Chemosphere 2023 327 138497 10.1016/j.chemosphere.2023.138497 37001759
    [Google Scholar]
  6. Vijayakumar S. Mahadevan S. Arulmozhi P. Sriram S. Praseetha P.K. Green synthesis of zinc oxide nanoparticles using Atalantia monophylla leaf extracts: Characterization and antimicrobial analysis. Mater. Sci. Semicond. Process. 2018 82 39 45 10.1016/j.mssp.2018.03.017
    [Google Scholar]
  7. Agarwal H. Venkat Kumar S. Rajeshkumar S. A review on green synthesis of zinc oxide nanoparticles – An eco-friendly approach. Resour.-Effic. Technol. 2017 3 4 406 413 10.1016/j.reffit.2017.03.002
    [Google Scholar]
  8. Datta A. Patra C. Bharadwaj H. Kaur S. Dimri N. Khajuria R. Green Synthesis of zinc oxide nanoparticles using parthenium hysterophorus leaf extract and evaluation of their antibacterial properties. J. Biotechnol. Biomater. 2017 7 3 10.4172/2155‑952X.1000271
    [Google Scholar]
  9. Modi S. Fulekar M.H. Green synthesis of zinc oxide nanoparticles using garlic skin extract and its characterization. J. Nanostructures 2020 10 1 10.22052/JNS.2020.01.003
    [Google Scholar]
  10. Fakhari S. Jamzad M. Kabiri Fard H. Green synthesis of zinc oxide nanoparticles: A comparison. Green Chem. Lett. Rev. 2019 12 1 19 24 10.1080/17518253.2018.1547925
    [Google Scholar]
  11. Espitia P.J.P. Soares N.F.F. Coimbra J.S.R. de Andrade N.J. Cruz R.S. Medeiros E.A.A. Zinc oxide nanoparticles: Synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol. 2012 5 5 1447 1464 10.1007/s11947‑012‑0797‑6
    [Google Scholar]
  12. Ischenko V. Polarz S. Grote D. Stavarache V. Fink K. Driess M. Zinc oxide nanoparticles with defects. Adv. Funct. Mater. 2005 15 12 1945 1954 10.1002/adfm.200500087
    [Google Scholar]
  13. Radzimska A Kołodziejczak Zinc oxide nanoparticles synthesis methods and its effect on morphology: A review Biointerface Res. Appl. Chem. 2021 12 3 4261 4292 10.33263/BRIAC123.42614292
    [Google Scholar]
  14. Gayathri Devi K. Clara Dhanemozhi A. Sathya Priya L. Green synthesis of Zinc oxide nanoparticles using lemon extract for waste water treatment. Mater. Today Proc. 2023 Apr S2214785323016425 10.1016/j.matpr.2023.03.576
    [Google Scholar]
  15. Donmez S. Keyvan E. Green synthesis of zinc oxide nanoparticles using grape seed extract and evaluation of their antibacterial and antioxidant activities. Inorg. Nano-Met. Chem. 2023 Jan 1 8 10.1080/24701556.2023.2165687
    [Google Scholar]
  16. Javed Z. Tripathi G.D. Mishra M. Gattupalli M. Dashora K. Cow dung extract mediated green synthesis of zinc oxide nanoparticles for agricultural applications. Sci. Rep. 2022 12 1 20371 10.1038/s41598‑022‑22099‑y 36437253
    [Google Scholar]
  17. Ahmed J. Ali M. Sheikh H.M. Al-Kattan M.O. Farhana Haroon U. Safaeishakib M. Akbar M. Kamal A. Zubair M.S. Munis M.F.H. Biocontrol of Fruit Rot of Litchi chinensis Using Zinc Oxide Nanoparticles Synthesized in Azadirachta indica. Micromachines (Basel) 2022 13 9 1461 10.3390/mi13091461 36144084
    [Google Scholar]
  18. Ifeanyichukwu U.L. Fayemi O.E. Ateba C.N. Green synthesis of zinc oxide nanoparticles from pomegranate (Punica granatum) extracts and characterization of their antibacterial activity. Molecules 2020 25 19 4521 10.3390/molecules25194521 33023149
    [Google Scholar]
  19. Epp J. X-ray diffraction (XRD) techniques for materials characterization. Materials Characterization Using Nondestructive Evaluation (NDE) Methods. Elsevier 2016 81 124 10.1016/B978‑0‑08‑100040‑3.00004‑3
    [Google Scholar]
  20. Arora A. Devi S. Jaswal V. Singh J. Kinger M. Gupta V. Synthesis and characterization of ZnO nanoparticles. Orient. J. Chem. 2014 30 4 1671 1679 10.13005/ojc/300427
    [Google Scholar]
  21. Chaudhary J. Tailor G. Yadav M. Mehta C. Green route synthesis of metallic nanoparticles using various herbal extracts: A review. Biocatal. Agric. Biotechnol. 2023 50 102692 10.1016/j.bcab.2023.102692
    [Google Scholar]
  22. Vasuki G. Balu T. Effect of Cu 2+ substitution on the structural, optical and magnetic behaviour ofchemically derived manganese ferrite nanoparticles. Mater. Res. Express 2018 5 6 065001 10.1088/2053‑1591/aac5bf
    [Google Scholar]
  23. UV-Vis Spectroscopy: Principle, Strengths and Limitations and Applications. 2021 Available from: https://www.technologynetworks.com/analysis/articles/uv-vis-spectroscopy-principle-strengths-and-limitations-and-applications-349865 Accessed: Aug. 31, 2023
  24. Sirelkhatim A. Mahmud S. Seeni A. Kaus N.H.M. Ann L.C. Bakhori S.K.M. Hasan H. Mohamad D. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Lett. 2015 7 3 219 242 10.1007/s40820‑015‑0040‑x 30464967
    [Google Scholar]
  25. Khosravi-Gandomani S. Yousefi R. Jamali-Sheini F. Huang N.M. Optical and electrical properties of p-type Ag-doped ZnO nanostructures. Ceram. Int. 2014 40 6 7957 7963 10.1016/j.ceramint.2013.12.145
    [Google Scholar]
  26. Happy Agarwal Soumya Menon Venkat Kumar S. Rajeshkumar S. Mechanistic study on antibacterial action of zinc oxide nanoparticles synthesized using green route. Chem. Biol. Interact. 2018 286 60 70 10.1016/j.cbi.2018.03.008 29551637
    [Google Scholar]
  27. CyberLeninka open science hub. We let you download any academic research paper for free 2024 Available from : https://cyberleninka.org/ Accessed: Jun. 12, 2024
  28. Taylor & francis online: Peer-reviewed journals Available from : https://www.tandfonline.com/ Accessed: Jun. 12, 2024.
  29. Mahdy N.K. El-Sayed M. Al-Mofty S.E.D. Mohamed A. Karaly A.H. El-Naggar M.E. Nageh H. Sarhan W.A. El-Said Azzazy H.M. Toward scaling up the production of metal oxide nanoparticles for application on washable antimicrobial cotton fabrics. ACS Omega 2022 7 43 38942 38956 10.1021/acsomega.2c04692 36340154
    [Google Scholar]
  30. Arthritis research s& therapy 2024 Available from: https://arthritis-research.biomedcentral.com/ Accessed: Jun. 12, 2024
  31. Alharthi M.N. Ismail I. Bellucci S. Jaremko M. Abo-Aba S.E.M. Abdel Salam M. Biosynthesized zinc oxide nanoparticles using ziziphus jujube plant extract assisted by ultrasonic irradiation and their biological applications. Separations 2023 10 2 78 10.3390/separations10020078
    [Google Scholar]
/content/journals/cpc/10.2174/0118779468329256241007070941
Loading
/content/journals/cpc/10.2174/0118779468329256241007070941
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Green synthesis ; X-ray diffraction ; Organic compound ; Crystal structure
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test