Skip to content
2000
Volume 13, Issue 9
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Oncolytic virotherapy is an evolving but, as yet, unrealized treatment option for cancer. This approach harnesses the cancer-restricted replicative activity of engineered viruses to achieve tumor cell kill. Tumors that are resistant to chemotherapy or radiotherapy can be susceptible to viral oncolysis because of distinct cell kill mechanisms. There is now compelling evidence that collateral induction of anti-tumor immune responses contributes substantially to viral antitumor activities. In addition to the expected anti-viral immune clearance, the "danger" signal created by virus-infected cells can generate immune co-stimulation known to override immune suppression and reverse tolerance within the tumor microenvironment. Our recent findings indicate that immune activation augments the clinical outcomes of oncolytic virotherapy. Strikingly similar and robust clinical response rates (>25%) were observed among advanced cancer patients following intratumoral treatments with adenoviral (AdΔ24) and herpes simplex (JS1/34.5-/47) constructs armed with an integrated granulocyte-macrophage colony-stimulating factor (GMCSF) payload. Both agents produced regressions in injected as well as distant, uninjected lesions, demonstrating systemic effectiveness. We discuss the innate and adaptive immune activating events that may contribute to these clinical outcomes, and examine systemic delivery strategies to tilt the immunological balance from viral clearance to tumor elimination.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/138920112800958913
2012-07-01
2025-06-26
Loading full text...

Full text loading...

/content/journals/cpb/10.2174/138920112800958913
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test