Skip to content
2000
Volume 12, Issue 9
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Recent research has shown that the endogenous gas hydrogen sulphide (H2S) is a signalling molecule of considerable biological potential and has been suggested to be involved in a vast number of physiological processes. In the vascular system, H2S is synthesized from cysteine by cystathionine-γ-lyase (CSE) in smooth muscle cells (SMC) and 3- mercaptopyruvate sulfuresterase (3MST) and CSE in the endothelial cells. In pulmonary and systemic arteries, H2S induces relaxation and/or contraction dependent on the concentration of H2S, type of vessel and species. H2S relaxes SMC through a direct effect on KATP-channels or Kv-channels causing hyperpolarization and closure of voltage-dependent Ca2+-channels followed by a reduction in intracellular calcium. H2S also relaxes SMC through the release of endothelium- derived hyperpolarizing factor (EDHF) and nitric oxide (NO) from the endothelium. H2S contracts SMC through a reduction in nitric oxide (NO) availability by reacting with NO forming a nitrosothiol compound and through an inhibitory effect on endothelial nitric oxide synthase (eNOS) as well as a reduction in SMC cyclic AMP concentration. Evidence supports a role for H2S in oxygen sensing. Furthermore, reduced endogenous H2S production may also play a role in ischemic heart diseases and hypertension, and treatment with H2S donors and cysteine analogues may be beneficial in treatment of cardiovascular disease.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/138920111798280956
2011-09-01
2024-11-15
Loading full text...

Full text loading...

/content/journals/cpb/10.2174/138920111798280956
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test