Skip to content
2000
Volume 11, Issue 4
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Drug delivery microdevices based on MEMS (Micro-Electro-Mechanical-Systems) represent the next generation of active implantable drug delivery systems. MEMS technology has enabled the scaling down of current delivery modalities to the micrometer and millimeter size. The complementary use of biocompatible materials makes this technology potentially viable for a wide variety of clinical applications. Conditions such as brain tumors, chronic pain syndromes, and infectious abscess represent specialized clinical diseases that will likely benefit most from such drug delivery microdevices. Designing MEMS microdevices poses considerable technical and clinical challenges as devices need to be constructed from biocompatible materials that are harmless to human tissue. Devices must also be miniaturized and capable of delivering adequate pharmacologic payload. Balancing these competing needs will likely lead to the successful application of MEMS drug delivery devices to various medical conditions. This work reviews the various factors that must be considered in optimizing MEMS microdevices for their appropriate and successful application to medical disease.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/138920110791233262
2010-06-01
2025-07-07
Loading full text...

Full text loading...

/content/journals/cpb/10.2174/138920110791233262
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test