Skip to content
2000
Volume 4, Issue 6
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Fluorescence methods are commonly used in pharmaceutical drug discovery to assay the binding of drug-like compounds to signaling proteins and other bio-particles. For binding studies of non-fluorescent compounds, a competitive format may be used in which the binding of the compound results in displacement of another fluorescently labeled ligand. Highly-sensitive measurements within nano-liter sized open probe volumes can be accomplished using a confocal epiillumination geometry and thus key tools for such drug-binding studies include fluorescence correlation spectroscopy (FCS) and its related techniques. This paper reviews the general protocol for application of FCS to biomolecular compound-binding assays and it focuses on methods for the reduction of experimental photon count data to obtain the normalized autocorrelation function (ACF), on theoretical models of the ACF, and on statistical and systematic errors in the experimental ACF. Results from a detailed Monte Carlo simulation of FCS, which are useful for testing theoretical models and validating short-duration assay capabilities, are discussed. An illustrative example is presented on the use of FCS to assay binding of Alexa-488-labeled Bak peptide with Bcl-xL, which is an intracellular protein that acts to protect against programmed cell death.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/1389201033377337
2003-12-01
2025-04-10
Loading full text...

Full text loading...

/content/journals/cpb/10.2174/1389201033377337
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test