Skip to content
2000
Volume 25, Issue 5
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Background: Pro-inflammatory cytokines secreted from activated macrophages and astrocytes are crucial mediators of inflammation for host defense. Among them, the secretion of IL-1β, a major pro-inflammatory cytokine, is especially mediated by the activation of NLRP3 inflammasome. Pro-IL-1β, which is produced in response to the invaded pathogens, such as LPS, is cleaved and matured in the NLRP3 inflammasome by the recognition of ATP. Excessively activated IL-1β induces other immune cells, resulting in the up-regulation of inflammation. Therefore, regulation of NLRP3 inflammasome can be a good strategy for alleviating inflammation. Objective: Our study aimed to examine whether 5-methylthiopentyl isothiocyanate, a sulforaphane analogue (berteroin), has an anti-inflammatory effect on the NLRP3 inflammasome activation induced by LPS and ATP. Methods: Primary bone marrow-derived macrophages (BMDMs) and astrocytes were stimulated by LPS and ATP with the treatment of 5-methylthiopentyl isothiocyanate, a sulforaphane analogue. The secretion of pro-inflammatory cytokines was measured by ELISA, and the expression level of NLRP3 inflammasome-associated proteins was detected by western blot. The association of NLRP3 inflammasome was assessed by co-immunoprecipitation, and the formation of ASC specks was evaluated by fluorescent microscope. Results: 5-methylthiopentyl isothiocyanate, a sulforaphane analogue (berteroin), decreased the release of pro-inflammatory cytokines, IL-1β, and IL-6 in the BMDMs. Berteroin notably prevented the formation of both NLRP3 inflammasome and ASC specks, which reduced the secretion of IL-1β. Additionally, berteroin reduced the IL-1β secretion and cleaved IL-1β expression in the primary astrocytes. Discussion and Conclusion: These results indicated the anti-inflammatory effects of 5- methylthiopentyl isothiocyanate (berteroin) by regulating NLRP3 inflammasome activation, suggesting that berteroin could be the potential natural drug candidate for the regulation of inflammation.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/1389201024666230824093927
2024-04-01
2024-12-24
Loading full text...

Full text loading...

/content/journals/cpb/10.2174/1389201024666230824093927
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test