Skip to content
2000
Volume 23, Issue 5
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Background: Fluconazole (FLZ), a potent antifungal medication, is characterized by poor water solubility that reduced its antifungal efficacy. Objective: This study aimed to prepare FLZ-loaded polymeric nanoparticles (NPs) by using different polymers and techniques as a method of enhancing the antifungal activity of FLZ. Methods: NP1, NP2, and NP3 were prepared by the double emulsion/solvent evaporation method using PLGA, PCL, and PLA, respectively. The ionotropic pre-gelation technique was applied to prepare an alginate/chitosan-based formulation (NP4). Particle size, zeta potential, encapsulation efficiency, and loading capacity were characterized. FT-IR spectra of FLZ, the polymers, and the prepared NPs were estimated. NP4 was selected for further in-vitro release evaluation. The broth dilution method was used to assess the antifungal activity of NP4 using a resistant clinical isolate of Candida albicans. Results: The double emulsion method produced smaller-sized particles (<390 nm) but with much lower encapsulation efficiency (<12%). Alternatively, the ionic gelation method resulted in nanosized particles with a markedly higher encapsulation efficiency of about 40%. The FT-IR spectroscopy confirmed the loading of the FLZ molecules in the polymeric network of the prepared NPs. The release profile of NP4 showed a burst initial release followed by a controlled pattern up to 24 hours with a higher percent released relative to the free FLZ suspension. NP4 was able to reduce the value of MIC of FLZ by 20 times. Conclusion: The antifungal activity of FLZ against C. albicans was enhanced markedly via its loading in the alginate/chitosan-based polymeric matrix of NP4.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/1389201022666210708105142
2022-04-01
2025-01-19
Loading full text...

Full text loading...

/content/journals/cpb/10.2174/1389201022666210708105142
Loading

  • Article Type:
    Research Article
Keyword(s): encapsulation; Fluconazole; fungal infection; nanoparticles; particle size; polymer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test