Skip to content
2000
Volume 22, Issue 9
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

On a worldwide scale, the outbreak of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has led to extensive damage to the health system as well as the global economy. Hitherto, there has been no approved drug or vaccine for this disease. Therefore, the use of general antiviral drugs is at the first line of treatment, though complicated with limited effectiveness and systemic side effects. Given the pathophysiology of the disease, researchers have proposed various strategies not only to find a more specific therapeutic way but also to reduce the side effects. One strategy to accomplish these goals is to use CRISPR/Cas13 system. Recently, a group of scientists has used the CRISPR/Cas13 system, which is highly effective in eliminating the genome of RNA viruses. Due to the RNA nature of the coronavirus genome, it seems that this system can be effective against the disease. The main challenge regarding the application of this system is to deliver it to the target cells efficiently. To solve this challenge, it seems that using virosomes with protein S on their membrane surface can be helpful. Studies have shown that protein S interacts with its specific receptor in target cells named Angiotensin-Converting Enzyme 2 (ACE2). Here, we propose if CRISPR/Cas13 gene constructs reach the infected cells efficiently using a virosomal delivery system, the virus genome will be cleaved and inactivated. Considering the pathophysiology of the disease, an important step to implement this hypothesis is to embed protein S on the membrane surface of virosomes to facilitate the delivery of gene constructs to the target cells.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/1389201021666201009154517
2021-07-01
2025-04-23
Loading full text...

Full text loading...

/content/journals/cpb/10.2174/1389201021666201009154517
Loading

  • Article Type:
    Review Article
Keyword(s): antiviral; COVID-19; CRISPR/Cas13; genome; infection; SARS-CoV-2; virosome
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test