Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Background: The administration of many pharmaceutical active ingredients is often performed by the injection of an aqueous-based solution. Numerous active ingredients are however, insoluble in water, which complicates their administration and restricts their efficacy. Objective: The current solutions are hindered by both, a time-consuming manufacturing process and unsuitability for hydrophilic and hydrophobic materials. Methods: Emulsions of oleophilic active ingredients and polyprotein microspheres are an important step to overcome insolubility issues. Results: Polyprotein microspheres offer a versatile modifiable morphology, thermal responsivity, and size variation, which allows for the protection and release of assembled biomaterials. In addition, nanospheres present promising cell phagocytosis outcomes in vivo. Conclusion: In this research, a reproducible multifunctional approach, to assemble nanospheres in one step, using a technique termed “automatic nanoscalar interfacial alternation in emulsion” (ANIAE) was developed, incorporating a thermally controlled release mechanism for the assembled target active ingredients. These results demonstrate a viable, universal, multifunctional principal for the pharmaceutical industry.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/1389201021666200602134054
2021-01-01
2025-05-09
Loading full text...

Full text loading...

/content/journals/cpb/10.2174/1389201021666200602134054
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test