Skip to content
2000
Volume 21, Issue 12
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Background: The promising properties of Zinc Phosphate (ZnP) Nanoparticles (NPs) have made them come into prominence as one of the most favorable catalysts in various industries with ever- increasing applications. Among several proposed synthetic methods, biological methods have mostly been desired for their sheer person-environment compatibility in comparison with those of chemical and physical ones. Objective: Therefore, the synthesis of ZnP NPs via biological route was developed in this study. Method: Herein proposed a facile, applicable procedure for ZnP NPs via biosynthesis route, which included precipitation of Zinc Nitrate (Zn(NO3)2.6H2O) and diammonium hydrogen phosphate ((NH4)2HPO4) in the presence of Enterobacter aerogenes as the synthetic intermediate. Investigation of the anti-corrosion behavior of the synthesized NPs was explored on carbon steel in the hydrochloric acid corrosive environment to provide deeper insight into their unique anti-corrosion properties. Additionally, their antibacterial activities were also examined against Escherichia coli, Staphylococcus aureus and Streptococcus mutans. Results: The results of X-ray Diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscopy, Field Emission Scanning Electron Microscope (FE-SEM) and the Energy Dispersive X-Ray Spectroscopy (EDS) analyses confirmed the successful synthesis of ZnP NPs. Moreover, the examinations of both anti-corrosion and antibacterial properties, revealed that the synthesized NPs could be a promising anti-corrosion/antibacterial agent. Conclusion: ZnP NPs with an average size of 30-35 nm were successfully synthesized via the simple, suitable biological method. Results implied that these particles could be used as a non-toxic, environmentally friendly, corrosion-resistant and antibacterial agent instead of toxic and uneco-friendly ones.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/1389201021666200506073534
2020-10-01
2025-05-11
Loading full text...

Full text loading...

/content/journals/cpb/10.2174/1389201021666200506073534
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test