Skip to content
2000
Volume 15, Issue 10
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Kir3 (or GIRK) channels have been known for nearly three decades to be activated by direct interactions with the βγ subunits of heterotrimeric G (Gαβγ) proteins in a membrane-delimited manner. Gα also interacts with GIRK channels and since PTX-sensitive Gα subunits show higher affinity of interaction they confer signaling specificity to G Protein- Coupled Receptors (GPCRs) that normally couple to these G protein subunits. In heterologous systems, overexpression of non PTX-sensitive Gα subunits scavenges the available Gβγ and biases GIRK activation through GPCRs that couple to these Gα subunits. Moreover, all Kir channels rely on their direct interactions with the phospholipid PIP2 to maintain their activity. Thus, signals that activate phospholipase C (e.g. through Gq signaling) to hydrolyze PIP2 result in inhibition of Kir channel activity. In this review, we illustrate with experiments performed in Xenopus oocytes that Kir channels can be used efficiently as reporters of GPCR function through Gi, Gs or Gq signaling. The membrane-delimited nature of this expression system makes it highly efficient for constructing dose-response curves yielding highly reproducible apparent affinities of different ligands for each GPCR tested.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/1389201015666141031111916
2014-10-01
2025-07-06
Loading full text...

Full text loading...

/content/journals/cpb/10.2174/1389201015666141031111916
Loading

  • Article Type:
    Research Article
Keyword(s): G protein; GIRK; GPCR; PIP2; TEVC; Xenopus oocytes
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test