Skip to content
2000
Volume 26, Issue 7
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Background

Gold nanoparticles (GNPs) have garnered significant attention in the biomedicine field due to their exceptional electrical, mechanical, chemical, and optical characteristics. The interaction of these remarkable potentials with biological tissues carries a risk of toxicity. Quercetin (Qur) is a natural flavonoid and exhibits numerous pharmacological impacts, especially anti-inflammatory, anti-apoptotic, and antioxidant.

Objectives

This investigation aimed to clarify the potential cardiotoxicity induced by different diameters of spherical GNPs as well as to evaluate the possible cardioprotective roles of Qur against the most toxic diameter of GNPs.

Methods

Rats were randomly grouped and treated with or without sphere GNPs (10, 20 and 50 nm) and Qur (200 mg/kg b.wt.). Heart and blood samples were collected and subjected to histological, immunohistochemical and biochemical investigations.

Results

When compared to the groups treated with 20 and 50 nm, the 10 nm GNPs dramatically increased the levels of cardiac biomarkers, including Troponin I, Creatine kinase isoenzyme-MB (CK-MB), CK-Total, lactate dehydrogenase (LDH). 10 nm GNPs exhibited severe cardiomyocytes degenerations, atrophy, disorganization of myocardial fibers, focal hemorrhage, congested blood vessels and interstitial inflammatory cells infiltrations. , 10 nm GNPs exhibited strongly positive expressions against anti-caspase-3 antibody confirming extensive apoptosis of cardiomyocytes. However, the majority of these pathological changes were significantly improved upon Qur treatment.

Conclusion

The size of GNPs is crucial to their toxicological impact on cardiac tissues where 10 nm GNPs can induce severe histological damage, potent cytotoxicity, and apoptosis rather than larger particles. Otherwise, pre-co-treatment with Qur revealed a significant cardioprotective effect against GNPs cardiotoxicity.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010359481241122073753
2024-12-10
2025-07-12
Loading full text...

Full text loading...

References

  1. XuX. HoW. ZhangX. BertrandN. FarokhzadO. Cancer nanomedicine: From targeted delivery to combination therapy.Trends Mol. Med.201521422323210.1016/j.molmed.2015.01.001 25656384
    [Google Scholar]
  2. WickiA. WitzigmannD. BalasubramanianV. HuwylerJ. Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications.J. Control. Release201520013815710.1016/j.jconrel.2014.12.030 25545217
    [Google Scholar]
  3. BracamonteM.V. BolloS. LabbéP. RivasG.A. FerreyraN.F. Quaternized chitosan as support for the assembly of gold nanoparticles and glucose oxidase: Physicochemical characterization of the platform and evaluation of its biocatalytic activity.Electrochim. Acta20115631316132210.1016/j.electacta.2010.10.022
    [Google Scholar]
  4. FröhlichE. RobleggE. Models for oral uptake of nanoparticles in consumer products.Toxicology20122911-3101710.1016/j.tox.2011.11.004 22120540
    [Google Scholar]
  5. PanahiY. MohammadhosseiniM. Nejati-KoshkiK. AbadiA.J. MoafiH.F. AkbarzadehA. FarshbafM. Preparation, surface properties, and therapeutic applications of gold nanoparticles in biomedicine.Drug Res.20176727787 27824433
    [Google Scholar]
  6. WileyD.T. WebsterP. GaleA. DavisM.E. Transcytosis and brain uptake of transferrin-containing nanoparticles by tuning avidity to transferrin receptor.Proc. Natl. Acad. Sci. USA2013110218662866710.1073/pnas.1307152110 23650374
    [Google Scholar]
  7. FratoddiI. VendittiI. CamettiC. RussoM.V. How toxic are gold nanoparticles? The state-of-the-art.Nano Res.2015861771179910.1007/s12274‑014‑0697‑3
    [Google Scholar]
  8. PissuwanD. NiidomeT. CortieM.B. The forthcoming applications of gold nanoparticles in drug and gene delivery systems.J. Control. Release20111491657110.1016/j.jconrel.2009.12.006 20004222
    [Google Scholar]
  9. LiX. ZhouH. YangL. DuG. Pai-PanandikerA.S. HuangX. YanB. Enhancement of cell recognition in vitro by dual-ligand cancer targeting gold nanoparticles.Biomaterials201132102540254510.1016/j.biomaterials.2010.12.031 21232787
    [Google Scholar]
  10. ByrneH.J. LynchI. De JongW.H. KreylingW.G. LoftS. ParkM.V.D.Z. RiedikerM. WarheitD. Protocols for assessment of biological hazards of engineered nanomaterials.The European Network on the Health and Environmental Impact of Nanomaterials2010130
    [Google Scholar]
  11. TsoukalasD. From silicon to organic nanoparticle memory devices.Philos. Trans.- Royal Soc., Math. Phys. Eng. Sci.200936719054169417910.1098/rsta.2008.0280 19770141
    [Google Scholar]
  12. AbdelhalimM.A.K. Al-AyedM.S. MoussaS.A. The effects of intraperitoneal administration of gold nanoparticles size and exposure duration on oxidative and antioxidants levels in various rat organs.Pak. J. Pharm. Sci.2015282Suppl.705712 25796162
    [Google Scholar]
  13. HozayenW.G. MahmoudA.M. DesoukyE.M. El-NahassE.S. SolimanH.A. FarghaliA.A. Cardiac and pulmonary toxicity of mesoporous silica nanoparticles is associated with excessive ROS production and redox imbalance in Wistar rats.Biomed. Pharmacother.20191092527253810.1016/j.biopha.2018.11.093 30551513
    [Google Scholar]
  14. KhanF. NiazK. MaqboolF. Ismail HassanF. AbdollahiM. Nagulapalli VenkataK. NabaviS. BishayeeA. Molecular targets underlying the anticancer effects of quercetin: An update.Nutrients20168952910.3390/nu8090529 27589790
    [Google Scholar]
  15. FarhadiF. KhamenehB. IranshahiM. IranshahyM. Antibacterial activity of flavonoids and their structure–activity relationship: An update review.Phytother. Res.2019331134010.1002/ptr.6208 30346068
    [Google Scholar]
  16. İğdeM. Onur ÖztürkM. YaşarB. Hakan BulamM. ErganiH.M. ÜnlüR.E. Antithrombotic effect of epigallocatechin gallate on the patency of arterial microvascular anastomoses.Arch. Plast. Surg.201946321422010.5999/aps.2018.00157 31113184
    [Google Scholar]
  17. FerenczyovaK. KalocayovaB. BartekovaM. Potential implications of Quercetin and its derivatives in cardioprotection.Int. J. Mol. Sci.2020215158510.3390/ijms21051585 32111033
    [Google Scholar]
  18. GhonimiW.A.M. AbdelrahmanF.A.A.F. SalemG.A. DahranN. El SayedS.A. The apoptotic, oxidative and histological changed induced by different diamaters of sphere gold nanoparticles (GNPs) with special emphasis on the hepatoprotective role of Quercetin.Adv. Pharm. Bull.2024141208223 38585460
    [Google Scholar]
  19. AbdelrahmanF. sayed, S.; Atta, A.; Ghonimi, W. Nephrotoxicity induced by different diameters of sphere gold nanoparticles with special emphasis on the nephroprotective role of quercetin.Open Vet. J.202313672373110.5455/OVJ.2023.v13.i6.7 37545706
    [Google Scholar]
  20. D’AndreaG. Quercetin: A flavonol with multifaceted therapeutic applications?Fitoterapia201510625627110.1016/j.fitote.2015.09.018 26393898
    [Google Scholar]
  21. OrabiS.H. MansourD.A. FathallaS.I. GadallahS.M. Gamal EldinA.A. AbdoonA.S.A. Effects of administration of 10 nm or 50 nm gold nanoparticles (AuNPs) on blood profile, liver and kidney functions in male albino rats.Indian J. Biochem. Biophys.2020574486493[IJBB].
    [Google Scholar]
  22. AbdelhalimM.A.K. QaidH.A.Y. Al-MohyY. Al-AyedM.S. Effects of quercetin and arginine on the nephrotoxicity and lipid peroxidation induced by gold nanoparticles in vivo.Int. J. Nanomedicine2018137765777010.2147/IJN.S183281 30538457
    [Google Scholar]
  23. SuvarnaS.K. LaytonC. BancroftJ.D. Bancroft’s theory and practice of histological techniques.8th edNew York, NY and London, UKChurchill Livingstone20188392
    [Google Scholar]
  24. PolakJ.M. Van NoordenS. Introduction to immunocytochemistry.3rd edOxford, UKBios Scientific Publishers20031381
    [Google Scholar]
  25. AbdelhalimM. JarrarB.M. Histological alterations in the liver of rats induced by different gold nanoparticle sizes, doses and exposure duration.J. Nanobiotechnology2012101510.1186/1477‑3155‑10‑5 22276919
    [Google Scholar]
  26. DasM. ShimK.H. AnS.S.A. YiD.K. Review on gold nanoparticles and their applications.Toxicol. Environ. Health Sci.20113419320510.1007/s13530‑011‑0109‑y
    [Google Scholar]
  27. HanasakiY. OgawaS. FukuiS. The correlation between active oxygens scavenging and antioxidative effects of flavonoids.Free Radic. Biol. Med.199416684585010.1016/0891‑5849(94)90202‑X 8070690
    [Google Scholar]
  28. MojžišováG. MirossayL. KučerováD. KyselovičJ. MiroššayA. MojžišJ. Protective effect of selected flavonoids on in vitro daunorubicin‐induced cardiotoxicity.Phytother. Res.200620211011410.1002/ptr.1811 16444662
    [Google Scholar]
  29. SharmaP. JhaA.B. DubeyR.S. PessarakliM. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions.J. Bot.2012201226
    [Google Scholar]
  30. AjdaryM. NegahdaryM. ChelongarR. zadeh, S.K. The antioxidant effects of silver, gold, and zinc oxide nanoparticles on male mice in in vivo condition.Adv. Biomed. Res.2015416910.4103/2277‑9175.153893 25878994
    [Google Scholar]
  31. DongQ. ChenL. LuQ. SharmaS. LiL. MorimotoS. WangG. Quercetin attenuates doxorubicin cardiotoxicity by modulating B mi‐1 expression.Br. J. Pharmacol.2014171194440445410.1111/bph.12795 24902966
    [Google Scholar]
  32. ChenX. PengX. LuoY. YouJ. YinD. XuQ. HeH. HeM. Quercetin protects cardiomyocytes against doxorubicin-induced toxicity by suppressing oxidative stress and improving mitochondrial function via 14-3-3γ.Toxicol. Mech. Methods201929534435410.1080/15376516.2018.1564948 30636491
    [Google Scholar]
  33. MatoukA.I. TayeA. HeebaG.H. El-MoselhyM.A. Quercetin augments the protective effect of losartan against chronic doxorubicin cardiotoxicity in rats.Environ. Toxicol. Pharmacol.201336244345010.1016/j.etap.2013.05.006 23770454
    [Google Scholar]
  34. YangD. WangT. LongM. LiP. Quercetin: Its main pharmacological activity and potential application in clinical medicine.Oxid. Med. Cell. Longev.2020202011310.1155/2020/8825387 33488935
    [Google Scholar]
  35. ZhangJ. XueY. NiY. NingF. ShangL. MaA. Size dependent effects of gold nanoparticles in ISO-induced hyperthyroid rats.Sci. Rep.2018811096010.1038/s41598‑018‑27934‑9 30026536
    [Google Scholar]
  36. AbdelhalimM.A.K. JarrarB.M. Renal tissue alterations were size-dependent with smaller ones induced more effects and related with time exposure of gold nanoparticles.Lipids Health Dis.201110116310.1186/1476‑511X‑10‑163 21936889
    [Google Scholar]
  37. AlasmariA.F. Cardioprotective and nephroprotective effects of Quercetin against different toxic agents.Eur. Rev. Med. Pharmacol. Sci.2021252374257439 34919245
    [Google Scholar]
  38. HigginsJ.P. HigginsJ.A. Elevation of cardiac troponin I indicates more than myocardial ischemia.Clin. Invest. Med.2003263133147 12858947
    [Google Scholar]
  39. HashishF.R. Abdel-WahedM.M. El-OdemiM.H. El-NaidanyS.S. ElBatshM.M. Possible protective effects of quercetin on doxorubicin-induced cardiotoxicity in rats.Menoufia Med. J.202134133333910.4103/mmj.mmj_5_20
    [Google Scholar]
  40. AbdelhalimM.A.N.W.A.R.K. Gold nanoparticles administration induces disarray of heart muscle, hemorrhagic, chronic inflammatory cells infiltrated by small lymphocytes, cytoplasmic vacuolization and congested and dilated blood vessels.Lipids Health Dis.201110123310.1186/1476‑511X‑10‑233 22151883
    [Google Scholar]
  41. AbdelhalimM.A.K. Uptake of gold nanoparticles in several rat organs after intraperitoneal administration in vivo: A fluorescence study.BioMed Res. Int.2013201311110.1155/2013/353695 23956977
    [Google Scholar]
  42. OkashaE.F. RagabA.M.H. Histological, immunohistochemical and ultrastructural study on the effect of gold nanoparticles on the left ventricular cardiac myocytes of adult male albino rat.Middle East J. Sci. Res.2015231229682982
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010359481241122073753
Loading
/content/journals/cpb/10.2174/0113892010359481241122073753
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test