Skip to content
2000
image of Cardioprotective Efficacy of Quercetin against Cardiotoxicity Induced by Different Diameters of Sphere Gold Nanoparticles (GNPs)

Abstract

Background

Gold nanoparticles (GNPs) have garnered significant attention in the biomedicine field due to their exceptional electrical, mechanical, chemical, and optical characteristics. The interaction of these remarkable potentials with biological tissues carries a risk of toxicity. Quercetin (Qur) is a natural flavonoid and exhibits numerous pharmacological impacts, especially anti-inflammatory, anti-apoptotic, and antioxidant.

Objective

This investigation aimed to clarify the potential cardiotoxicity induced by different diameters of spherical GNPs as well as to evaluate the possible cardioprotective roles of Qur against the most toxic diameter of GNPs.

Methods

Rats were randomly grouped and treated with or without sphere GNPs (10, 20 and 50 nm) and Qur (200 mg/kg b.wt.). Heart and blood samples were collected and subjected to histological, immunohistochemical and biochemical investigations.

Results

When compared to the groups treated with 20 and 50 nm, the 10 nm GNPs dramatically increased the levels of cardiac biomarkers, including Troponin I, Creatine kinase isoenzyme-MB (CK-MB), CK-Total, lactate dehydrogenase (LDH). 10 nm GNPs exhibited severe cardiomyocytes degenerations, atrophy, disorganization of myocardial fibers, focal hemorrhage, congested blood vessels and interstitial inflammatory cells infiltrations. , 10 nm GNPs exhibited strongly positive expressions against anti-caspase-3 antibody confirming extensive apoptosis of cardiomyocytes. However, the majority of these pathological changes were significantly improved upon Qur treatment.

Conclusion

The size of GNPs is crucial to their toxicological impact on cardiac tissues where 10 nm GNPs can induce severe histological damage, potent cytotoxicity, and apoptosis rather than larger particles. Otherwise, pre-co-treatment with Qur revealed a significant cardioprotective effect against GNPs cardiotoxicity.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010359481241122073753
2024-12-10
2025-01-01
Loading full text...

Full text loading...

References

  1. Xu X. Ho W. Zhang X. Bertrand N. Farokhzad O. Cancer nanomedicine: From targeted delivery to combination therapy. Trends Mol. Med. 2015 21 4 223 232 10.1016/j.molmed.2015.01.001 25656384
    [Google Scholar]
  2. Wicki A. Witzigmann D. Balasubramanian V. Huwyler J. Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications. J. Control. Release 2015 200 138 157 10.1016/j.jconrel.2014.12.030 25545217
    [Google Scholar]
  3. Bracamonte M.V. Bollo S. Labbé P. Rivas G.A. Ferreyra N.F. Quaternized chitosan as support for the assembly of gold nanoparticles and glucose oxidase: Physicochemical characterization of the platform and evaluation of its biocatalytic activity. Electrochim. Acta 2011 56 3 1316 1322 10.1016/j.electacta.2010.10.022
    [Google Scholar]
  4. Fröhlich E. Roblegg E. Models for oral uptake of nanoparticles in consumer products. Toxicology 2012 291 1-3 10 17 10.1016/j.tox.2011.11.004 22120540
    [Google Scholar]
  5. Panahi Y. Mohammadhosseini M. Nejati-Koshki K. Abadi A.J. Moafi H.F. Akbarzadeh A. Farshbaf M. Preparation, surface properties, and therapeutic applications of gold nanoparticles in biomedicine. Drug Res. 2017 67 2 77 87 27824433
    [Google Scholar]
  6. Wiley D.T. Webster P. Gale A. Davis M.E. Transcytosis and brain uptake of transferrin-containing nanoparticles by tuning avidity to transferrin receptor. Proc. Natl. Acad. Sci. USA 2013 110 21 8662 8667 10.1073/pnas.1307152110 23650374
    [Google Scholar]
  7. Fratoddi I. Venditti I. Cametti C. Russo M.V. How toxic are gold nanoparticles? The state-of-the-art. Nano Res. 2015 8 6 1771 1799 10.1007/s12274‑014‑0697‑3
    [Google Scholar]
  8. Pissuwan D. Niidome T. Cortie M.B. The forthcoming applications of gold nanoparticles in drug and gene delivery systems. J. Control. Release 2011 149 1 65 71 10.1016/j.jconrel.2009.12.006 20004222
    [Google Scholar]
  9. Li X. Zhou H. Yang L. Du G. Pai-Panandiker A.S. Huang X. Yan B. Enhancement of cell recognition in vitro by dual-ligand cancer targeting gold nanoparticles. Biomaterials 2011 32 10 2540 2545 10.1016/j.biomaterials.2010.12.031 21232787
    [Google Scholar]
  10. Byrne H.J. Lynch I. De Jong W.H. Kreyling W.G. Loft S. Park M.V.D.Z. Riediker M. Warheit D. Protocols for assessment of biological hazards of engineered nanomaterials. The European Network on the Health and Environmental Impact of Nanomaterials 2010 1 30
    [Google Scholar]
  11. Tsoukalas D. From silicon to organic nanoparticle memory devices. Philos. Trans.- Royal Soc., Math. Phys. Eng. Sci. 2009 367 1905 4169 4179 10.1098/rsta.2008.0280 19770141
    [Google Scholar]
  12. Abdelhalim M.A.K. Al-Ayed M.S. Moussa S.A. The effects of intraperitoneal administration of gold nanoparticles size and exposure duration on oxidative and antioxidants levels in various rat organs. Pak. J. Pharm. Sci. 2015 28 2 Suppl. 705 712 25796162
    [Google Scholar]
  13. Hozayen W.G. Mahmoud A.M. Desouky E.M. El-Nahass E.S. Soliman H.A. Farghali A.A. Cardiac and pulmonary toxicity of mesoporous silica nanoparticles is associated with excessive ROS production and redox imbalance in Wistar rats. Biomed. Pharmacother. 2019 109 2527 2538 10.1016/j.biopha.2018.11.093 30551513
    [Google Scholar]
  14. Khan F. Niaz K. Maqbool F. Ismail Hassan F. Abdollahi M. Nagulapalli Venkata K. Nabavi S. Bishayee A. Molecular targets underlying the anticancer effects of quercetin: An update. Nutrients 2016 8 9 529 10.3390/nu8090529 27589790
    [Google Scholar]
  15. Farhadi F. Khameneh B. Iranshahi M. Iranshahy M. Antibacterial activity of flavonoids and their structure–activity relationship: An update review. Phytother. Res. 2019 33 1 13 40 10.1002/ptr.6208 30346068
    [Google Scholar]
  16. İğde M. Onur Öztürk M. Yaşar B. Hakan Bulam M. Ergani H.M. Ünlü R.E. Antithrombotic effect of epigallocatechin gallate on the patency of arterial microvascular anastomoses. Arch. Plast. Surg. 2019 46 3 214 220 10.5999/aps.2018.00157 31113184
    [Google Scholar]
  17. Ferenczyova K. Kalocayova B. Bartekova M. Potential implications of Quercetin and its derivatives in cardioprotection. Int. J. Mol. Sci. 2020 21 5 1585 10.3390/ijms21051585 32111033
    [Google Scholar]
  18. Ghonimi W.A.M. Abdelrahman F.A.A.F. Salem G.A. Dahran N. El Sayed S.A. The apoptotic, oxidative and histological changed induced by different diamaters of sphere gold nanoparticles (GNPs) with special emphasis on the hepatoprotective role of Quercetin. Adv. Pharm. Bull. 2024 14 1 208 223 38585460
    [Google Scholar]
  19. Abdelrahman F. sayed S. Atta A. Ghonimi W. Nephrotoxicity induced by different diameters of sphere gold nanoparticles with special emphasis on the nephroprotective role of quercetin. Open Vet. J. 2023 13 6 723 731 10.5455/OVJ.2023.v13.i6.7 37545706
    [Google Scholar]
  20. D’Andrea G. Quercetin: A flavonol with multifaceted therapeutic applications? Fitoterapia 2015 106 256 271 10.1016/j.fitote.2015.09.018 26393898
    [Google Scholar]
  21. Orabi S.H. Mansour D.A. Fathalla S.I. Gadallah S.M. Gamal Eldin A.A. Abdoon A.S.A. Effects of administration of 10 nm or 50 nm gold nanoparticles (AuNPs) on blood profile, liver and kidney functions in male albino rats. Indian J. Biochem. Biophys. 2020 57 4 486 493 [IJBB].
    [Google Scholar]
  22. Abdelhalim M.A.K. Qaid H.A.Y. Al-Mohy Y. Al-Ayed M.S. Effects of quercetin and arginine on the nephrotoxicity and lipid peroxidation induced by gold nanoparticles in vivo. Int. J. Nanomedicine 2018 13 7765 7770 10.2147/IJN.S183281 30538457
    [Google Scholar]
  23. Suvarna S.K. Layton C. Bancroft J.D. Bancroft’s theory and practice of histological techniques. Churchill Livingstone New York, NY and London, UK 8th ed 2018 83 92
    [Google Scholar]
  24. Polak J.M. Van Noorden S. Introduction to immunocytochemistry. Bios Scientific Publishers Oxford, UK 3rd ed 2003 13 81
    [Google Scholar]
  25. Abdelhalim M. Jarrar B.M. Histological alterations in the liver of rats induced by different gold nanoparticle sizes, doses and exposure duration. J. Nanobiotechnology 2012 10 1 5 10.1186/1477‑3155‑10‑5 22276919
    [Google Scholar]
  26. Das M. Shim K.H. An S.S.A. Yi D.K. Review on gold nanoparticles and their applications. Toxicol. Environ. Health Sci. 2011 3 4 193 205 10.1007/s13530‑011‑0109‑y
    [Google Scholar]
  27. Hanasaki Y. Ogawa S. Fukui S. The correlation between active oxygens scavenging and antioxidative effects of flavonoids. Free Radic. Biol. Med. 1994 16 6 845 850 10.1016/0891‑5849(94)90202‑X 8070690
    [Google Scholar]
  28. Mojžišová G. Mirossay L. Kučerová D. Kyselovič J. Miroššay A. Mojžiš J. Protective effect of selected flavonoids on in vitro daunorubicin‐induced cardiotoxicity. Phytother. Res. 2006 20 2 110 114 10.1002/ptr.1811 16444662
    [Google Scholar]
  29. Sharma P. Jha A.B. Dubey R.S. Pessarakli M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012 2012 26
    [Google Scholar]
  30. Ajdary M. Negahdary M. Chelongar R. zadeh S.K. The antioxidant effects of silver, gold, and zinc oxide nanoparticles on male mice in in vivo condition. Adv. Biomed. Res. 2015 4 1 69 10.4103/2277‑9175.153893 25878994
    [Google Scholar]
  31. Dong Q. Chen L. Lu Q. Sharma S. Li L. Morimoto S. Wang G. Quercetin attenuates doxorubicin cardiotoxicity by modulating B mi‐1 expression. Br. J. Pharmacol. 2014 171 19 4440 4454 10.1111/bph.12795 24902966
    [Google Scholar]
  32. Chen X. Peng X. Luo Y. You J. Yin D. Xu Q. He H. He M. Quercetin protects cardiomyocytes against doxorubicin-induced toxicity by suppressing oxidative stress and improving mitochondrial function via 14-3-3γ. Toxicol. Mech. Methods 2019 29 5 344 354 10.1080/15376516.2018.1564948 30636491
    [Google Scholar]
  33. Matouk A.I. Taye A. Heeba G.H. El-Moselhy M.A. Quercetin augments the protective effect of losartan against chronic doxorubicin cardiotoxicity in rats. Environ. Toxicol. Pharmacol. 2013 36 2 443 450 10.1016/j.etap.2013.05.006 23770454
    [Google Scholar]
  34. Yang D. Wang T. Long M. Li P. Quercetin: Its main pharmacological activity and potential application in clinical medicine. Oxid. Med. Cell. Longev. 2020 2020 1 13 10.1155/2020/8825387 33488935
    [Google Scholar]
  35. Zhang J. Xue Y. Ni Y. Ning F. Shang L. Ma A. Size dependent effects of gold nanoparticles in ISO-induced hyperthyroid rats. Sci. Rep. 2018 8 1 10960 10.1038/s41598‑018‑27934‑9 30026536
    [Google Scholar]
  36. Abdelhalim M.A.K. Jarrar B.M. Renal tissue alterations were size-dependent with smaller ones induced more effects and related with time exposure of gold nanoparticles. Lipids Health Dis. 2011 10 1 163 10.1186/1476‑511X‑10‑163 21936889
    [Google Scholar]
  37. Alasmari A.F. Cardioprotective and nephroprotective effects of Quercetin against different toxic agents. Eur. Rev. Med. Pharmacol. Sci. 2021 25 23 7425 7439 34919245
    [Google Scholar]
  38. Higgins J.P. Higgins J.A. Elevation of cardiac troponin I indicates more than myocardial ischemia. Clin. Invest. Med. 2003 26 3 133 147 12858947
    [Google Scholar]
  39. Hashish F.R. Abdel-Wahed M.M. El-Odemi M.H. El-Naidany S.S. ElBatsh M.M. Possible protective effects of quercetin on doxorubicin-induced cardiotoxicity in rats. Menoufia Med. J. 2021 34 1 333 339 10.4103/mmj.mmj_5_20
    [Google Scholar]
  40. Abdelhalim M.A.N.W.A.R.K. Gold nanoparticles administration induces disarray of heart muscle, hemorrhagic, chronic inflammatory cells infiltrated by small lymphocytes, cytoplasmic vacuolization and congested and dilated blood vessels. Lipids Health Dis. 2011 10 1 233 10.1186/1476‑511X‑10‑233 22151883
    [Google Scholar]
  41. Abdelhalim M.A.K. Uptake of gold nanoparticles in several rat organs after intraperitoneal administration in vivo: A fluorescence study. BioMed Res. Int. 2013 2013 1 11 10.1155/2013/353695 23956977
    [Google Scholar]
  42. Okasha E.F. Ragab A.M.H. Histological, immunohistochemical and ultrastructural study on the effect of gold nanoparticles on the left ventricular cardiac myocytes of adult male albino rat. Middle East J. Sci. Res. 2015 23 12 2968 2982
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010359481241122073753
Loading
/content/journals/cpb/10.2174/0113892010359481241122073753
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: histopathology ; cardioprotective ; quercetin ; cardiotoxicity ; Gold nanoparticles
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test