Skip to content
2000
Volume 26, Issue 5
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Cancer is a predominant cause of mortality worldwide, necessitating the development of innovative therapeutic techniques. The human microbiome, particularly the gut microbiota, has become a significant element in cancer research owing to its essential role in sustaining health and influencing disease progression. This review examines the microbiome's makeup and essential functions, including immunological modulation and metabolic regulation, which may be evaluated using sophisticated methodologies such as metagenomics and 16S rRNA sequencing. The microbiome influences cancer development by promoting inflammation, modulating the immune system, and producing carcinogenic compounds. Dysbiosis, or microbial imbalance, can undermine the epithelial barrier and facilitate cancer. The microbiome influences chemotherapy and radiation results by modifying drug metabolism, either enhancing or reducing therapeutic efficacy and contributing to side effects and toxicity. Comprehending these intricate relationships emphasises the microbiome's significance in oncology and accentuates the possibility for microbiome-targeted therapeutics. Contemporary therapeutic approaches encompass the utilisation of probiotics and dietary components to regulate the microbiome, enhance treatment efficacy, and minimise unwanted effects. Advancements in research indicate that personalised microbiome-based interventions, have the potential to transform cancer therapy, by providing more effective and customised treatment alternatives. This study aims to provide a comprehensive analysis of the microbiome's influence on the onset and treatment of cancer, while emphasising current trends and future possibilities for therapeutic intervention.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010353600241109132441
2025-04-01
2025-07-03
Loading full text...

Full text loading...

References

  1. SaraswatI. GoelA. GuptaJ. An In-depth review on Argemone mexicana in the management of liver health and liver cancer.Anticancer. Agents Med. Chem.20242410.2174/0118715206307964240821051756 39225208
    [Google Scholar]
  2. GuJ. WangH. ZhangM. XiongY. YangL. RenB. HuangR. Application of fluorescence In situ hybridization (FISH) in oral microbial detection.Pathogens20221112145010.3390/pathogens11121450 36558784
    [Google Scholar]
  3. ChenX. SongM. ZhangB. ZhangY. Reactive oxygen species regulate T cell immune response in the tumor microenvironment.Oxid. Med. Cell. Longev.201620161158096710.1155/2016/1580967 27547291
    [Google Scholar]
  4. WangL. KuangZ. ZhangD. GaoY. YingM. WangT. Reactive oxygen species in immune cells: A new antitumor target.Biomed. Pharmacother.202113311097810.1016/j.biopha.2020.110978 33176269
    [Google Scholar]
  5. LiuL. JinR. HaoJ. ZengJ. YinD. YiY. ZhuM. MandalA. HuaY. NgC.K. EgilmezN.K. SauterE.R. LiB. Consumption of the fish oil high-fat diet uncouples obesity and mammary tumor growth through the induction of reactive oxygen species in protumor macrophages.Cancer Res.202080122564257410.1158/0008‑5472.CAN‑19‑3184 32213543
    [Google Scholar]
  6. HanahanD. Hallmarks of cancer: new dimensions.Cancer Discov.2022121314610.1158/2159‑8290.CD‑21‑1059 35022204
    [Google Scholar]
  7. CiernikovaS. MegoM. HainovaK. AdamcikovaZ. StevurkovaV. ZajacV. Modification of microflora imbalance: future directions for prevention and treatment of colorectal cancer?Neoplasma201562334535210.4149/neo_2015_042 25866215
    [Google Scholar]
  8. GoubetA.G. Could the tumor-associated microbiota be the new multi-faceted player in the tumor microenvironment?Front. Oncol.202313118516310.3389/fonc.2023.1185163 37287916
    [Google Scholar]
  9. NejmanD. LivyatanI. FuksG. GavertN. ZwangY. GellerL.T. Rotter-MaskowitzA. WeiserR. MallelG. GigiE. MeltserA. DouglasG.M. KamerI. GopalakrishnanV. DadoshT. Levin-ZaidmanS. AvnetS. AtlanT. CooperZ.A. AroraR. CogdillA.P. KhanM.A.W. OlogunG. BussiY. WeinbergerA. Lotan-PompanM. GolaniO. PerryG. RokahM. Bahar-ShanyK. RozemanE.A. BlankC.U. RonaiA. ShaoulR. AmitA. DorfmanT. KremerR. CohenZ.R. HarnofS. SiegalT. Yehuda-ShnaidmanE. Gal-YamE.N. ShapiraH. BaldiniN. LangilleM.G.I. Ben-NunA. KaufmanB. NissanA. GolanT. DadianiM. LevanonK. BarJ. Yust-KatzS. BarshackI. PeeperD.S. RazD.J. SegalE. WargoJ.A. SandbankJ. ShentalN. StraussmanR. The human tumor microbiome is composed of tumor type–specific intracellular bacteria.Science2020368649497398010.1126/science.aay9189 32467386
    [Google Scholar]
  10. WuS. ZhuW. ThompsonP. HannunY.A. Evaluating intrinsic and non-intrinsic cancer risk factors.Nat. Commun.201891349010.1038/s41467‑018‑05467‑z 30154431
    [Google Scholar]
  11. CabralB.P. da Graça Derengowski FonsecaM. MotaF.B. The recent landscape of cancer research worldwide: a bibliometric and network analysis.Oncotarget2018955304743048410.18632/oncotarget.25730 30093962
    [Google Scholar]
  12. WuM.S. AquinoL.B.B. BarbazaM.Y.U. HsiehC.L. De Castro-CruzK.A. YangL.L. TsaiP.W. Anti-inflammatory and anticancer properties of bioactive compounds from Sesamum indicum L.—A review.Molecules20192424442610.3390/molecules24244426 31817084
    [Google Scholar]
  13. DebelaD.T. MuzazuS.G.Y. HeraroK.D. NdalamaM.T. MeseleB.W. HaileD.C. KituiS.K. ManyazewalT. New approaches and procedures for cancer treatment: Current perspectives.SAGE Open Med.202192050312121103436610.1177/20503121211034366 34408877
    [Google Scholar]
  14. GianaF.E. BonettoF.J. BellottiM.I. Assay based on electrical impedance spectroscopy to discriminate between normal and cancerous mammalian cells.Phys. Rev. E201897303241010.1103/PhysRevE.97.032410 29776129
    [Google Scholar]
  15. SaraswatI. GoelA. Cervical cancer therapeutics: An in-depth significance of herbal and chemical approaches of nanoparticles.Anticancer. Agents Med. Chem.202424862763610.2174/0118715206289468240130051102 38299417
    [Google Scholar]
  16. KhanR. PetersenF.C. ShekharS. Commensal bacteria: an emerging player in defense against respiratory pathogens.Front. Microbiol.202011676
    [Google Scholar]
  17. PickardJ.M. ZengM.Y. CarusoR. NúñezG. Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease.Immunol. Rev.20172791708910.1111/imr.12567 28856738
    [Google Scholar]
  18. The Human Microbiome, Diet, and Health: Workshop SummaryNational Academies Press: Washington (DC).US2013
    [Google Scholar]
  19. HillC. GuarnerF. ReidG. GibsonG.R. MerensteinD.J. PotB. MorelliL. CananiR.B. FlintH.J. SalminenS. CalderP.C. SandersM.E. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic.Nat. Rev. Gastroenterol. Hepatol.201411850651410.1038/nrgastro.2014.66 24912386
    [Google Scholar]
  20. YooJ. KimS. Probiotics and prebiotics: Present status and future perspectives on metabolic disorders.Nutrients20168317310.3390/nu8030173 26999199
    [Google Scholar]
  21. LynchS.V. PedersenO. The human intestinal microbiome in health and disease.N. Engl. J. Med.2016375242369237910.1056/NEJMra1600266 27974040
    [Google Scholar]
  22. ChoI. BlaserM.J. The human microbiome: at the interface of health and disease.Nat. Rev. Genet.201213426027010.1038/nrg3182 22411464
    [Google Scholar]
  23. TorreL.A. SiegelR.L. WardE.M. JemalA. Global cancer incidence and mortality rates and trends—An update.Cancer Epidemiol. Biomarkers Prev.2016251162710.1158/1055‑9965.EPI‑15‑0578 26667886
    [Google Scholar]
  24. PushalkarS. HundeyinM. DaleyD. ZambirinisC.P. KurzE. MishraA. MohanN. AykutB. UsykM. TorresL.E. WerbaG. ZhangK. GuoY. LiQ. AkkadN. LallS. WadowskiB. GutierrezJ. Kochen RossiJ.A. HerzogJ.W. DiskinB. Torres-HernandezA. LeinwandJ. WangW. TaunkP.S. SavadkarS. JanalM. SaxenaA. LiX. CohenD. SartorR.B. SaxenaD. MillerG. The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression.Cancer Discov.20188440341610.1158/2159‑8290.CD‑17‑1134 29567829
    [Google Scholar]
  25. MimaK. SukawaY. NishiharaR. QianZ.R. YamauchiM. InamuraK. KimS.A. MasudaA. NowakJ.A. NoshoK. KosticA.D. GiannakisM. WatanabeH. BullmanS. MilnerD.A. HarrisC.C. GiovannucciE. GarrawayL.A. FreemanG.J. DranoffG. ChanA.T. GarrettW.S. HuttenhowerC. FuchsC.S. OginoS. Fusobacterium nucleatum and T cells in colorectal carcinoma.JAMA Oncol.20151565366110.1001/jamaoncol.2015.1377 26181352
    [Google Scholar]
  26. RubinsteinM.R. WangX. LiuW. HaoY. CaiG. HanY.W. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin.Cell Host Microbe201314219520610.1016/j.chom.2013.07.012 23954158
    [Google Scholar]
  27. AğagündüzD. CocozzaE. CemaliÖ. BayazıtA.D. NanìM.F. CerquaI. MorgilloF. SaygılıS.K. Berni CananiR. AmeroP. CapassoR. Understanding the role of the gut microbiome in gastrointestinal cancer: A review.Front. Pharmacol.202314113056210.3389/fphar.2023.1130562 36762108
    [Google Scholar]
  28. SenderR. FuchsS. MiloR. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans.Cell2016164333734010.1016/j.cell.2016.01.013 26824647
    [Google Scholar]
  29. DerosaL. RoutyB. FidelleM. IebbaV. AllaL. PasolliE. SegataN. DesnoyerA. PietrantonioF. FerrereG. FahrnerJ.E. Le ChatellierE. PonsN. GalleronN. RoumeH. DuongC.P.M. MondragónL. IribarrenK. BonvaletM. TerrisseS. RauberC. GoubetA.G. DaillèreR. LemaitreF. ReniA. CasuB. AlouM.T. Alves Costa SilvaC. RaoultD. FizaziK. EscudierB. KroemerG. AlbigesL. ZitvogelL. Gut bacteria composition drives primary resistance to cancer immunotherapy in renal cell carcinoma patients.Eur. Urol.202078219520610.1016/j.eururo.2020.04.044 32376136
    [Google Scholar]
  30. SaraswatI. GoelA. Herbal remedies for hepatic inflammation: Unravelling pathways and mechanisms for therapeutic intervention.Curr. Pharm. Des.2024pub ahead of print10.2174/0113816128348771240925100639
    [Google Scholar]
  31. Durán-PinedoA.E. Frías-LópezJ. Beyond microbial community composition: functional activities of the oral microbiome in health and disease.Microbes Infect.201517750551610.1016/j.micinf.2015.03.014 25862077
    [Google Scholar]
  32. Pérez-CobasA.E. Gómez-ValeroL. BuchrieserC. Metagenomic approaches in microbial ecology: an update on whole-genome and marker gene sequencing analyses.Microb. Genom.202068mgen00040910.1099/mgen.0.000409 32706331
    [Google Scholar]
  33. ThomasC. MintyM. VinelA. CanceillT. LoubièresP. BurcelinR. KaddechM. Blasco-BaqueV. Laurencin-DalicieuxS. Oral microbiota: A major player in the diagnosis of systemic diseases.Diagnostics (Basel)2021118137610.3390/diagnostics11081376 34441309
    [Google Scholar]
  34. Regueira-IglesiasA. Balsa-CastroC. Blanco-PintosT. TomásI. Critical review of 16S rRNA gene sequencing workflow in microbiome studies: From primer selection to advanced data analysis.Mol. Oral Microbiol.202338534739910.1111/omi.12434 37804481
    [Google Scholar]
  35. Regueira-IglesiasA. Vázquez-GonzálezL. Balsa-CastroC. Blanco-PintosT. Vila-BlancoN. CarreiraM.J. TomásI. Impact of 16S rRNA gene redundancy and primer pair selection on the quantification and classification of oral microbiota in next-generation sequencing.Microbiol. Spectr.2023112e04398e2210.1128/spectrum.04398‑22 36779795
    [Google Scholar]
  36. AcinasS.G. MarcelinoL.A. Klepac-CerajV. PolzM.F. Divergence and redundancy of 16S rRNA sequences in genomes with multiple rrn operons.J. Bacteriol.200418692629263510.1128/JB.186.9.2629‑2635.2004 15090503
    [Google Scholar]
  37. VermaD. GargP.K. DubeyA.K. Insights into the human oral microbiome.Arch. Microbiol.2018200452554010.1007/s00203‑018‑1505‑3 29572583
    [Google Scholar]
  38. GuimarãesN.M. AzevedoN.F. AlmeidaC. FISH Variants.Methods Mol. Biol.20212246173310.1007/978‑1‑0716‑1115‑9_2 33576980
    [Google Scholar]
  39. VeselinyováD. MašlankováJ. KalinováK. MičkováH. MarekováM. RabajdováM. Selected In Situ Hybridization Methods: Principles and Application.Molecules20212613387410.3390/molecules26133874 34202914
    [Google Scholar]
  40. GeierB. SoginE.M. MichellodD. JandaM. KompauerM. SpenglerB. DubilierN. LiebekeM. Spatial metabolomics of in situ host–microbe interactions at the micrometre scale.Nat. Microbiol.20205349851010.1038/s41564‑019‑0664‑6 32015496
    [Google Scholar]
  41. Le BarsP. MatamorosS. MontassierE. Le VaconF. PotelG. SoueidanA. JordanaF. de La CochetièreM.F. The oral cavity microbiota: between health, oral disease, and cancers of the aerodigestive tract.Can. J. Microbiol.201763647549210.1139/cjm‑2016‑0603 28257583
    [Google Scholar]
  42. HeppC. ShiaelisN. RobbN.C. VaughanA. MatthewsP.C. StoesserN. CrookD. KapanidisA.N. Viral detection and identification in 20 min by rapid single-particle fluorescence in-situ hybridization of viral RNA.Sci. Rep.20211111957910.1038/s41598‑021‑98972‑z 34599242
    [Google Scholar]
  43. TrunkT. KhalilH.S. LeoJ.C. Bacterial autoaggregation.AIMS Microbiol.20184114016410.3934/microbiol.2018.1.140 31294207
    [Google Scholar]
  44. RinkeC. LeeJ. NathN. GoudeauD. ThompsonB. PoultonN. DmitrieffE. MalmstromR. StepanauskasR. WoykeT. Obtaining genomes from uncultivated environmental microorganisms using FACS–based single-cell genomics.Nat. Protoc.2014951038104810.1038/nprot.2014.067 24722403
    [Google Scholar]
  45. IshøyT. KvistT. WestermannP. AhringB.K. An improved method for single cell isolation of prokaryotes from meso-, thermo- and hyperthermophilic environments using micromanipulation.Appl. Microbiol. Biotechnol.200669551051410.1007/s00253‑005‑0014‑x 16034558
    [Google Scholar]
  46. MarcyY. OuverneyC. BikE.M. LösekannT. IvanovaN. MartinH.G. SzetoE. PlattD. HugenholtzP. RelmanD.A. QuakeS.R. Dissecting biological “dark matter” with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth.Proc. Natl. Acad. Sci. USA200710429118891189410.1073/pnas.0704662104 17620602
    [Google Scholar]
  47. ShiH. ShiQ. GrodnerB. LenzJ.S. ZipfelW.R. BritoI.L. De VlaminckI. Highly multiplexed spatial mapping of microbial communities.Nature2020588783967668110.1038/s41586‑020‑2983‑4 33268897
    [Google Scholar]
  48. AnandP. KunnumakaraA.B. SundaramC. HarikumarK.B. TharakanS.T. LaiO.S. SungB. AggarwalB.B. Cancer is a preventable disease that requires major lifestyle changes.Pharm. Res.20082592097211610.1007/s11095‑008‑9661‑9 18626751
    [Google Scholar]
  49. BanerjeeJ. MishraN. DhasY. Metagenomics: A new horizon in cancer research.Meta Gene20155848910.1016/j.mgene.2015.05.005 26110115
    [Google Scholar]
  50. KimS.I. KangN. LeemS. YangJ. JoH. LeeM. KimH.S. DhanasekaranD.N. KimY.K. ParkT. SongY.S. Metagenomic analysis of serum micro-derived extracellular vesicles and diagnostic models to differentiate ovarian cancer and benign ovarian tumor.Cancers (Basel)2020125130910.3390/cancers12051309 32455705
    [Google Scholar]
  51. AitmanaitėL. ŠirmonaitisK. RussoG. Microbiomes, their function, and cancer: How metatranscriptomics can close the knowledge gap.Int. J. Mol. Sci.202324181378610.3390/ijms241813786 37762088
    [Google Scholar]
  52. UnterseherM. JumpponenA. ÖpikM. TedersooL. MooraM. DormannC.F. SchnittlerM. Species abundance distributions and richness estimations in fungal metagenomics - lessons learned from community ecology.Mol. Ecol.201120227528510.1111/j.1365‑294X.2010.04948.x 21155911
    [Google Scholar]
  53. AzizahN.N. ArsiantiA. ErlinaL. A review: Analysis of microbiome diversity in cancer.Bioinformatics2021425769
    [Google Scholar]
  54. BolgerA.M. LohseM. UsadelB. Trimmomatic: a flexible trimmer for Illumina sequence data.Bioinformatics201430152114212010.1093/bioinformatics/btu170 24695404
    [Google Scholar]
  55. SedghiL. DiMassaV. HarringtonA. LynchS.V. KapilaY.L. The oral microbiome: Role of key organisms and complex networks in oral health and disease.Periodontol. 2000202187110713110.1111/prd.12393 34463991
    [Google Scholar]
  56. MishraS. LinZ. PangS. ZhangW. BhattP. ChenS. Recent advanced technologies for the characterization of xenobiotic-degrading microorganisms and microbial communities.Front. Bioeng. Biotechnol.2021963205910.3389/fbioe.2021.632059 33644024
    [Google Scholar]
  57. FiliatraultM.J. Progress in prokaryotic transcriptomics.Curr. Opin. Microbiol.201114557958610.1016/j.mib.2011.07.023 21839669
    [Google Scholar]
  58. ShakyaM. LoC.C. ChainP.S.G. Advances and challenges in metatranscriptomic analysis.Front. Genet.20191090410.3389/fgene.2019.00904 31608125
    [Google Scholar]
  59. ZhangY. ThompsonK.N. BranckT. YanYan NguyenL.H. FranzosaE.A. HuttenhowerC. Metatranscriptomics for the human microbiome and microbial community functional profiling.Annu. Rev. Biomed. Data Sci.20214127931110.1146/annurev‑biodatasci‑031121‑103035 34465175
    [Google Scholar]
  60. PintoY. BhattA.S. Sequencing-based analysis of microbiomes.Nat. Rev. Genet.202417 38918544
    [Google Scholar]
  61. TancaA. AbbondioM. PalombaA. FraumeneC. ManghinaV. CuccaF. FiorilloE. UzzauS. Potential and active functions in the gut microbiota of a healthy human cohort.Microbiome2017517910.1186/s40168‑017‑0293‑3 28709472
    [Google Scholar]
  62. GaoM. WangH. LuoH. SunY. WangL. DingS. RenH. GangJ. RaoB. LiuS. WangX. GaoX. LiM. ZouY. LiuC. YuanC. SunJ. CuiG. RenZ. Characterization of the human oropharyngeal microbiomes in SARS-CoV-2 infection and recovery patients.Adv. Sci. (Weinh.)2021820210278510.1002/advs.202102785 34423593
    [Google Scholar]
  63. MuthT. KolmederC.A. SalojärviJ. KeskitaloS. VarjosaloM. VerdamF.J. RensenS.S. ReichlU. de VosW.M. RappE. MartensL. Navigating through metaproteomics data: A logbook of database searching.Proteomics201515203439345310.1002/pmic.201400560 25778831
    [Google Scholar]
  64. HeZ. GharaibehR.Z. NewsomeR.C. PopeJ.L. DoughertyM.W. TomkovichS. PonsB. MireyG. VignardJ. HendrixsonD.R. JobinC. Campylobacter jejuni promotes colorectal tumorigenesis through the action of cytolethal distending toxin.Gut201968228930010.1136/gutjnl‑2018‑317200 30377189
    [Google Scholar]
  65. AlharthiA. AlhazmiS. AlburaeN. BahieldinA. The human gut microbiome as a potential factor in autism spectrum disorder.Int. J. Mol. Sci.2022233136310.3390/ijms23031363 35163286
    [Google Scholar]
  66. RivettD.W. BellT. Abundance determines the functional role of bacterial phylotypes in complex communities.Nat. Microbiol.20183776777210.1038/s41564‑018‑0180‑0 29915204
    [Google Scholar]
  67. SommarivaM. Le NociV. BianchiF. CamellitiS. BalsariA. TagliabueE. SfondriniL. The lung microbiota: role in maintaining pulmonary immune homeostasis and its implications in cancer development and therapy.Cell. Mol. Life Sci.202077142739274910.1007/s00018‑020‑03452‑8 31974656
    [Google Scholar]
  68. QuinceC. WalkerA.W. SimpsonJ.T. LomanN.J. SegataN. Shotgun metagenomics, from sampling to analysis.Nat. Biotechnol.201735983384410.1038/nbt.3935 28898207
    [Google Scholar]
  69. AmannR. FuchsB.M. Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques.Nat. Rev. Microbiol.20086533934810.1038/nrmicro1888 18414500
    [Google Scholar]
  70. SalomonR. KaczorowskiD. Valdes-MoraF. NordonR.E. NeildA. FarbehiN. BartonicekN. Gallego-OrtegaD. Droplet-based single cell RNAseq tools: a practical guide.Lab Chip201919101706172710.1039/C8LC01239C 30997473
    [Google Scholar]
  71. GhuryeJ.S. Cepeda-EspinozaV. PopM. Focus: microbiome: metagenomic assembly: overview, challenges and applications.Yale J. Biol. Med.2016893353362 27698619
    [Google Scholar]
  72. OjalaT. HäkkinenA.E. KankuriE. KankainenM. Current concepts, advances, and challenges in deciphering the human microbiota with metatranscriptomics.Trends Genet.202339968670210.1016/j.tig.2023.05.004 37365103
    [Google Scholar]
  73. RowlandI. GibsonG. HeinkenA. ScottK. SwannJ. ThieleI. TuohyK. Gut microbiota functions: metabolism of nutrients and other food components.Eur. J. Nutr.201857112410.1007/s00394‑017‑1445‑8 28393285
    [Google Scholar]
  74. BhartiR. GrimmD.G. Current challenges and best-practice protocols for microbiome analysis.Brief. Bioinform.202122117819310.1093/bib/bbz155 31848574
    [Google Scholar]
  75. CiernikovaS. SevcikovaA. StevurkovaV. MegoM. Tumor microbiome – an integral part of the tumor microenvironment.Front. Oncol.202212106310010.3389/fonc.2022.1063100 36505811
    [Google Scholar]
  76. KennelK.B. GretenF.R. Immune cell - produced ROS and their impact on tumor growth and metastasis.Redox Biol.20214210189110.1016/j.redox.2021.101891 33583736
    [Google Scholar]
  77. LiuL. JinR. HaoJ. ZengJ. YinD. YiY. ZhuM. MandalA. HuaY. NgC.K. EgilmezN.K. SauterE.R. LiB. Consumption of the fish oil high-fat diet uncouples obesity and mammary tumor growth through induction of reactive oxygen species in protumor macrophages.Cancer Res.202080122564257410.1158/0008‑5472.CAN‑19‑3184 32213543
    [Google Scholar]
  78. YuZ. ShaoH. ShaoX. YuL. GaoY. RenY. LiuF. MengC. LingP. ChenQ. In situ visualization of the cellular uptake and sub-cellular distribution of mussel oligosaccharides.J. Pharm. Anal.202414610093210.1016/j.jpha.2023.12.022 39021382
    [Google Scholar]
  79. XieY. XieF. ZhouX. ZhangL. YangB. HuangJ. WangF. YanH. ZengL. ZhangL. ZhouF. Microbiota in tumors: from understanding to application.Adv. Sci. (Weinh.)2022921220047010.1002/advs.202200470 35603968
    [Google Scholar]
  80. MagneF. GottelandM. GauthierL. ZazuetaA. PesoaS. NavarreteP. BalamuruganR. The firmicutes/bacteroidetes ratio: a relevant marker of gut dysbiosis in obese patients?Nutrients2020125147410.3390/nu12051474 32438689
    [Google Scholar]
  81. MbemiA. KhannaS. NjikiS. YedjouC.G. TchounwouP.B. Impact of gene-environment interactions on cancer development.Int. J. Environ. Res. Public Health20201721808910.3390/ijerph17218089 33153024
    [Google Scholar]
  82. NarimatsuH. YaguchiY.T. The role of diet and nutrition in cancer: Prevention, treatment, and survival.Nutrients20221416332910.3390/nu14163329 36014835
    [Google Scholar]
  83. MittelmanS.D. The role of diet in cancer prevention and chemotherapy efficacy.Annu. Rev. Nutr.202040127329710.1146/annurev‑nutr‑013120‑041149 32543948
    [Google Scholar]
  84. CiernikovaS. SevcikovaA. StevurkovaV. MegoM. Diet-driven microbiome changes and physical activity in cancer patients.Front. Nutr.202310128551610.3389/fnut.2023.1285516 38075222
    [Google Scholar]
  85. ShiB. GuoX. LiuH. JiangK. LiuL. YanN. FaragM.A. LiuL. Dissecting Maillard reaction production in fried foods: Formation mechanisms, sensory characteristic attribution, control strategy, and gut homeostasis regulation.Food Chem.202443813799410.1016/j.foodchem.2023.137994 37984001
    [Google Scholar]
  86. DinuM. AbbateR. GensiniG.F. CasiniA. SofiF. Vegetarian, vegan diets and multiple health outcomes: A systematic review with meta-analysis of observational studies.Crit. Rev. Food Sci. Nutr.201757173640364910.1080/10408398.2016.1138447 26853923
    [Google Scholar]
  87. PapadimitriouN. MarkozannesG. KanellopoulouA. CritselisE. AlhardanS. KarafousiaV. KasimisJ.C. KatsarakiC. PapadopoulouA. ZografouM. LopezD.S. ChanD.S.M. KyrgiouM. NtzaniE. CrossA.J. MarroneM.T. PlatzE.A. GunterM.J. TsilidisK.K. An umbrella review of the evidence associating diet and cancer risk at 11 anatomical sites.Nat. Commun.2021121457910.1038/s41467‑021‑24861‑8 34321471
    [Google Scholar]
  88. FontanaA. PanebiancoC. Picchianti-DiamantiA. LaganàB. CavalieriD. PotenzaA. PracellaR. BindaE. CopettiM. PazienzaV. Gut microbiota profiles differ among individuals depending on their region of origin: An Italian pilot study.Int. J. Environ. Res. Public Health20191621406510.3390/ijerph16214065 31652705
    [Google Scholar]
  89. SunS. WangH. TsilimigrasM.C.B. HowardA.G. ShaW. ZhangJ. SuC. WangZ. DuS. SiodaM. FouladiF. FodorA. Gordon-LarsenP. ZhangB. Does geographical variation confound the relationship between host factors and the human gut microbiota: a population-based study in China.BMJ Open20201011e03816310.1136/bmjopen‑2020‑038163 33444181
    [Google Scholar]
  90. LiJ. JiaH. CaiX. ZhongH. FengQ. SunagawaS. ArumugamM. KultimaJ.R. PriftiE. NielsenT. JunckerA.S. ManichanhC. ChenB. ZhangW. LevenezF. WangJ. XuX. XiaoL. LiangS. ZhangD. ZhangZ. ChenW. ZhaoH. Al-AamaJ.Y. EdrisS. YangH. WangJ. HansenT. NielsenH.B. BrunakS. KristiansenK. GuarnerF. PedersenO. DoréJ. EhrlichS.D. BorkP. WangJ. An integrated catalog of reference genes in the human gut microbiome.Nat. Biotechnol.201432883484110.1038/nbt.2942 24997786
    [Google Scholar]
  91. WhisnerC.M. Athena AktipisC. The role of the microbiome in cancer initiation and progression: How microbes and cancer cells utilize excess energy and promote one another’s growth.Curr. Nutr. Rep.201981425110.1007/s13668‑019‑0257‑2 30758778
    [Google Scholar]
  92. de MartelC. FerlayJ. FranceschiS. VignatJ. BrayF. FormanD. PlummerM. Global burden of cancers attributable to infections in 2008: a review and synthetic analysis.Lancet Oncol.201213660761510.1016/S1470‑2045(12)70137‑7 22575588
    [Google Scholar]
  93. VidalM.C. AnnebergT.J. CuréA.E. AlthoffD.M. SegravesK.A. The variable effects of global change on insect mutualisms.Curr. Opin. Insect Sci.202147465210.1016/j.cois.2021.03.002 33771734
    [Google Scholar]
  94. CongJ. ZhouP. ZhangR. Intestinal microbiota-derived short chain fatty acids in host health and disease.Nutrients2022149197710.3390/nu14091977 35565943
    [Google Scholar]
  95. PortincasaP. BonfrateL. VaccaM. De AngelisM. FarellaI. LanzaE. KhalilM. WangD.Q.H. SperandioM. Di CiaulaA. Gut microbiota and short chain fatty acids: Implications in glucose homeostasis.Int. J. Mol. Sci.2022233110510.3390/ijms23031105 35163038
    [Google Scholar]
  96. Kaźmierczak-SiedleckaK. MaranoL. MerolaE. RovielloF. PołomK. Sodium butyrate in both prevention and supportive treatment of colorectal cancer.Front. Cell. Infect. Microbiol.202212102380610.3389/fcimb.2022.1023806 36389140
    [Google Scholar]
  97. CoutzacC. JouniauxJ.M. PaciA. SchmidtJ. MallardoD. SeckA. AsvatourianV. CassardL. SaulnierP. LacroixL. WoertherP.L. VozyA. NaigeonM. Nebot-BralL. DesboisM. SimeoneE. MateusC. BoselliL. GrivelJ. SoularueE. LepageP. CarbonnelF. AsciertoP.A. RobertC. ChaputN. Systemic short chain fatty acids limit antitumor effect of CTLA-4 blockade in hosts with cancer.Nat. Commun.2020111216810.1038/s41467‑020‑16079‑x 32358520
    [Google Scholar]
  98. BellH.N. RebernickR.J. GoyertJ. SinghalR. KuljaninM. KerkS.A. HuangW. DasN.K. AndrenA. SolankiS. MillerS.L. ToddP.K. FearonE.R. LyssiotisC.A. GygiS.P. ManciasJ.D. ShahY.M. Reuterin in the healthy gut microbiome suppresses colorectal cancer growth through altering redox balance.Cancer Cell2022402185200.e610.1016/j.ccell.2021.12.001 34951957
    [Google Scholar]
  99. RidlonJ.M. KangD.J. HylemonP.B. BajajJ.S. Bile acids and the gut microbiome.Curr. Opin. Gastroenterol.201430333233810.1097/MOG.0000000000000057 24625896
    [Google Scholar]
  100. BernsteinH. BernsteinC. Bile acids as carcinogens in the colon and at other sites in the gastrointestinal system.Exp. Biol. Med. (Maywood)20232481798910.1177/15353702221131858 36408538
    [Google Scholar]
  101. DoorakkersE. LagergrenJ. EngstrandL. BrusselaersN. Eradication of Helicobacter pylori and gastric cancer: A systematic review and meta-analysis of cohort studies.J. Natl. Cancer Inst.20161089djw13210.1093/jnci/djw132 27416750
    [Google Scholar]
  102. WuN. YangX. ZhangR. LiJ. XiaoX. HuY. ChenY. YangF. LuN. WangZ. LuanC. LiuY. WangB. XiangC. WangY. ZhaoF. GaoG.F. WangS. LiL. ZhangH. ZhuB. Dysbiosis signature of fecal microbiota in colorectal cancer patients.Microb. Ecol.201366246247010.1007/s00248‑013‑0245‑9 23733170
    [Google Scholar]
  103. ChenS. ZhangP. DuanH. WangJ. QiuY. CuiZ. YinY. WanD. XieL. Gut microbiota in muscular atrophy development, progression, and treatment: New therapeutic targets and opportunities.Innovation20234510047910.1016/j.xinn.2023.100479 37539440
    [Google Scholar]
  104. HattoriN. UshijimaT. Epigenetic impact of infection on carcinogenesis: mechanisms and applications.Genome Med.2016811010.1186/s13073‑016‑0267‑2 26823082
    [Google Scholar]
  105. GomaaE.Z. Human gut microbiota/microbiome in health and diseases: a review.Antonie van Leeuwenhoek2020113122019204010.1007/s10482‑020‑01474‑7 33136284
    [Google Scholar]
  106. MakkiK. DeehanE.C. WalterJ. BäckhedF. The impact of dietary fiber on gut microbiota in host health and disease.Cell Host Microbe201823670571510.1016/j.chom.2018.05.012 29902436
    [Google Scholar]
  107. MengC. BaiC. BrownT.D. HoodL.E. TianQ. Human gut microbiota and gastrointestinal cancer.Genomics Proteomics Bioinformatics2018161334910.1016/j.gpb.2017.06.002 29474889
    [Google Scholar]
  108. GagnièreJ. RaischJ. VeziantJ. BarnichN. BonnetR. BucE. BringerM.A. PezetD. BonnetM. Gut microbiota imbalance and colorectal cancer.World J. Gastroenterol.201622250151810.3748/wjg.v22.i2.501 26811603
    [Google Scholar]
  109. HuB. ElinavE. HuberS. StrowigT. HaoL. HafemannA. JinC. WunderlichC. WunderlichT. EisenbarthS.C. FlavellR.A. Microbiota-induced activation of epithelial IL-6 signaling links inflammasome-driven inflammation with transmissible cancer.Proc. Natl. Acad. Sci. USA2013110249862986710.1073/pnas.1307575110 23696660
    [Google Scholar]
  110. ZhanY. ChenP.J. SadlerW.D. WangF. PoeS. NúñezG. EatonK.A. ChenG.Y. Gut microbiota protects against gastrointestinal tumorigenesis caused by epithelial injury.Cancer Res.201373247199721010.1158/0008‑5472.CAN‑13‑0827 24165160
    [Google Scholar]
  111. SiegelR.L. MillerK.D. WagleN.S. JemalA. Cancer statistics, 2023.CA Cancer J. Clin.2023731174810.3322/caac.21763 36633525
    [Google Scholar]
  112. XuanC. ShamonkiJ.M. ChungA. DiNomeM.L. ChungM. SielingP.A. LeeD.J. Microbial dysbiosis is associated with human breast cancer.PLoS One201491e8374410.1371/journal.pone.0083744 24421902
    [Google Scholar]
  113. LlovetJ.M. CastetF. HeikenwalderM. MainiM.K. MazzaferroV. PinatoD.J. PikarskyE. ZhuA.X. FinnR.S. Immunotherapies for hepatocellular carcinoma.Nat. Rev. Clin. Oncol.202219315117210.1038/s41571‑021‑00573‑2 34764464
    [Google Scholar]
  114. BaloghJ. VictorD.III AshamE.H. BurroughsS.G. BoktourM. SahariaA. LiX. GhobrialM. MonsourH. Jr Hepatocellular carcinoma: a review.J. Hepatocell. Carcinoma20163415310.2147/JHC.S61146 27785449
    [Google Scholar]
  115. SinghV. YeohB.S. ChassaingB. XiaoX. SahaP. Aguilera OlveraR. LapekJ.D.Jr ZhangL. WangW.B. HaoS. FlytheM.D. GonzalezD.J. CaniP.D. Conejo-GarciaJ.R. XiongN. KennettM.J. JoeB. PattersonA.D. GewirtzA.T. Vijay-KumarM. Dysregulated microbial fermentation of soluble fiber induces cholestatic liver cancer.Cell20181753679694.e2210.1016/j.cell.2018.09.004 30340040
    [Google Scholar]
  116. RidlonJ.M. HarrisS.C. BhowmikS. KangD.J. HylemonP.B. Consequences of bile salt biotransformations by intestinal bacteria.Gut Microbes201671223910.1080/19490976.2015.1127483 26939849
    [Google Scholar]
  117. MaleszaI.J. MaleszaM. WalkowiakJ. MussinN. WalkowiakD. AringazinaR. Bartkowiak-WieczorekJ. MądryE. High-fat, western-style diet, systemic inflammation, and gut microbiota: A narrative review.Cells20211011316410.3390/cells10113164 34831387
    [Google Scholar]
  118. RaduM.R. PrădatuA. DuicăF. MicuR. CreţoiuS.M. SuciuN. CreţoiuD. VarlasV.N. RădoiV.E. Ovarian cancer: Biomarkers and targeted therapy.Biomedicines20219669310.3390/biomedicines9060693 34207450
    [Google Scholar]
  119. CharkhchiP. CybulskiC. GronwaldJ. WongF.O. NarodS.A. AkbariM.R. CA125 and ovarian cancer: A comprehensive review.Cancers (Basel)20201212373010.3390/cancers12123730 33322519
    [Google Scholar]
  120. ZhangS. ChenD.C. Facing a new challenge.Chin. Med. J. (Engl.)2019132101135113810.1097/CM9.0000000000000245 30973451
    [Google Scholar]
  121. Perales-PuchaltA. Perez-SanzJ. PayneK.K. SvoronosN. AllegrezzaM.J. ChaurioR.A. AnadonC. CalmetteJ. BiswasS. MineJ.A. CostichT.L. NickelsL. WickramasingheJ. RutkowskiM.R. Conejo-GarciaJ.R. Frontline Science: Microbiota reconstitution restores intestinal integrity after cisplatin therapy.J. Leukoc. Biol.2018103579980510.1002/JLB.5HI1117‑446RR 29537705
    [Google Scholar]
  122. WangZ. WangQ. ZhaoJ. GongL. ZhangY. WangX. YuanZ. Altered diversity and composition of the gut microbiome in patients with cervical cancer.AMB Express2019914010.1186/s13568‑019‑0763‑z 30904962
    [Google Scholar]
  123. SiddiquiR. MakhloufZ. AlharbiA.M. AlfahemiH. KhanN.A. The gut microbiome and female health.Biology (Basel)20221111168310.3390/biology11111683 36421397
    [Google Scholar]
  124. YuL.X. SchwabeR.F. The gut microbiome and liver cancer: mechanisms and clinical translation.Nat. Rev. Gastroenterol. Hepatol.201714952753910.1038/nrgastro.2017.72 28676707
    [Google Scholar]
  125. FanX. AlekseyenkoA.V. WuJ. PetersB.A. JacobsE.J. GapsturS.M. PurdueM.P. AbnetC.C. Stolzenberg-SolomonR. MillerG. RavelJ. HayesR.B. AhnJ. Human oral microbiome and prospective risk for pancreatic cancer: a population-based nested case-control study.Gut201867112012710.1136/gutjnl‑2016‑312580 27742762
    [Google Scholar]
  126. PlummerM. FranceschiS. Helicobacter pylori and gastric cancer.IARC Working Group Reports.International Agency for Research on Cancer2015
    [Google Scholar]
  127. ArthurJ.C. Perez-ChanonaE. MühlbauerM. TomkovichS. UronisJ.M. FanT.J. CampbellB.J. AbujamelT. DoganB. RogersA.B. RhodesJ.M. StintziA. SimpsonK.W. HansenJ.J. KekuT.O. FodorA.A. JobinC. Intestinal inflammation targets cancer-inducing activity of the microbiota.Science2012338610312012310.1126/science.1224820 22903521
    [Google Scholar]
  128. ChengY. LingZ. LiL. The intestinal microbiota and colorectal cancer.Front. Immunol.20201161505610.3389/fimmu.2020.615056 33329610
    [Google Scholar]
  129. BaruchE.N. YoungsterI. Ben-BetzalelG. OrtenbergR. LahatA. KatzL. AdlerK. Dick-NeculaD. RaskinS. BlochN. RotinD. AnafiL. AviviC. MelnichenkoJ. Steinberg-SilmanY. MamtaniR. HaratiH. AsherN. Shapira-FrommerR. Brosh-NissimovT. EshetY. Ben-SimonS. ZivO. KhanM.A.W. AmitM. AjamiN.J. BarshackI. SchachterJ. WargoJ.A. KorenO. MarkelG. BoursiB. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients.Science2021371652960260910.1126/science.abb5920 33303685
    [Google Scholar]
  130. KwaM. The intestinal microbiome and estrogen receptor-positive female breast cancer.Breast Cancer Res. Treat.20161602271282 26995283
    [Google Scholar]
  131. PetersB.A. WuJ. PeiZ. YangL. PurdueM.P. FreedmanN.D. JacobsE.J. GapsturS.M. HayesR.B. AhnJ. Oral microbiome composition reflects prospective risk for esophageal cancers.Cancer Res.201777236777678710.1158/0008‑5472.CAN‑17‑1296 29196415
    [Google Scholar]
  132. SchmidtB.L. KuczynskiJ. BhattacharyaA. HueyB. CorbyP.M. QueirozE.L.S. NightingaleK. KerrA.R. DeLacureM.D. VeeramachaneniR. OlshenA.B. AlbertsonD.G. Changes in abundance of oral microbiota associated with oral cancer.PLoS One201496e9874110.1371/journal.pone.0098741 24887397
    [Google Scholar]
  133. Bučević PopovićV. ŠitumM. ChowC.E.T. ChanL.S. RojeB. TerzićJ. The urinary microbiome associated with bladder cancer.Sci. Rep.2018811215710.1038/s41598‑018‑29054‑w 30108246
    [Google Scholar]
  134. RoutyB. Le ChatelierE. DerosaL. DuongC.P.M. AlouM.T. DaillèreR. FluckigerA. MessaoudeneM. RauberC. RobertiM.P. FidelleM. FlamentC. Poirier-ColameV. OpolonP. KleinC. IribarrenK. MondragónL. JacquelotN. QuB. FerrereG. ClémensonC. MezquitaL. MasipJ.R. NaltetC. BrosseauS. KaderbhaiC. RichardC. RizviH. LevenezF. GalleronN. QuinquisB. PonsN. RyffelB. Minard-ColinV. GoninP. SoriaJ.C. DeutschE. LoriotY. GhiringhelliF. ZalcmanG. GoldwasserF. EscudierB. HellmannM.D. EggermontA. RaoultD. AlbigesL. KroemerG. ZitvogelL. Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors.Science20183596371919710.1126/science.aan3706 29097494
    [Google Scholar]
  135. GolombosD.M. The role of gut microbiome in prostate cancer: implications for prevention and treatment.Prostate Cancer Prostatic Dis.2018213356363
    [Google Scholar]
  136. OhH.Y. The vaginal microbiota associated with cervical intraepithelial neoplasia and cervical cancer.PLoS One2015102
    [Google Scholar]
  137. BanerjeeS. Distinct microbial signatures associated with different breast cancer types.Cancer Res.2017771129052916
    [Google Scholar]
  138. ChenD. JinD. HuangS. WuJ. XuM. LiuT. DongW. LiuX. WangS. ZhongW. LiuY. JiangR. PiaoM. WangB. CaoH. Clostridium butyricum, a butyrate-producing probiotic, inhibits intestinal tumor development through modulating Wnt signaling and gut microbiota.Cancer Lett.202046945646710.1016/j.canlet.2019.11.019 31734354
    [Google Scholar]
  139. ShiX. LiZ. LinW. ShiW. HuR. ChenG. LiX. LiX. ZhangS. Altered intestinal microbial flora and metabolism in patients with idiopathic membranous nephropathy.Am. J. Nephrol.20235411-1245147010.1159/000533537 37793354
    [Google Scholar]
  140. ConsortiumH.M.P. Structure, function and diversity of the healthy human microbiome.Nature2012486740220721410.1038/nature11234 22699609
    [Google Scholar]
  141. JandhyalaS.M. TalukdarR. SubramanyamC. VuyyuruH. SasikalaM. Nageshwar ReddyD. Role of the normal gut microbiota.World J. Gastroenterol.201521298787880310.3748/wjg.v21.i29.8787 26269668
    [Google Scholar]
  142. HatakeyamaM. Structure and function of <i>Helicobacter pylori</i> CagA, the first-identified bacterial protein involved in human cancer.Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci.201793419621910.2183/pjab.93.013 28413197
    [Google Scholar]
  143. VivarelliS. SalemiR. CandidoS. FalzoneL. SantagatiM. StefaniS. TorinoF. BannaG.L. ToniniG. LibraM. Gut microbiota and cancer: from pathogenesis to therapy.Cancers (Basel)20191113810.3390/cancers11010038 30609850
    [Google Scholar]
  144. BergouniouxJ. EliseeR. PrunierA.L. DonnadieuF. SperandioB. SansonettiP. ArbibeL. Calpain activation by the Shigella flexneri effector VirA regulates key steps in the formation and life of the bacterium’s epithelial niche.Cell Host Microbe201211324025210.1016/j.chom.2012.01.013 22423964
    [Google Scholar]
  145. ButiL. SpoonerE. Van der VeenA.G. RappuoliR. CovacciA. PloeghH.L. Helicobacter pylori cytotoxin-associated gene A (CagA) subverts the apoptosis-stimulating protein of p53 (ASPP2) tumor suppressor pathway of the host.Proc. Natl. Acad. Sci. USA2011108229238924310.1073/pnas.1106200108 21562218
    [Google Scholar]
  146. SahD.K. ArjunanA. LeeB. JungY.D. Reactive Oxygen Species and H. pylori Infection: A Comprehensive Review of Their Roles in Gastric Cancer Development.Antioxidants2023129171210.3390/antiox12091712 37760015
    [Google Scholar]
  147. WadaY. TakemuraK. TummalaP. UchidaK. KitagakiK. FurukawaA. IshigeY. ItoT. HaraY. SuzukiT. MimuroH. BoardP.G. EishiY. Helicobacter pylori induces somatic mutations inTP 53 via overexpression of CHAC 1 in infected gastric epithelial cells.FEBS Open Bio20188467167910.1002/2211‑5463.12402 29632819
    [Google Scholar]
  148. ChaturvediR. AsimM. Romero-GalloJ. BarryD.P. HogeS. de SabletT. DelgadoA.G. WroblewskiL.E. PiazueloM.B. YanF. IsraelD.A. CaseroR.A.Jr CorreaP. GobertA.P. PolkD.B. PeekR.M.Jr WilsonK.T. Spermine oxidase mediates the gastric cancer risk associated with Helicobacter pylori CagA.Gastroenterology2011141516961708.e2, 2.10.1053/j.gastro.2011.07.045 21839041
    [Google Scholar]
  149. WardmanJ.F. BainsR.K. RahfeldP. WithersS.G. Carbohydrate-active enzymes (CAZymes) in the gut microbiome.Nat. Rev. Microbiol.202220954255610.1038/s41579‑022‑00712‑1 35347288
    [Google Scholar]
  150. SpiljarM. MerklerD. TrajkovskiM. The immune system bridges the gut microbiota with systemic energy homeostasis: focus on TLRs, mucosal barrier, and SCFAs.Front. Immunol.20178135310.3389/fimmu.2017.01353 29163467
    [Google Scholar]
  151. ChengW.Y. WuC.Y. YuJ. The role of gut microbiota in cancer treatment: friend or foe?Gut202069101867187610.1136/gutjnl‑2020‑321153 32759302
    [Google Scholar]
  152. GhalyS. KaakoushN.O. HartP.H. Effects of UVR exposure on the gut microbiota of mice and humans.Photochem. Photobiol. Sci.2020191202810.1039/c9pp00443b 31930250
    [Google Scholar]
  153. ViaudS. SaccheriF. MignotG. YamazakiT. DaillèreR. HannaniD. EnotD.P. PfirschkeC. EngblomC. PittetM.J. SchlitzerA. GinhouxF. ApetohL. ChachatyE. WoertherP.L. EberlG. BérardM. EcobichonC. ClermontD. BizetC. Gaboriau-RouthiauV. Cerf-BensussanN. OpolonP. YessaadN. VivierE. RyffelB. ElsonC.O. DoréJ. KroemerG. LepageP. BonecaI.G. GhiringhelliF. ZitvogelL. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide.Science2013342616197197610.1126/science.1240537 24264990
    [Google Scholar]
  154. NekouianR. RasouliB.S. Ghadimi-DarsajiniA. IragianG.R. In vitro activity of probiotic Lactobacillus reuteri against gastric cancer progression by downregulation of urokinase plasminogen activator/urokinase plasminogen activator receptor gene expression.J. Cancer Res. Ther.201713224625110.4103/0973‑1482.204897 28643742
    [Google Scholar]
  155. ShamekhiS. LotfiH. AbdolalizadehJ. BonabiE. ZarghamiN. An overview of yeast probiotics as cancer biotherapeutics: possible clinical application in colorectal cancer.Clin. Transl. Oncol.20202281227123910.1007/s12094‑019‑02270‑0 31919760
    [Google Scholar]
  156. KumarM. KumarA. NagpalR. MohaniaD. BehareP. VermaV. KumarP. PoddarD. AggarwalP.K. HenryC.J.K. JainS. YadavH. Cancer-preventing attributes of probiotics: an update.Int. J. Food Sci. Nutr.201061547349610.3109/09637480903455971 20187714
    [Google Scholar]
  157. RawiM.H. ZamanS.A. Pa’eeK.F. LeongS.S. SarbiniS.R. Prebiotics metabolism by gut-isolated probiotics.J. Food Sci. Technol.20205782786279910.1007/s13197‑020‑04244‑5 32624588
    [Google Scholar]
  158. FengJ.R. WangF. QiuX. McFarlandL.V. ChenP.F. ZhouR. LiuJ. ZhaoQ. LiJ. Efficacy and safety of probiotic-supplemented triple therapy for eradication of Helicobacter pylori in children: a systematic review and network meta-analysis.Eur. J. Clin. Pharmacol.201773101199120810.1007/s00228‑017‑2291‑6 28681177
    [Google Scholar]
  159. (a BarojaM. L. KirjavainenP. V. HekmatS. ReidG. Antiinflammatory effects of probiotic yogurt in inflammatory bowel disease patients.Clin. Exp. Immunol.2007149447047910.1111/j.1365‑2249.2007.03434.x
    [Google Scholar]
  160. (b SykoraJ. ValeckováK. AmlerováJ. SialaK. DedekP. WatkinsS. VarvarovskáJ. StozickyF. PazdioraP. SchwarzJ. Effects of a specially designed fermented milk product containing probiotic Lactobacillus casei DN-114 001 and the eradication of H. pylori in children: a prospective randomized double-blind study.J. Clin. Gastroenterol.200539869269810.1097/01.mcg.0000173855.77191.44 16082279
    [Google Scholar]
  161. DeguchiR. NakaminamiH. RimbaraE. NoguchiN. SasatsuM. SuzukiT. MatsushimaM. KoikeJ. IgarashiM. OzawaH. FukudaR. TakagiA. Effect of pretreatment with Lactobacillus gasseri OLL2716 on first‐line Helicobacter pylori eradication therapy.J. Gastroenterol. Hepatol.201227588889210.1111/j.1440‑1746.2011.06985.x 22098133
    [Google Scholar]
  162. WangC. GaoY. ZhangZ. ChiQ. LiuY. YangL. XuK. Safflower yellow alleviates osteoarthritis and prevents inflammation by inhibiting PGE2 release and regulating NF-κB/SIRT1/AMPK signaling pathways.Phytomedicine20207815330510.1016/j.phymed.2020.153305 32871523
    [Google Scholar]
  163. ZhouY. LiuZ. ChenT. Gut microbiota: A promising milestone in enhancing the efficacy of PD1/PD-L1 blockade therapy.Front. Oncol.20221284735010.3389/fonc.2022.847350 35252014
    [Google Scholar]
  164. YiM. YuS. QinS. LiuQ. XuH. ZhaoW. ChuQ. WuK. Gut microbiome modulates efficacy of immune checkpoint inhibitors.J. Hematol. Oncol.20181114710.1186/s13045‑018‑0592‑6 29580257
    [Google Scholar]
  165. HanY. LiuD. LiL. PD-1/PD-L1 pathway: current researches in cancer.Am. J. Cancer Res.2020103727742 32266087
    [Google Scholar]
  166. SivanA. CorralesL. HubertN. WilliamsJ.B. Aquino-MichaelsK. EarleyZ.M. BenyaminF.W. Man LeiY. JabriB. AlegreM.L. ChangE.B. GajewskiT.F. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti–PD-L1 efficacy.Science201535062641084108910.1126/science.aac4255 26541606
    [Google Scholar]
  167. MatsonV. FesslerJ. BaoR. ChongsuwatT. ZhaY. AlegreM.L. LukeJ.J. GajewskiT.F. The commensal microbiome is associated with anti–PD-1 efficacy in metastatic melanoma patients.Science2018359637110410810.1126/science.aao3290 29302014
    [Google Scholar]
  168. LeeK.A. LuongM.K. ShawH. NathanP. BatailleV. SpectorT.D. The gut microbiome: what the oncologist ought to know.Br. J. Cancer202112591197120910.1038/s41416‑021‑01467‑x 34262150
    [Google Scholar]
  169. GopalakrishnanV. SpencerC.N. NeziL. ReubenA. AndrewsM.C. KarpinetsT.V. PrietoP.A. VicenteD. HoffmanK. WeiS.C. CogdillA.P. ZhaoL. HudgensC.W. HutchinsonD.S. ManzoT. Petaccia de MacedoM. CotechiniT. KumarT. ChenW.S. ReddyS.M. Szczepaniak SloaneR. Galloway-PenaJ. JiangH. ChenP.L. ShpallE.J. RezvaniK. AlousiA.M. ChemalyR.F. ShelburneS. VenceL.M. OkhuysenP.C. JensenV.B. SwennesA.G. McAllisterF. Marcelo Riquelme SanchezE. ZhangY. Le ChatelierE. ZitvogelL. PonsN. Austin-BrenemanJ.L. HayduL.E. BurtonE.M. GardnerJ.M. SirmansE. HuJ. LazarA.J. TsujikawaT. DiabA. TawbiH. GlitzaI.C. HwuW.J. PatelS.P. WoodmanS.E. AmariaR.N. DaviesM.A. GershenwaldJ.E. HwuP. LeeJ.E. ZhangJ. CoussensL.M. CooperZ.A. FutrealP.A. DanielC.R. AjamiN.J. PetrosinoJ.F. TetzlaffM.T. SharmaP. AllisonJ.P. JenqR.R. WargoJ.A. Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients.Science201835963719710310.1126/science.aan4236 29097493
    [Google Scholar]
  170. FongW. LiQ. YuJ. Gut microbiota modulation: a novel strategy for prevention and treatment of colorectal cancer.Oncogene202039264925494310.1038/s41388‑020‑1341‑1 32514151
    [Google Scholar]
  171. CanforaE.E. MeexR.C.R. VenemaK. BlaakE.E. Gut microbial metabolites in obesity, NAFLD and T2DM.Nat. Rev. Endocrinol.201915526127310.1038/s41574‑019‑0156‑z 30670819
    [Google Scholar]
  172. DavidL.A. MauriceC.F. CarmodyR.N. GootenbergD.B. ButtonJ.E. WolfeB.E. LingA.V. DevlinA.S. VarmaY. FischbachM.A. BiddingerS.B. DuttonR.J. TurnbaughP.J. Diet rapidly and reproducibly alters the human gut microbiome.Nature2014505748455956310.1038/nature12820 24336217
    [Google Scholar]
  173. Ramirez-FariasC. SlezakK. FullerZ. DuncanA. HoltropG. LouisP. Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii.Br. J. Nutr.2009101454155010.1017/S0007114508019880 18590586
    [Google Scholar]
  174. (a TaperH.S. RoberfroidM.B. Nontoxic potentiation of cancer chemotherapy by dietary oligofructose or inulin.Nutr. Cancer20003811510.1136/gutjnl‑2021‑326264 35277453
    [Google Scholar]
  175. (b TingN.L.N. LauH.C.H. YuJ. Cancer pharmacomicrobiomics: targeting microbiota to optimise cancer therapy outcomes.Gut20227171412142510.1136/gutjnl‑2021‑326264 35277453
    [Google Scholar]
  176. MaoJ. WangD. LongJ. YangX. LinJ. SongY. XieF. XunZ. WangY. WangY. LiY. SunH. XueJ. SongY. ZuoB. ZhangJ. BianJ. ZhangT. YangX. ZhangL. SangX. ZhaoH. Gut microbiome is associated with the clinical response to anti-PD-1 based immunotherapy in hepatobiliary cancers.J. Immunother. Cancer2021912e00333410.1136/jitc‑2021‑003334 34873013
    [Google Scholar]
  177. KangX. LauH.C.H. YuJ. Modulating gut microbiome in cancer immunotherapy: Harnessing microbes to enhance treatment efficacy.Cell Rep. Med.20245410147810.1016/j.xcrm.2024.101478 38631285
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010353600241109132441
Loading
/content/journals/cpb/10.2174/0113892010353600241109132441
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test