Skip to content
2000
image of Therapeutic Modulation of the Microbiome in Oncology: Current Trends and Future Directions

Abstract

Cancer is a predominant cause of mortality worldwide, necessitating the development of innovative therapeutic techniques. The human microbiome, particularly the gut microbiota, has become a significant element in cancer research owing to its essential role in sustaining health and influencing disease progression. This review examines the microbiome's makeup and essential functions, including immunological modulation and metabolic regulation, which may be evaluated using sophisticated methodologies such as metagenomics and 16S rRNA sequencing. The microbiome influences cancer development by promoting inflammation, modulating the immune system, and producing carcinogenic compounds. Dysbiosis, or microbial imbalance, can undermine the epithelial barrier and facilitate cancer. The microbiome influences chemotherapy and radiation results by modifying drug metabolism, either enhancing or reducing therapeutic efficacy and contributing to side effects and toxicity. Comprehending these intricate relationships emphasises the microbiome's significance in oncology and accentuates the possibility for microbiome-targeted therapeutics. Contemporary therapeutic approaches encompass the utilisation of probiotics and dietary components to regulate the microbiome, enhance treatment efficacy, and minimise unwanted effects. Advancements in research indicate that personalised microbiome-based interventions, have the potential to transform cancer therapy, by providing more effective and customised treatment alternatives. This study aims to provide a comprehensive analysis of the microbiome's influence on the onset and treatment of cancer, while emphasising current trends and future possibilities for therapeutic intervention.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010353600241109132441
2024-11-14
2024-12-26
Loading full text...

Full text loading...

References

  1. Saraswat I. Goel A. Gupta J. An In-depth review on Argemone mexicana in the management of liver health and liver cancer. Anticancer. Agents Med. Chem. 2024 24 10.2174/0118715206307964240821051756 39225208
    [Google Scholar]
  2. Gu J. Wang H. Zhang M. Xiong Y. Yang L. Ren B. Huang R. Application of fluorescence In situ hybridization (FISH) in oral microbial detection. Pathogens 2022 11 12 1450 10.3390/pathogens11121450 36558784
    [Google Scholar]
  3. Chen X. Song M. Zhang B. Zhang Y. Reactive oxygen species regulate T cell immune response in the tumor microenvironment. Oxid. Med. Cell. Longev. 2016 2016 1 1580967 10.1155/2016/1580967 27547291
    [Google Scholar]
  4. Wang L. Kuang Z. Zhang D. Gao Y. Ying M. Wang T. Reactive oxygen species in immune cells: A new antitumor target. Biomed. Pharmacother. 2021 133 110978 10.1016/j.biopha.2020.110978 33176269
    [Google Scholar]
  5. Liu L. Jin R. Hao J. Zeng J. Yin D. Yi Y. Zhu M. Mandal A. Hua Y. Ng C.K. Egilmez N.K. Sauter E.R. Li B. Consumption of the fish oil high-fat diet uncouples obesity and mammary tumor growth through the induction of reactive oxygen species in protumor macrophages. Cancer Res. 2020 80 12 2564 2574 10.1158/0008‑5472.CAN‑19‑3184 32213543
    [Google Scholar]
  6. Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov. 2022 12 1 31 46 10.1158/2159‑8290.CD‑21‑1059 35022204
    [Google Scholar]
  7. Ciernikova S. Mego M. Hainova K. Adamcikova Z. Stevurkova V. Zajac V. Modification of microflora imbalance: future directions for prevention and treatment of colorectal cancer? Neoplasma 2015 62 3 345 352 10.4149/neo_2015_042 25866215
    [Google Scholar]
  8. Goubet A.G. Could the tumor-associated microbiota be the new multi-faceted player in the tumor microenvironment? Front. Oncol. 2023 13 1185163 10.3389/fonc.2023.1185163 37287916
    [Google Scholar]
  9. Nejman D. Livyatan I. Fuks G. Gavert N. Zwang Y. Geller L.T. Rotter-Maskowitz A. Weiser R. Mallel G. Gigi E. Meltser A. Douglas G.M. Kamer I. Gopalakrishnan V. Dadosh T. Levin-Zaidman S. Avnet S. Atlan T. Cooper Z.A. Arora R. Cogdill A.P. Khan M.A.W. Ologun G. Bussi Y. Weinberger A. Lotan-Pompan M. Golani O. Perry G. Rokah M. Bahar-Shany K. Rozeman E.A. Blank C.U. Ronai A. Shaoul R. Amit A. Dorfman T. Kremer R. Cohen Z.R. Harnof S. Siegal T. Yehuda-Shnaidman E. Gal-Yam E.N. Shapira H. Baldini N. Langille M.G.I. Ben-Nun A. Kaufman B. Nissan A. Golan T. Dadiani M. Levanon K. Bar J. Yust-Katz S. Barshack I. Peeper D.S. Raz D.J. Segal E. Wargo J.A. Sandbank J. Shental N. Straussman R. The human tumor microbiome is composed of tumor type–specific intracellular bacteria. Science 2020 368 6494 973 980 10.1126/science.aay9189 32467386
    [Google Scholar]
  10. Wu S. Zhu W. Thompson P. Hannun Y.A. Evaluating intrinsic and non-intrinsic cancer risk factors. Nat. Commun. 2018 9 1 3490 10.1038/s41467‑018‑05467‑z 30154431
    [Google Scholar]
  11. Cabral B.P. da Graça Derengowski Fonseca M. Mota F.B. The recent landscape of cancer research worldwide: a bibliometric and network analysis. Oncotarget 2018 9 55 30474 30484 10.18632/oncotarget.25730 30093962
    [Google Scholar]
  12. Wu M.S. Aquino L.B.B. Barbaza M.Y.U. Hsieh C.L. De Castro-Cruz K.A. Yang L.L. Tsai P.W. Anti-inflammatory and anticancer properties of bioactive compounds from Sesamum indicum L.—A review. Molecules 2019 24 24 4426 10.3390/molecules24244426 31817084
    [Google Scholar]
  13. Debela D.T. Muzazu S.G.Y. Heraro K.D. Ndalama M.T. Mesele B.W. Haile D.C. Kitui S.K. Manyazewal T. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Med. 2021 9 20503121211034366 10.1177/20503121211034366 34408877
    [Google Scholar]
  14. Giana F.E. Bonetto F.J. Bellotti M.I. Assay based on electrical impedance spectroscopy to discriminate between normal and cancerous mammalian cells. Phys. Rev. E 2018 97 3 032410 10.1103/PhysRevE.97.032410 29776129
    [Google Scholar]
  15. Saraswat I. Goel A. Cervical cancer therapeutics: An in-depth significance of herbal and chemical approaches of nanoparticles. Anticancer. Agents Med. Chem. 2024 24 8 627 636 10.2174/0118715206289468240130051102 38299417
    [Google Scholar]
  16. Khan R. Petersen F.C. Shekhar S. Commensal bacteria: an emerging player in defense against respiratory pathogens. Front. Microbiol. 2020 11 676
    [Google Scholar]
  17. Pickard J.M. Zeng M.Y. Caruso R. Núñez G. Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunol. Rev. 2017 279 1 70 89 10.1111/imr.12567 28856738
    [Google Scholar]
  18. The Human Microbiome, Diet, and Health: Workshop Summary Washington (DC).US National Academies Press 2013
    [Google Scholar]
  19. Hill C. Guarner F. Reid G. Gibson G.R. Merenstein D.J. Pot B. Morelli L. Canani R.B. Flint H.J. Salminen S. Calder P.C. Sanders M.E. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014 11 8 506 514 10.1038/nrgastro.2014.66 24912386
    [Google Scholar]
  20. Yoo J. Kim S. Probiotics and prebiotics: Present status and future perspectives on metabolic disorders. Nutrients 2016 8 3 173 10.3390/nu8030173 26999199
    [Google Scholar]
  21. Lynch S.V. Pedersen O. The human intestinal microbiome in health and disease. N. Engl. J. Med. 2016 375 24 2369 2379 10.1056/NEJMra1600266 27974040
    [Google Scholar]
  22. Cho I. Blaser M.J. The human microbiome: at the interface of health and disease. Nat. Rev. Genet. 2012 13 4 260 270 10.1038/nrg3182 22411464
    [Google Scholar]
  23. Torre L.A. Siegel R.L. Ward E.M. Jemal A. Global cancer incidence and mortality rates and trends—An update. Cancer Epidemiol. Biomarkers Prev. 2016 25 1 16 27 10.1158/1055‑9965.EPI‑15‑0578 26667886
    [Google Scholar]
  24. Pushalkar S. Hundeyin M. Daley D. Zambirinis C.P. Kurz E. Mishra A. Mohan N. Aykut B. Usyk M. Torres L.E. Werba G. Zhang K. Guo Y. Li Q. Akkad N. Lall S. Wadowski B. Gutierrez J. Kochen Rossi J.A. Herzog J.W. Diskin B. Torres-Hernandez A. Leinwand J. Wang W. Taunk P.S. Savadkar S. Janal M. Saxena A. Li X. Cohen D. Sartor R.B. Saxena D. Miller G. The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression. Cancer Discov. 2018 8 4 403 416 10.1158/2159‑8290.CD‑17‑1134 29567829
    [Google Scholar]
  25. Mima K. Sukawa Y. Nishihara R. Qian Z.R. Yamauchi M. Inamura K. Kim S.A. Masuda A. Nowak J.A. Nosho K. Kostic A.D. Giannakis M. Watanabe H. Bullman S. Milner D.A. Harris C.C. Giovannucci E. Garraway L.A. Freeman G.J. Dranoff G. Chan A.T. Garrett W.S. Huttenhower C. Fuchs C.S. Ogino S. Fusobacterium nucleatum and T cells in colorectal carcinoma. JAMA Oncol. 2015 1 5 653 661 10.1001/jamaoncol.2015.1377 26181352
    [Google Scholar]
  26. Rubinstein M.R. Wang X. Liu W. Hao Y. Cai G. Han Y.W. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe 2013 14 2 195 206 10.1016/j.chom.2013.07.012 23954158
    [Google Scholar]
  27. Ağagündüz D. Cocozza E. Cemali Ö. Bayazıt A.D. Nanì M.F. Cerqua I. Morgillo F. Saygılı S.K. Berni Canani R. Amero P. Capasso R. Understanding the role of the gut microbiome in gastrointestinal cancer: A review. Front. Pharmacol. 2023 14 1130562 10.3389/fphar.2023.1130562 36762108
    [Google Scholar]
  28. Sender R. Fuchs S. Milo R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell 2016 164 3 337 340 10.1016/j.cell.2016.01.013 26824647
    [Google Scholar]
  29. Derosa L. Routy B. Fidelle M. Iebba V. Alla L. Pasolli E. Segata N. Desnoyer A. Pietrantonio F. Ferrere G. Fahrner J.E. Le Chatellier E. Pons N. Galleron N. Roume H. Duong C.P.M. Mondragón L. Iribarren K. Bonvalet M. Terrisse S. Rauber C. Goubet A.G. Daillère R. Lemaitre F. Reni A. Casu B. Alou M.T. Alves Costa Silva C. Raoult D. Fizazi K. Escudier B. Kroemer G. Albiges L. Zitvogel L. Gut bacteria composition drives primary resistance to cancer immunotherapy in renal cell carcinoma patients. Eur. Urol. 2020 78 2 195 206 10.1016/j.eururo.2020.04.044 32376136
    [Google Scholar]
  30. Saraswat I. Goel A. Herbal remedies for hepatic inflammation: Unravelling pathways and mechanisms for therapeutic intervention. Curr. Pharm. Des. 2024 pub ahead of print. 10.2174/0113816128348771240925100639
    [Google Scholar]
  31. Durán-Pinedo A.E. Frías-López J. Beyond microbial community composition: functional activities of the oral microbiome in health and disease. Microbes Infect. 2015 17 7 505 516 10.1016/j.micinf.2015.03.014 25862077
    [Google Scholar]
  32. Pérez-Cobas A.E. Gómez-Valero L. Buchrieser C. Metagenomic approaches in microbial ecology: an update on whole-genome and marker gene sequencing analyses. Microb. Genom. 2020 6 8 mgen000409 10.1099/mgen.0.000409 32706331
    [Google Scholar]
  33. Thomas C. Minty M. Vinel A. Canceill T. Loubières P. Burcelin R. Kaddech M. Blasco-Baque V. Laurencin-Dalicieux S. Oral microbiota: A major player in the diagnosis of systemic diseases. Diagnostics (Basel) 2021 11 8 1376 10.3390/diagnostics11081376 34441309
    [Google Scholar]
  34. Regueira-Iglesias A. Balsa-Castro C. Blanco-Pintos T. Tomás I. Critical review of 16S rRNA gene sequencing workflow in microbiome studies: From primer selection to advanced data analysis. Mol. Oral Microbiol. 2023 38 5 347 399 10.1111/omi.12434 37804481
    [Google Scholar]
  35. Regueira-Iglesias A. Vázquez-González L. Balsa-Castro C. Blanco-Pintos T. Vila-Blanco N. Carreira M.J. Tomás I. Impact of 16S rRNA gene redundancy and primer pair selection on the quantification and classification of oral microbiota in next-generation sequencing. Microbiol. Spectr. 2023 11 2 e04398-22 10.1128/spectrum.04398‑22 36779795
    [Google Scholar]
  36. Acinas S.G. Marcelino L.A. Klepac-Ceraj V. Polz M.F. Divergence and redundancy of 16S rRNA sequences in genomes with multiple rrn operons. J. Bacteriol. 2004 186 9 2629 2635 10.1128/JB.186.9.2629‑2635.2004 15090503
    [Google Scholar]
  37. Verma D. Garg P.K. Dubey A.K. Insights into the human oral microbiome. Arch. Microbiol. 2018 200 4 525 540 10.1007/s00203‑018‑1505‑3 29572583
    [Google Scholar]
  38. Guimarães N.M. Azevedo N.F. Almeida C. FISH Variants. Methods Mol. Biol. 2021 2246 17 33 10.1007/978‑1‑0716‑1115‑9_2 33576980
    [Google Scholar]
  39. Veselinyová D. Mašlanková J. Kalinová K. Mičková H. Mareková M. Rabajdová M. Selected In Situ Hybridization Methods: Principles and Application. Molecules 2021 26 13 3874 10.3390/molecules26133874 34202914
    [Google Scholar]
  40. Geier B. Sogin E.M. Michellod D. Janda M. Kompauer M. Spengler B. Dubilier N. Liebeke M. Spatial metabolomics of in situ host–microbe interactions at the micrometre scale. Nat. Microbiol. 2020 5 3 498 510 10.1038/s41564‑019‑0664‑6 32015496
    [Google Scholar]
  41. Le Bars P. Matamoros S. Montassier E. Le Vacon F. Potel G. Soueidan A. Jordana F. de La Cochetière M.F. The oral cavity microbiota: between health, oral disease, and cancers of the aerodigestive tract. Can. J. Microbiol. 2017 63 6 475 492 10.1139/cjm‑2016‑0603 28257583
    [Google Scholar]
  42. Hepp C. Shiaelis N. Robb N.C. Vaughan A. Matthews P.C. Stoesser N. Crook D. Kapanidis A.N. Viral detection and identification in 20 min by rapid single-particle fluorescence in-situ hybridization of viral RNA. Sci. Rep. 2021 11 1 19579 10.1038/s41598‑021‑98972‑z 34599242
    [Google Scholar]
  43. Trunk T. Khalil H.S. Leo J.C. Bacterial autoaggregation. AIMS Microbiol. 2018 4 1 140 164 10.3934/microbiol.2018.1.140 31294207
    [Google Scholar]
  44. Rinke C. Lee J. Nath N. Goudeau D. Thompson B. Poulton N. Dmitrieff E. Malmstrom R. Stepanauskas R. Woyke T. Obtaining genomes from uncultivated environmental microorganisms using FACS–based single-cell genomics. Nat. Protoc. 2014 9 5 1038 1048 10.1038/nprot.2014.067 24722403
    [Google Scholar]
  45. Ishøy T. Kvist T. Westermann P. Ahring B.K. An improved method for single cell isolation of prokaryotes from meso-, thermo- and hyperthermophilic environments using micromanipulation. Appl. Microbiol. Biotechnol. 2006 69 5 510 514 10.1007/s00253‑005‑0014‑x 16034558
    [Google Scholar]
  46. Marcy Y. Ouverney C. Bik E.M. Lösekann T. Ivanova N. Martin H.G. Szeto E. Platt D. Hugenholtz P. Relman D.A. Quake S.R. Dissecting biological “dark matter” with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. Proc. Natl. Acad. Sci. USA 2007 104 29 11889 11894 10.1073/pnas.0704662104 17620602
    [Google Scholar]
  47. Shi H. Shi Q. Grodner B. Lenz J.S. Zipfel W.R. Brito I.L. De Vlaminck I. Highly multiplexed spatial mapping of microbial communities. Nature 2020 588 7839 676 681 10.1038/s41586‑020‑2983‑4 33268897
    [Google Scholar]
  48. Anand P. Kunnumakara A.B. Sundaram C. Harikumar K.B. Tharakan S.T. Lai O.S. Sung B. Aggarwal B.B. Cancer is a preventable disease that requires major lifestyle changes. Pharm. Res. 2008 25 9 2097 2116 10.1007/s11095‑008‑9661‑9 18626751
    [Google Scholar]
  49. Banerjee J. Mishra N. Dhas Y. Metagenomics: A new horizon in cancer research. Meta Gene 2015 5 84 89 10.1016/j.mgene.2015.05.005 26110115
    [Google Scholar]
  50. Kim S.I. Kang N. Leem S. Yang J. Jo H. Lee M. Kim H.S. Dhanasekaran D.N. Kim Y.K. Park T. Song Y.S. Metagenomic analysis of serum micro-derived extracellular vesicles and diagnostic models to differentiate ovarian cancer and benign ovarian tumor. Cancers (Basel) 2020 12 5 1309 10.3390/cancers12051309 32455705
    [Google Scholar]
  51. Aitmanaitė L. Širmonaitis K. Russo G. Microbiomes, their function, and cancer: How metatranscriptomics can close the knowledge gap. Int. J. Mol. Sci. 2023 24 18 13786 10.3390/ijms241813786 37762088
    [Google Scholar]
  52. Unterseher M. Jumpponen A. Öpik M. Tedersoo L. Moora M. Dormann C.F. Schnittler M. Species abundance distributions and richness estimations in fungal metagenomics - lessons learned from community ecology. Mol. Ecol. 2011 20 2 275 285 10.1111/j.1365‑294X.2010.04948.x 21155911
    [Google Scholar]
  53. Azizah N.N. Arsianti A. Erlina L. A review: Analysis of microbiome diversity in cancer. Bioinformatics 2021 4 2 57 69
    [Google Scholar]
  54. Bolger A.M. Lohse M. Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014 30 15 2114 2120 10.1093/bioinformatics/btu170 24695404
    [Google Scholar]
  55. Sedghi L. DiMassa V. Harrington A. Lynch S.V. Kapila Y.L. The oral microbiome: Role of key organisms and complex networks in oral health and disease. Periodontol. 2000 2021 87 1 107 131 10.1111/prd.12393 34463991
    [Google Scholar]
  56. Mishra S. Lin Z. Pang S. Zhang W. Bhatt P. Chen S. Recent advanced technologies for the characterization of xenobiotic-degrading microorganisms and microbial communities. Front. Bioeng. Biotechnol. 2021 9 632059 10.3389/fbioe.2021.632059 33644024
    [Google Scholar]
  57. Filiatrault M.J. Progress in prokaryotic transcriptomics. Curr. Opin. Microbiol. 2011 14 5 579 586 10.1016/j.mib.2011.07.023 21839669
    [Google Scholar]
  58. Shakya M. Lo C.C. Chain P.S.G. Advances and challenges in metatranscriptomic analysis. Front. Genet. 2019 10 904 10.3389/fgene.2019.00904 31608125
    [Google Scholar]
  59. Zhang Y. Thompson K.N. Branck T. Yan Yan Nguyen L.H. Franzosa E.A. Huttenhower C. Metatranscriptomics for the human microbiome and microbial community functional profiling. Annu. Rev. Biomed. Data Sci. 2021 4 1 279 311 10.1146/annurev‑biodatasci‑031121‑103035 34465175
    [Google Scholar]
  60. Pinto Y. Bhatt A.S. Sequencing-based analysis of microbiomes. Nat. Rev. Genet. 2024 ••• 1 7 38918544
    [Google Scholar]
  61. Tanca A. Abbondio M. Palomba A. Fraumene C. Manghina V. Cucca F. Fiorillo E. Uzzau S. Potential and active functions in the gut microbiota of a healthy human cohort. Microbiome 2017 5 1 79 10.1186/s40168‑017‑0293‑3 28709472
    [Google Scholar]
  62. Gao M. Wang H. Luo H. Sun Y. Wang L. Ding S. Ren H. Gang J. Rao B. Liu S. Wang X. Gao X. Li M. Zou Y. Liu C. Yuan C. Sun J. Cui G. Ren Z. Characterization of the human oropharyngeal microbiomes in SARS-CoV-2 infection and recovery patients. Adv. Sci. (Weinh.) 2021 8 20 2102785 10.1002/advs.202102785 34423593
    [Google Scholar]
  63. Muth T. Kolmeder C.A. Salojärvi J. Keskitalo S. Varjosalo M. Verdam F.J. Rensen S.S. Reichl U. de Vos W.M. Rapp E. Martens L. Navigating through metaproteomics data: A logbook of database searching. Proteomics 2015 15 20 3439 3453 10.1002/pmic.201400560 25778831
    [Google Scholar]
  64. He Z. Gharaibeh R.Z. Newsome R.C. Pope J.L. Dougherty M.W. Tomkovich S. Pons B. Mirey G. Vignard J. Hendrixson D.R. Jobin C. Campylobacter jejuni promotes colorectal tumorigenesis through the action of cytolethal distending toxin. Gut 2019 68 2 289 300 10.1136/gutjnl‑2018‑317200 30377189
    [Google Scholar]
  65. Alharthi A. Alhazmi S. Alburae N. Bahieldin A. The human gut microbiome as a potential factor in autism spectrum disorder. Int. J. Mol. Sci. 2022 23 3 1363 10.3390/ijms23031363 35163286
    [Google Scholar]
  66. Rivett D.W. Bell T. Abundance determines the functional role of bacterial phylotypes in complex communities. Nat. Microbiol. 2018 3 7 767 772 10.1038/s41564‑018‑0180‑0 29915204
    [Google Scholar]
  67. Sommariva M. Le Noci V. Bianchi F. Camelliti S. Balsari A. Tagliabue E. Sfondrini L. The lung microbiota: role in maintaining pulmonary immune homeostasis and its implications in cancer development and therapy. Cell. Mol. Life Sci. 2020 77 14 2739 2749 10.1007/s00018‑020‑03452‑8 31974656
    [Google Scholar]
  68. Quince C. Walker A.W. Simpson J.T. Loman N.J. Segata N. Shotgun metagenomics, from sampling to analysis. Nat. Biotechnol. 2017 35 9 833 844 10.1038/nbt.3935 28898207
    [Google Scholar]
  69. Amann R. Fuchs B.M. Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nat. Rev. Microbiol. 2008 6 5 339 348 10.1038/nrmicro1888 18414500
    [Google Scholar]
  70. Salomon R. Kaczorowski D. Valdes-Mora F. Nordon R.E. Neild A. Farbehi N. Bartonicek N. Gallego-Ortega D. Droplet-based single cell RNAseq tools: a practical guide. Lab Chip 2019 19 10 1706 1727 10.1039/C8LC01239C 30997473
    [Google Scholar]
  71. Ghurye J.S. Cepeda-Espinoza V. Pop M. Focus: microbiome: metagenomic assembly: overview, challenges and applications. Yale J. Biol. Med. 2016 89 3 353 362 27698619
    [Google Scholar]
  72. Ojala T. Häkkinen A.E. Kankuri E. Kankainen M. Current concepts, advances, and challenges in deciphering the human microbiota with metatranscriptomics. Trends Genet. 2023 39 9 686 702 10.1016/j.tig.2023.05.004 37365103
    [Google Scholar]
  73. Rowland I. Gibson G. Heinken A. Scott K. Swann J. Thiele I. Tuohy K. Gut microbiota functions: metabolism of nutrients and other food components. Eur. J. Nutr. 2018 57 1 1 24 10.1007/s00394‑017‑1445‑8 28393285
    [Google Scholar]
  74. Bharti R. Grimm D.G. Current challenges and best-practice protocols for microbiome analysis. Brief. Bioinform. 2021 22 1 178 193 10.1093/bib/bbz155 31848574
    [Google Scholar]
  75. Ciernikova S. Sevcikova A. Stevurkova V. Mego M. Tumor microbiome – an integral part of the tumor microenvironment. Front. Oncol. 2022 12 1063100 10.3389/fonc.2022.1063100 36505811
    [Google Scholar]
  76. Kennel K.B. Greten F.R. Immune cell - produced ROS and their impact on tumor growth and metastasis. Redox Biol. 2021 42 101891 10.1016/j.redox.2021.101891 33583736
    [Google Scholar]
  77. Liu L. Jin R. Hao J. Zeng J. Yin D. Yi Y. Zhu M. Mandal A. Hua Y. Ng C.K. Egilmez N.K. Sauter E.R. Li B. Consumption of the fish oil high-fat diet uncouples obesity and mammary tumor growth through induction of reactive oxygen species in protumor macrophages. Cancer Res. 2020 80 12 2564 2574 10.1158/0008‑5472.CAN‑19‑3184 32213543
    [Google Scholar]
  78. Yu Z. Shao H. Shao X. Yu L. Gao Y. Ren Y. Liu F. Meng C. Ling P. Chen Q. In situ visualization of the cellular uptake and sub-cellular distribution of mussel oligosaccharides. J. Pharm. Anal. 2024 14 6 100932 10.1016/j.jpha.2023.12.022 39021382
    [Google Scholar]
  79. Xie Y. Xie F. Zhou X. Zhang L. Yang B. Huang J. Wang F. Yan H. Zeng L. Zhang L. Zhou F. Microbiota in tumors: from understanding to application. Adv. Sci. (Weinh.) 2022 9 21 2200470 10.1002/advs.202200470 35603968
    [Google Scholar]
  80. Magne F. Gotteland M. Gauthier L. Zazueta A. Pesoa S. Navarrete P. Balamurugan R. The firmicutes/bacteroidetes ratio: a relevant marker of gut dysbiosis in obese patients? Nutrients 2020 12 5 1474 10.3390/nu12051474 32438689
    [Google Scholar]
  81. Mbemi A. Khanna S. Njiki S. Yedjou C.G. Tchounwou P.B. Impact of gene-environment interactions on cancer development. Int. J. Environ. Res. Public Health 2020 17 21 8089 10.3390/ijerph17218089 33153024
    [Google Scholar]
  82. Narimatsu H. Yaguchi Y.T. The role of diet and nutrition in cancer: Prevention, treatment, and survival. Nutrients 2022 14 16 3329 10.3390/nu14163329 36014835
    [Google Scholar]
  83. Mittelman S.D. The role of diet in cancer prevention and chemotherapy efficacy. Annu. Rev. Nutr. 2020 40 1 273 297 10.1146/annurev‑nutr‑013120‑041149 32543948
    [Google Scholar]
  84. Ciernikova S. Sevcikova A. Stevurkova V. Mego M. Diet-driven microbiome changes and physical activity in cancer patients. Front. Nutr. 2023 10 1285516 10.3389/fnut.2023.1285516 38075222
    [Google Scholar]
  85. Shi B. Guo X. Liu H. Jiang K. Liu L. Yan N. Farag M.A. Liu L. Dissecting Maillard reaction production in fried foods: Formation mechanisms, sensory characteristic attribution, control strategy, and gut homeostasis regulation. Food Chem. 2024 438 137994 10.1016/j.foodchem.2023.137994 37984001
    [Google Scholar]
  86. Dinu M. Abbate R. Gensini G.F. Casini A. Sofi F. Vegetarian, vegan diets and multiple health outcomes: A systematic review with meta-analysis of observational studies. Crit. Rev. Food Sci. Nutr. 2017 57 17 3640 3649 10.1080/10408398.2016.1138447 26853923
    [Google Scholar]
  87. Papadimitriou N. Markozannes G. Kanellopoulou A. Critselis E. Alhardan S. Karafousia V. Kasimis J.C. Katsaraki C. Papadopoulou A. Zografou M. Lopez D.S. Chan D.S.M. Kyrgiou M. Ntzani E. Cross A.J. Marrone M.T. Platz E.A. Gunter M.J. Tsilidis K.K. An umbrella review of the evidence associating diet and cancer risk at 11 anatomical sites. Nat. Commun. 2021 12 1 4579 10.1038/s41467‑021‑24861‑8 34321471
    [Google Scholar]
  88. Fontana A. Panebianco C. Picchianti-Diamanti A. Laganà B. Cavalieri D. Potenza A. Pracella R. Binda E. Copetti M. Pazienza V. Gut microbiota profiles differ among individuals depending on their region of origin: An Italian pilot study. Int. J. Environ. Res. Public Health 2019 16 21 4065 10.3390/ijerph16214065 31652705
    [Google Scholar]
  89. Sun S. Wang H. Tsilimigras M.C.B. Howard A.G. Sha W. Zhang J. Su C. Wang Z. Du S. Sioda M. Fouladi F. Fodor A. Gordon-Larsen P. Zhang B. Does geographical variation confound the relationship between host factors and the human gut microbiota: a population-based study in China. BMJ Open 2020 10 11 e038163 10.1136/bmjopen‑2020‑038163 33444181
    [Google Scholar]
  90. Li J. Jia H. Cai X. Zhong H. Feng Q. Sunagawa S. Arumugam M. Kultima J.R. Prifti E. Nielsen T. Juncker A.S. Manichanh C. Chen B. Zhang W. Levenez F. Wang J. Xu X. Xiao L. Liang S. Zhang D. Zhang Z. Chen W. Zhao H. Al-Aama J.Y. Edris S. Yang H. Wang J. Hansen T. Nielsen H.B. Brunak S. Kristiansen K. Guarner F. Pedersen O. Doré J. Ehrlich S.D. Bork P. Wang J. MetaHIT Consortium MetaHIT Consortium An integrated catalog of reference genes in the human gut microbiome. Nat. Biotechnol. 2014 32 8 834 841 10.1038/nbt.2942 24997786
    [Google Scholar]
  91. Whisner C.M. Athena Aktipis C. The role of the microbiome in cancer initiation and progression: How microbes and cancer cells utilize excess energy and promote one another’s growth. Curr. Nutr. Rep. 2019 8 1 42 51 10.1007/s13668‑019‑0257‑2 30758778
    [Google Scholar]
  92. de Martel C. Ferlay J. Franceschi S. Vignat J. Bray F. Forman D. Plummer M. Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol. 2012 13 6 607 615 10.1016/S1470‑2045(12)70137‑7 22575588
    [Google Scholar]
  93. Vidal M.C. Anneberg T.J. Curé A.E. Althoff D.M. Segraves K.A. The variable effects of global change on insect mutualisms. Curr. Opin. Insect Sci. 2021 47 46 52 10.1016/j.cois.2021.03.002 33771734
    [Google Scholar]
  94. Cong J. Zhou P. Zhang R. Intestinal microbiota-derived short chain fatty acids in host health and disease. Nutrients 2022 14 9 1977 10.3390/nu14091977 35565943
    [Google Scholar]
  95. Portincasa P. Bonfrate L. Vacca M. De Angelis M. Farella I. Lanza E. Khalil M. Wang D.Q.H. Sperandio M. Di Ciaula A. Gut microbiota and short chain fatty acids: Implications in glucose homeostasis. Int. J. Mol. Sci. 2022 23 3 1105 10.3390/ijms23031105 35163038
    [Google Scholar]
  96. Kaźmierczak-Siedlecka K. Marano L. Merola E. Roviello F. Połom K. Sodium butyrate in both prevention and supportive treatment of colorectal cancer. Front. Cell. Infect. Microbiol. 2022 12 1023806 10.3389/fcimb.2022.1023806 36389140
    [Google Scholar]
  97. Coutzac C. Jouniaux J.M. Paci A. Schmidt J. Mallardo D. Seck A. Asvatourian V. Cassard L. Saulnier P. Lacroix L. Woerther P.L. Vozy A. Naigeon M. Nebot-Bral L. Desbois M. Simeone E. Mateus C. Boselli L. Grivel J. Soularue E. Lepage P. Carbonnel F. Ascierto P.A. Robert C. Chaput N. Systemic short chain fatty acids limit antitumor effect of CTLA-4 blockade in hosts with cancer. Nat. Commun. 2020 11 1 2168 10.1038/s41467‑020‑16079‑x 32358520
    [Google Scholar]
  98. Bell H.N. Rebernick R.J. Goyert J. Singhal R. Kuljanin M. Kerk S.A. Huang W. Das N.K. Andren A. Solanki S. Miller S.L. Todd P.K. Fearon E.R. Lyssiotis C.A. Gygi S.P. Mancias J.D. Shah Y.M. Reuterin in the healthy gut microbiome suppresses colorectal cancer growth through altering redox balance. Cancer Cell 2022 40 2 185 200.e6 10.1016/j.ccell.2021.12.001 34951957
    [Google Scholar]
  99. Ridlon J.M. Kang D.J. Hylemon P.B. Bajaj J.S. Bile acids and the gut microbiome. Curr. Opin. Gastroenterol. 2014 30 3 332 338 10.1097/MOG.0000000000000057 24625896
    [Google Scholar]
  100. Bernstein H. Bernstein C. Bile acids as carcinogens in the colon and at other sites in the gastrointestinal system. Exp. Biol. Med. (Maywood) 2023 248 1 79 89 10.1177/15353702221131858 36408538
    [Google Scholar]
  101. Doorakkers E. Lagergren J. Engstrand L. Brusselaers N. Eradication of Helicobacter pylori and gastric cancer: A systematic review and meta-analysis of cohort studies. J. Natl. Cancer Inst. 2016 108 9 djw132 10.1093/jnci/djw132 27416750
    [Google Scholar]
  102. Wu N. Yang X. Zhang R. Li J. Xiao X. Hu Y. Chen Y. Yang F. Lu N. Wang Z. Luan C. Liu Y. Wang B. Xiang C. Wang Y. Zhao F. Gao G.F. Wang S. Li L. Zhang H. Zhu B. Dysbiosis signature of fecal microbiota in colorectal cancer patients. Microb. Ecol. 2013 66 2 462 470 10.1007/s00248‑013‑0245‑9 23733170
    [Google Scholar]
  103. Chen S. Zhang P. Duan H. Wang J. Qiu Y. Cui Z. Yin Y. Wan D. Xie L. Gut microbiota in muscular atrophy development, progression, and treatment: New therapeutic targets and opportunities. Innovation 2023 4 5 100479 10.1016/j.xinn.2023.100479 37539440
    [Google Scholar]
  104. Hattori N. Ushijima T. Epigenetic impact of infection on carcinogenesis: mechanisms and applications. Genome Med. 2016 8 1 10 10.1186/s13073‑016‑0267‑2 26823082
    [Google Scholar]
  105. Gomaa E.Z. Human gut microbiota/microbiome in health and diseases: a review. Antonie van Leeuwenhoek 2020 113 12 2019 2040 10.1007/s10482‑020‑01474‑7 33136284
    [Google Scholar]
  106. Makki K. Deehan E.C. Walter J. Bäckhed F. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe 2018 23 6 705 715 10.1016/j.chom.2018.05.012 29902436
    [Google Scholar]
  107. Meng C. Bai C. Brown T.D. Hood L.E. Tian Q. Human gut microbiota and gastrointestinal cancer. Genomics Proteomics Bioinformatics 2018 16 1 33 49 10.1016/j.gpb.2017.06.002 29474889
    [Google Scholar]
  108. Gagnière J. Raisch J. Veziant J. Barnich N. Bonnet R. Buc E. Bringer M.A. Pezet D. Bonnet M. Gut microbiota imbalance and colorectal cancer. World J. Gastroenterol. 2016 22 2 501 518 10.3748/wjg.v22.i2.501 26811603
    [Google Scholar]
  109. Hu B. Elinav E. Huber S. Strowig T. Hao L. Hafemann A. Jin C. Wunderlich C. Wunderlich T. Eisenbarth S.C. Flavell R.A. Microbiota-induced activation of epithelial IL-6 signaling links inflammasome-driven inflammation with transmissible cancer. Proc. Natl. Acad. Sci. USA 2013 110 24 9862 9867 10.1073/pnas.1307575110 23696660
    [Google Scholar]
  110. Zhan Y. Chen P.J. Sadler W.D. Wang F. Poe S. Núñez G. Eaton K.A. Chen G.Y. Gut microbiota protects against gastrointestinal tumorigenesis caused by epithelial injury. Cancer Res. 2013 73 24 7199 7210 10.1158/0008‑5472.CAN‑13‑0827 24165160
    [Google Scholar]
  111. Siegel R.L. Miller K.D. Wagle N.S. Jemal A. Cancer statistics, 2023. CA Cancer J. Clin. 2023 73 1 17 48 10.3322/caac.21763 36633525
    [Google Scholar]
  112. Xuan C. Shamonki J.M. Chung A. DiNome M.L. Chung M. Sieling P.A. Lee D.J. Microbial dysbiosis is associated with human breast cancer. PLoS One 2014 9 1 e83744 10.1371/journal.pone.0083744 24421902
    [Google Scholar]
  113. Llovet J.M. Castet F. Heikenwalder M. Maini M.K. Mazzaferro V. Pinato D.J. Pikarsky E. Zhu A.X. Finn R.S. Immunotherapies for hepatocellular carcinoma. Nat. Rev. Clin. Oncol. 2022 19 3 151 172 10.1038/s41571‑021‑00573‑2 34764464
    [Google Scholar]
  114. Balogh J. Victor D. III Asham E.H. Burroughs S.G. Boktour M. Saharia A. Li X. Ghobrial M. Monsour H. Jr Hepatocellular carcinoma: a review. J. Hepatocell. Carcinoma 2016 3 41 53 10.2147/JHC.S61146 27785449
    [Google Scholar]
  115. Singh V. Yeoh B.S. Chassaing B. Xiao X. Saha P. Aguilera Olvera R. Lapek J.D. Jr Zhang L. Wang W.B. Hao S. Flythe M.D. Gonzalez D.J. Cani P.D. Conejo-Garcia J.R. Xiong N. Kennett M.J. Joe B. Patterson A.D. Gewirtz A.T. Vijay-Kumar M. Dysregulated microbial fermentation of soluble fiber induces cholestatic liver cancer. Cell 2018 175 3 679 694.e22 10.1016/j.cell.2018.09.004 30340040
    [Google Scholar]
  116. Ridlon J.M. Harris S.C. Bhowmik S. Kang D.J. Hylemon P.B. Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes 2016 7 1 22 39 10.1080/19490976.2015.1127483 26939849
    [Google Scholar]
  117. Malesza I.J. Malesza M. Walkowiak J. Mussin N. Walkowiak D. Aringazina R. Bartkowiak-Wieczorek J. Mądry E. High-fat, western-style diet, systemic inflammation, and gut microbiota: A narrative review. Cells 2021 10 11 3164 10.3390/cells10113164 34831387
    [Google Scholar]
  118. Radu M.R. Prădatu A. Duică F. Micu R. Creţoiu S.M. Suciu N. Creţoiu D. Varlas V.N. Rădoi V.E. Ovarian cancer: Biomarkers and targeted therapy. Biomedicines 2021 9 6 693 10.3390/biomedicines9060693 34207450
    [Google Scholar]
  119. Charkhchi P. Cybulski C. Gronwald J. Wong F.O. Narod S.A. Akbari M.R. CA125 and ovarian cancer: A comprehensive review. Cancers (Basel) 2020 12 12 3730 10.3390/cancers12123730 33322519
    [Google Scholar]
  120. Zhang S. Chen D.C. Facing a new challenge. Chin. Med. J. (Engl.) 2019 132 10 1135 1138 10.1097/CM9.0000000000000245 30973451
    [Google Scholar]
  121. Perales-Puchalt A. Perez-Sanz J. Payne K.K. Svoronos N. Allegrezza M.J. Chaurio R.A. Anadon C. Calmette J. Biswas S. Mine J.A. Costich T.L. Nickels L. Wickramasinghe J. Rutkowski M.R. Conejo-Garcia J.R. Frontline Science: Microbiota reconstitution restores intestinal integrity after cisplatin therapy. J. Leukoc. Biol. 2018 103 5 799 805 10.1002/JLB.5HI1117‑446RR 29537705
    [Google Scholar]
  122. Wang Z. Wang Q. Zhao J. Gong L. Zhang Y. Wang X. Yuan Z. Altered diversity and composition of the gut microbiome in patients with cervical cancer. AMB Express 2019 9 1 40 10.1186/s13568‑019‑0763‑z 30904962
    [Google Scholar]
  123. Siddiqui R. Makhlouf Z. Alharbi A.M. Alfahemi H. Khan N.A. The gut microbiome and female health. Biology (Basel) 2022 11 11 1683 10.3390/biology11111683 36421397
    [Google Scholar]
  124. Yu L.X. Schwabe R.F. The gut microbiome and liver cancer: mechanisms and clinical translation. Nat. Rev. Gastroenterol. Hepatol. 2017 14 9 527 539 10.1038/nrgastro.2017.72 28676707
    [Google Scholar]
  125. Fan X. Alekseyenko A.V. Wu J. Peters B.A. Jacobs E.J. Gapstur S.M. Purdue M.P. Abnet C.C. Stolzenberg-Solomon R. Miller G. Ravel J. Hayes R.B. Ahn J. Human oral microbiome and prospective risk for pancreatic cancer: a population-based nested case-control study. Gut 2018 67 1 120 127 10.1136/gutjnl‑2016‑312580 27742762
    [Google Scholar]
  126. Plummer M. Franceschi S. Helicobacter pylori and gastric cancer. IARC Working Group Reports. International Agency for Research on Cancer 2015
    [Google Scholar]
  127. Arthur J.C. Perez-Chanona E. Mühlbauer M. Tomkovich S. Uronis J.M. Fan T.J. Campbell B.J. Abujamel T. Dogan B. Rogers A.B. Rhodes J.M. Stintzi A. Simpson K.W. Hansen J.J. Keku T.O. Fodor A.A. Jobin C. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 2012 338 6103 120 123 10.1126/science.1224820 22903521
    [Google Scholar]
  128. Cheng Y. Ling Z. Li L. The intestinal microbiota and colorectal cancer. Front. Immunol. 2020 11 615056 10.3389/fimmu.2020.615056 33329610
    [Google Scholar]
  129. Baruch E.N. Youngster I. Ben-Betzalel G. Ortenberg R. Lahat A. Katz L. Adler K. Dick-Necula D. Raskin S. Bloch N. Rotin D. Anafi L. Avivi C. Melnichenko J. Steinberg-Silman Y. Mamtani R. Harati H. Asher N. Shapira-Frommer R. Brosh-Nissimov T. Eshet Y. Ben-Simon S. Ziv O. Khan M.A.W. Amit M. Ajami N.J. Barshack I. Schachter J. Wargo J.A. Koren O. Markel G. Boursi B. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science 2021 371 6529 602 609 10.1126/science.abb5920 33303685
    [Google Scholar]
  130. Kwa M. The intestinal microbiome and estrogen receptor-positive female breast cancer. Breast Cancer Res. Treat. 2016 160 2 271 282 26995283
    [Google Scholar]
  131. Peters B.A. Wu J. Pei Z. Yang L. Purdue M.P. Freedman N.D. Jacobs E.J. Gapstur S.M. Hayes R.B. Ahn J. Oral microbiome composition reflects prospective risk for esophageal cancers. Cancer Res. 2017 77 23 6777 6787 10.1158/0008‑5472.CAN‑17‑1296 29196415
    [Google Scholar]
  132. Schmidt B.L. Kuczynski J. Bhattacharya A. Huey B. Corby P.M. Queiroz E.L.S. Nightingale K. Kerr A.R. DeLacure M.D. Veeramachaneni R. Olshen A.B. Albertson D.G. Changes in abundance of oral microbiota associated with oral cancer. PLoS One 2014 9 6 e98741 10.1371/journal.pone.0098741 24887397
    [Google Scholar]
  133. Bučević Popović V. Šitum M. Chow C.E.T. Chan L.S. Roje B. Terzić J. The urinary microbiome associated with bladder cancer. Sci. Rep. 2018 8 1 12157 10.1038/s41598‑018‑29054‑w 30108246
    [Google Scholar]
  134. Routy B. Le Chatelier E. Derosa L. Duong C.P.M. Alou M.T. Daillère R. Fluckiger A. Messaoudene M. Rauber C. Roberti M.P. Fidelle M. Flament C. Poirier-Colame V. Opolon P. Klein C. Iribarren K. Mondragón L. Jacquelot N. Qu B. Ferrere G. Clémenson C. Mezquita L. Masip J.R. Naltet C. Brosseau S. Kaderbhai C. Richard C. Rizvi H. Levenez F. Galleron N. Quinquis B. Pons N. Ryffel B. Minard-Colin V. Gonin P. Soria J.C. Deutsch E. Loriot Y. Ghiringhelli F. Zalcman G. Goldwasser F. Escudier B. Hellmann M.D. Eggermont A. Raoult D. Albiges L. Kroemer G. Zitvogel L. Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors. Science 2018 359 6371 91 97 10.1126/science.aan3706 29097494
    [Google Scholar]
  135. Golombos D.M. The role of gut microbiome in prostate cancer: implications for prevention and treatment. Prostate Cancer Prostatic Dis. 2018 21 3 356 363
    [Google Scholar]
  136. Oh H.Y. The vaginal microbiota associated with cervical intraepithelial neoplasia and cervical cancer. PLoS One 2015 10 2
    [Google Scholar]
  137. Banerjee S. Distinct microbial signatures associated with different breast cancer types. Cancer Res. 2017 77 11 2905 2916
    [Google Scholar]
  138. Chen D. Jin D. Huang S. Wu J. Xu M. Liu T. Dong W. Liu X. Wang S. Zhong W. Liu Y. Jiang R. Piao M. Wang B. Cao H. Clostridium butyricum, a butyrate-producing probiotic, inhibits intestinal tumor development through modulating Wnt signaling and gut microbiota. Cancer Lett. 2020 469 456 467 10.1016/j.canlet.2019.11.019 31734354
    [Google Scholar]
  139. Shi X. Li Z. Lin W. Shi W. Hu R. Chen G. Li X. Li X. Zhang S. Altered intestinal microbial flora and metabolism in patients with idiopathic membranous nephropathy. Am. J. Nephrol. 2023 54 11-12 451 470 10.1159/000533537 37793354
    [Google Scholar]
  140. Consortium H.M.P. Human Microbiome Project Consortium Structure, function and diversity of the healthy human microbiome. Nature 2012 486 7402 207 214 10.1038/nature11234 22699609
    [Google Scholar]
  141. Jandhyala S.M. Talukdar R. Subramanyam C. Vuyyuru H. Sasikala M. Nageshwar Reddy D. Role of the normal gut microbiota. World J. Gastroenterol. 2015 21 29 8787 8803 10.3748/wjg.v21.i29.8787 26269668
    [Google Scholar]
  142. Hatakeyama M. Structure and function of <i>Helicobacter pylori</i> CagA, the first-identified bacterial protein involved in human cancer. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci. 2017 93 4 196 219 10.2183/pjab.93.013 28413197
    [Google Scholar]
  143. Vivarelli S. Salemi R. Candido S. Falzone L. Santagati M. Stefani S. Torino F. Banna G.L. Tonini G. Libra M. Gut microbiota and cancer: from pathogenesis to therapy. Cancers (Basel) 2019 11 1 38 10.3390/cancers11010038 30609850
    [Google Scholar]
  144. Bergounioux J. Elisee R. Prunier A.L. Donnadieu F. Sperandio B. Sansonetti P. Arbibe L. Calpain activation by the Shigella flexneri effector VirA regulates key steps in the formation and life of the bacterium’s epithelial niche. Cell Host Microbe 2012 11 3 240 252 10.1016/j.chom.2012.01.013 22423964
    [Google Scholar]
  145. Buti L. Spooner E. Van der Veen A.G. Rappuoli R. Covacci A. Ploegh H.L. Helicobacter pylori cytotoxin-associated gene A (CagA) subverts the apoptosis-stimulating protein of p53 (ASPP2) tumor suppressor pathway of the host. Proc. Natl. Acad. Sci. USA 2011 108 22 9238 9243 10.1073/pnas.1106200108 21562218
    [Google Scholar]
  146. Sah D.K. Arjunan A. Lee B. Jung Y.D. Reactive Oxygen Species and H. pylori Infection: A Comprehensive Review of Their Roles in Gastric Cancer Development. Antioxidants 2023 12 9 1712 10.3390/antiox12091712 37760015
    [Google Scholar]
  147. Wada Y. Takemura K. Tummala P. Uchida K. Kitagaki K. Furukawa A. Ishige Y. Ito T. Hara Y. Suzuki T. Mimuro H. Board P.G. Eishi Y. Helicobacter pylori induces somatic mutations inTP 53 via overexpression of CHAC 1 in infected gastric epithelial cells. FEBS Open Bio 2018 8 4 671 679 10.1002/2211‑5463.12402 29632819
    [Google Scholar]
  148. Chaturvedi R. Asim M. Romero-Gallo J. Barry D.P. Hoge S. de Sablet T. Delgado A.G. Wroblewski L.E. Piazuelo M.B. Yan F. Israel D.A. Casero R.A. Jr Correa P. Gobert A.P. Polk D.B. Peek R.M. Jr Wilson K.T. Spermine oxidase mediates the gastric cancer risk associated with Helicobacter pylori CagA. Gastroenterology 2011 141 5 1696 1708.e2, 2 10.1053/j.gastro.2011.07.045 21839041
    [Google Scholar]
  149. Wardman J.F. Bains R.K. Rahfeld P. Withers S.G. Carbohydrate-active enzymes (CAZymes) in the gut microbiome. Nat. Rev. Microbiol. 2022 20 9 542 556 10.1038/s41579‑022‑00712‑1 35347288
    [Google Scholar]
  150. Spiljar M. Merkler D. Trajkovski M. The immune system bridges the gut microbiota with systemic energy homeostasis: focus on TLRs, mucosal barrier, and SCFAs. Front. Immunol. 2017 8 1353 10.3389/fimmu.2017.01353 29163467
    [Google Scholar]
  151. Cheng W.Y. Wu C.Y. Yu J. The role of gut microbiota in cancer treatment: friend or foe? Gut 2020 69 10 1867 1876 10.1136/gutjnl‑2020‑321153 32759302
    [Google Scholar]
  152. Ghaly S. Kaakoush N.O. Hart P.H. Effects of UVR exposure on the gut microbiota of mice and humans. Photochem. Photobiol. Sci. 2020 19 1 20 28 10.1039/c9pp00443b 31930250
    [Google Scholar]
  153. Viaud S. Saccheri F. Mignot G. Yamazaki T. Daillère R. Hannani D. Enot D.P. Pfirschke C. Engblom C. Pittet M.J. Schlitzer A. Ginhoux F. Apetoh L. Chachaty E. Woerther P.L. Eberl G. Bérard M. Ecobichon C. Clermont D. Bizet C. Gaboriau-Routhiau V. Cerf-Bensussan N. Opolon P. Yessaad N. Vivier E. Ryffel B. Elson C.O. Doré J. Kroemer G. Lepage P. Boneca I.G. Ghiringhelli F. Zitvogel L. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 2013 342 6161 971 976 10.1126/science.1240537 24264990
    [Google Scholar]
  154. Nekouian R. Rasouli B.S. Ghadimi-Darsajini A. Iragian G.R. In vitro activity of probiotic Lactobacillus reuteri against gastric cancer progression by downregulation of urokinase plasminogen activator/urokinase plasminogen activator receptor gene expression. J. Cancer Res. Ther. 2017 13 2 246 251 10.4103/0973‑1482.204897 28643742
    [Google Scholar]
  155. Shamekhi S. Lotfi H. Abdolalizadeh J. Bonabi E. Zarghami N. An overview of yeast probiotics as cancer biotherapeutics: possible clinical application in colorectal cancer. Clin. Transl. Oncol. 2020 22 8 1227 1239 10.1007/s12094‑019‑02270‑0 31919760
    [Google Scholar]
  156. Kumar M. Kumar A. Nagpal R. Mohania D. Behare P. Verma V. Kumar P. Poddar D. Aggarwal P.K. Henry C.J.K. Jain S. Yadav H. Cancer-preventing attributes of probiotics: an update. Int. J. Food Sci. Nutr. 2010 61 5 473 496 10.3109/09637480903455971 20187714
    [Google Scholar]
  157. Rawi M.H. Zaman S.A. Pa’ee K.F. Leong S.S. Sarbini S.R. Prebiotics metabolism by gut-isolated probiotics. J. Food Sci. Technol. 2020 57 8 2786 2799 10.1007/s13197‑020‑04244‑5 32624588
    [Google Scholar]
  158. Feng J.R. Wang F. Qiu X. McFarland L.V. Chen P.F. Zhou R. Liu J. Zhao Q. Li J. Efficacy and safety of probiotic-supplemented triple therapy for eradication of Helicobacter pylori in children: a systematic review and network meta-analysis. Eur. J. Clin. Pharmacol. 2017 73 10 1199 1208 10.1007/s00228‑017‑2291‑6 28681177
    [Google Scholar]
  159. Sýkora J. Valecková K. Amlerová J. Siala K. Dedek P. Watkins S. Varvarovská J. Stozický F. Pazdiora P. Schwarz J. Effects of a specially designed fermented milk product containing probiotic Lactobacillus casei DN-114 001 and the eradication of H. pylori in children: a prospective randomized double-blind study. J. Clin. Gastroenterol. 2005 39 8 692 698 10.1097/01.mcg.0000173855.77191.44 16082279
    [Google Scholar]
  160. Deguchi R. Nakaminami H. Rimbara E. Noguchi N. Sasatsu M. Suzuki T. Matsushima M. Koike J. Igarashi M. Ozawa H. Fukuda R. Takagi A. Effect of pretreatment with Lactobacillus gasseri OLL2716 on first‐line Helicobacter pylori eradication therapy. J. Gastroenterol. Hepatol. 2012 27 5 888 892 10.1111/j.1440‑1746.2011.06985.x 22098133
    [Google Scholar]
  161. Wang C. Gao Y. Zhang Z. Chi Q. Liu Y. Yang L. Xu K. Safflower yellow alleviates osteoarthritis and prevents inflammation by inhibiting PGE2 release and regulating NF-κB/SIRT1/AMPK signaling pathways. Phytomedicine 2020 78 153305 10.1016/j.phymed.2020.153305 32871523
    [Google Scholar]
  162. Zhou Y. Liu Z. Chen T. Gut microbiota: A promising milestone in enhancing the efficacy of PD1/PD-L1 blockade therapy. Front. Oncol. 2022 12 847350 10.3389/fonc.2022.847350 35252014
    [Google Scholar]
  163. Yi M. Yu S. Qin S. Liu Q. Xu H. Zhao W. Chu Q. Wu K. Gut microbiome modulates efficacy of immune checkpoint inhibitors. J. Hematol. Oncol. 2018 11 1 47 10.1186/s13045‑018‑0592‑6 29580257
    [Google Scholar]
  164. Han Y. Liu D. Li L. PD-1/PD-L1 pathway: current researches in cancer. Am. J. Cancer Res. 2020 10 3 727 742 32266087
    [Google Scholar]
  165. Sivan A. Corrales L. Hubert N. Williams J.B. Aquino-Michaels K. Earley Z.M. Benyamin F.W. Man Lei Y. Jabri B. Alegre M.L. Chang E.B. Gajewski T.F. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti–PD-L1 efficacy. Science 2015 350 6264 1084 1089 10.1126/science.aac4255 26541606
    [Google Scholar]
  166. Matson V. Fessler J. Bao R. Chongsuwat T. Zha Y. Alegre M.L. Luke J.J. Gajewski T.F. The commensal microbiome is associated with anti–PD-1 efficacy in metastatic melanoma patients. Science 2018 359 6371 104 108 10.1126/science.aao3290 29302014
    [Google Scholar]
  167. Lee K.A. Luong M.K. Shaw H. Nathan P. Bataille V. Spector T.D. The gut microbiome: what the oncologist ought to know. Br. J. Cancer 2021 125 9 1197 1209 10.1038/s41416‑021‑01467‑x 34262150
    [Google Scholar]
  168. Gopalakrishnan V. Spencer C.N. Nezi L. Reuben A. Andrews M.C. Karpinets T.V. Prieto P.A. Vicente D. Hoffman K. Wei S.C. Cogdill A.P. Zhao L. Hudgens C.W. Hutchinson D.S. Manzo T. Petaccia de Macedo M. Cotechini T. Kumar T. Chen W.S. Reddy S.M. Szczepaniak Sloane R. Galloway-Pena J. Jiang H. Chen P.L. Shpall E.J. Rezvani K. Alousi A.M. Chemaly R.F. Shelburne S. Vence L.M. Okhuysen P.C. Jensen V.B. Swennes A.G. McAllister F. Marcelo Riquelme Sanchez E. Zhang Y. Le Chatelier E. Zitvogel L. Pons N. Austin-Breneman J.L. Haydu L.E. Burton E.M. Gardner J.M. Sirmans E. Hu J. Lazar A.J. Tsujikawa T. Diab A. Tawbi H. Glitza I.C. Hwu W.J. Patel S.P. Woodman S.E. Amaria R.N. Davies M.A. Gershenwald J.E. Hwu P. Lee J.E. Zhang J. Coussens L.M. Cooper Z.A. Futreal P.A. Daniel C.R. Ajami N.J. Petrosino J.F. Tetzlaff M.T. Sharma P. Allison J.P. Jenq R.R. Wargo J.A. Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients. Science 2018 359 6371 97 103 10.1126/science.aan4236 29097493
    [Google Scholar]
  169. Fong W. Li Q. Yu J. Gut microbiota modulation: a novel strategy for prevention and treatment of colorectal cancer. Oncogene 2020 39 26 4925 4943 10.1038/s41388‑020‑1341‑1 32514151
    [Google Scholar]
  170. Canfora E.E. Meex R.C.R. Venema K. Blaak E.E. Gut microbial metabolites in obesity, NAFLD and T2DM. Nat. Rev. Endocrinol. 2019 15 5 261 273 10.1038/s41574‑019‑0156‑z 30670819
    [Google Scholar]
  171. David L.A. Maurice C.F. Carmody R.N. Gootenberg D.B. Button J.E. Wolfe B.E. Ling A.V. Devlin A.S. Varma Y. Fischbach M.A. Biddinger S.B. Dutton R.J. Turnbaugh P.J. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014 505 7484 559 563 10.1038/nature12820 24336217
    [Google Scholar]
  172. Ramirez-Farias C. Slezak K. Fuller Z. Duncan A. Holtrop G. Louis P. Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii. Br. J. Nutr. 2009 101 4 541 550 10.1017/S0007114508019880 18590586
    [Google Scholar]
  173. Ting N.L.N. Lau H.C.H. Yu J. Cancer pharmacomicrobiomics: targeting microbiota to optimise cancer therapy outcomes. Gut 2022 71 7 1412 1425 10.1136/gutjnl‑2021‑326264 35277453
    [Google Scholar]
  174. Mao J. Wang D. Long J. Yang X. Lin J. Song Y. Xie F. Xun Z. Wang Y. Wang Y. Li Y. Sun H. Xue J. Song Y. Zuo B. Zhang J. Bian J. Zhang T. Yang X. Zhang L. Sang X. Zhao H. Gut microbiome is associated with the clinical response to anti-PD-1 based immunotherapy in hepatobiliary cancers. J. Immunother. Cancer 2021 9 12 e003334 10.1136/jitc‑2021‑003334 34873013
    [Google Scholar]
  175. Kang X. Lau H.C.H. Yu J. Modulating gut microbiome in cancer immunotherapy: Harnessing microbes to enhance treatment efficacy. Cell Rep. Med. 2024 5 4 101478 10.1016/j.xcrm.2024.101478 38631285
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010353600241109132441
Loading
/content/journals/cpb/10.2174/0113892010353600241109132441
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: microbiota ; 16S rRNA sequencing ; probiotics ; metagenomics ; Chemotherapy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test