Skip to content
2000
image of Discovery of New Natural Phytocompounds: The Modern Tools to Fight Against Traditional Bacterial Pathogens

Abstract

Ongoing competition between disease-causing bacteria and human hosts has resulted in the discovery of a wide array of antibacterials. The advent of antibacterials ushered in a promising period in the realm of microbiology, but its brilliance was short-lived and soon diminished. The excessive and incorrect use of antibacterials results in limited selection pressure on the targeted microorganisms, which in turn promotes the evolution of microbes instead of killing them. Consequently, antibacterial resistance has developed and given rise to strains that are resistant to many drugs, leading to a significant increase in mortality rates. The current review delves into the potential of novel natural phytocompounds as innovative solutions to combat these potential bacterial threats. The review begins by showcasing the modus operandi of conventional antibacterial drugs followed by addressing the mechanisms of resistance to antibacterial agents, which have significantly lowered the efficacy of conventional treatments. In contrast, the review explores the mechanism of antibacterial activity of plant-derived phytochemicals, unraveling the various ways in which natural compounds interact with bacterial targets. Furthermore, the review examines the synergism between plant phytochemicals and conventional antibiotics, showcasing the efficacy of this combinatorial approach in overcoming resistance. The review concludes by summarizing the current research and offering valuable insights into challenges in the use of plant phytochemicals as antibacterial therapeutics. This comprehensive overview reinforces the promise of incorporating modern scientific tools with traditional phytotherapy to develop effective strategies against resistant bacterial pathogens.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010344474241011070242
2024-10-21
2024-11-20
Loading full text...

Full text loading...

References

  1. WHO publishes list of bacteria for which new antibiotics are urgently needed. 2017 Available from: https://who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed
  2. Wright G.D. Molecular mechanisms of antibiotic resistance. Chem. Commun. (Camb.) 2011 47 14 4055 4061 10.1039/c0cc05111j 21286630
    [Google Scholar]
  3. Lin J. Nishino K. Roberts M.C. Tolmasky M. Aminov R.I. Zhang L. Mechanisms of antibiotic resistance. Front. Microbiol. 2015 6 34 10.3389/fmicb.2015.00034 25699027
    [Google Scholar]
  4. Dugassa J. Shukuri N. Review on antibiotic resistance and its mechanism of development. J Health Med Nursing. 2017 1 3 1 7
    [Google Scholar]
  5. Darby E.M. Trampari E. Siasat P. Gaya M.S. Alav I. Webber M.A. Blair J.M.A. Molecular mechanisms of antibiotic resistance revisited. Nat. Rev. Microbiol. 2023 21 5 280 295 10.1038/s41579‑022‑00820‑y 36411397
    [Google Scholar]
  6. Peterson E. Kaur P. Antibiotic resistance mechanisms in bacteria: relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Front. Microbiol. 2018 9 2928 10.3389/fmicb.2018.02928 30555448
    [Google Scholar]
  7. von Wintersdorff C.J.H. Penders J. van Niekerk J.M. Mills N.D. Majumder S. van Alphen L.B. Savelkoul P.H.M. Wolffs P.F.G. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Front. Microbiol. 2016 7 173 10.3389/fmicb.2016.00173 26925045
    [Google Scholar]
  8. Partridge S.R. Kwong S.M. Firth N. Jensen S.O. Mobile genetic elements associated with antimicrobial resistance. Clin. Microbiol. Rev. 2018 31 4 e00088-17 10.1128/CMR.00088‑17 30068738
    [Google Scholar]
  9. El Salabi A. Walsh T.R. Chouchani C. Extended spectrum β-lactamases, carbapenemases and mobile genetic elements responsible for antibiotics resistance in Gram-negative bacteria. Crit. Rev. Microbiol. 2013 39 2 113 122 10.3109/1040841X.2012.691870 22667455
    [Google Scholar]
  10. Che Y. Yang Y. Xu X. Břinda K. Polz M.F. Hanage W.P. Zhang T. Conjugative plasmids interact with insertion sequences to shape the horizontal transfer of antimicrobial resistance genes. Proc. Natl. Acad. Sci. USA 2021 118 6 e2008731118 10.1073/pnas.2008731118 33526659
    [Google Scholar]
  11. Perry J.A. Wright G.D. The antibiotic resistance “mobilome”: searching for the link between environment and clinic. Front. Microbiol. 2013 4 138 10.3389/fmicb.2013.00138 23755047
    [Google Scholar]
  12. Yang Q. Gao Y. Ke J. Show P.L. Ge Y. Liu Y. Guo R. Chen J. Antibiotics: An overview on the environmental occurrence, toxicity, degradation, and removal methods. Bioengineered 2021 12 1 7376 7416 10.1080/21655979.2021.1974657 34612807
    [Google Scholar]
  13. Kraemer S.A. Ramachandran A. Perron G.G. Antibiotic pollution in the environment: From microbial ecology to public policy. Microorganisms 2019 7 6 180 10.3390/microorganisms7060180 31234491
    [Google Scholar]
  14. Manyi-Loh C. Mamphweli S. Meyer E. Okoh A. Antibiotic use in agriculture and its consequential resistance in environmental sources: Potential public health implications. Molecules 2018 23 4 795 10.3390/molecules23040795 29601469
    [Google Scholar]
  15. Cycoń M. Mrozik A. Piotrowska-Seget Z. Antibiotics in the soil environment—degradation and their impact on microbial activity and diversity. Front. Microbiol. 2019 10 338 10.3389/fmicb.2019.00338 30906284
    [Google Scholar]
  16. Samreen Ahmad I. Malak H.A. Abulreesh H.H. Environmental antimicrobial resistance and its drivers: A potential threat to public health. J. Glob. Antimicrob. Resist. 2021 27 101 111 10.1016/j.jgar.2021.08.001 34454098
    [Google Scholar]
  17. Kabera J.N. Semana E. Mussa A.R. He X. Plant secondary metabolites: Biosynthesis, classification, function and pharmacological properties. J. Pharm. Pharmacol. 2014 2 7 377 392
    [Google Scholar]
  18. Rahman M.M. Rahaman M.S. Islam M.R. Hossain M.E. Mannan Mithi F. Ahmed M. Saldías M. Akkol E.K. Sobarzo-Sánchez E. Multifunctional therapeutic potential of phytocomplexes and natural extracts for antimicrobial properties. Antibiotics (Basel) 2021 10 9 1076 10.3390/antibiotics10091076 34572660
    [Google Scholar]
  19. Bilal M. Rasheed T. Iqbal H.M.N. Hu H. Wang W. Zhang X. Macromolecular agents with antimicrobial potentialities: A drive to combat antimicrobial resistance. Int. J. Biol. Macromol. 2017 103 554 574 10.1016/j.ijbiomac.2017.05.071 28528940
    [Google Scholar]
  20. Barbieri R. Coppo E. Marchese A. Daglia M. Sobarzo-Sánchez E. Nabavi S.F. Nabavi S.M. Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity. Microbiol. Res. 2017 196 44 68 10.1016/j.micres.2016.12.003 28164790
    [Google Scholar]
  21. Ayaz M. Ullah F. Sadiq A. Ullah F. Ovais M. Ahmed J. Devkota H.P. Synergistic interactions of phytochemicals with antimicrobial agents: Potential strategy to counteract drug resistance. Chem. Biol. Interact. 2019 308 294 303 10.1016/j.cbi.2019.05.050 31158333
    [Google Scholar]
  22. Phitaktim S. Chomnawang M. Sirichaiwetchakoon K. Dunkhunthod B. Hobbs G. Eumkeb G. Synergism and the mechanism of action of the combination of α-mangostin isolated from Garcinia mangostana L. and oxacillin against an oxacillin-resistant Staphylococcus saprophyticus. BMC Microbiol. 2016 16 1 195 10.1186/s12866‑016‑0814‑4 27566110
    [Google Scholar]
  23. Al-hebshi N. Al-haroni M. Skaug N. In vitro antimicrobial and resistance-modifying activities of aqueous crude khat extracts against oral microorganisms. Arch. Oral Biol. 2006 51 3 183 188 10.1016/j.archoralbio.2005.08.001 16248981
    [Google Scholar]
  24. Gibbons S. Oluwatuyi M. Veitch N.C. Gray A.I. Bacterial resistance modifying agents from Lycopus europaeus. Phytochemistry 2003 62 1 83 87 10.1016/S0031‑9422(02)00446‑6 12475623
    [Google Scholar]
  25. Abreu A.C. McBain A.J. Simões M. Plants as sources of new antimicrobials and resistance-modifying agents. Nat. Prod. Rep. 2012 29 9 1007 1021 10.1039/c2np20035j 22786554
    [Google Scholar]
  26. Vaou N. Stavropoulou E. Voidarou C. Tsigalou C. Bezirtzoglou E. Towards advances in medicinal plant antimicrobial activity: A review study on challenges and future perspectives. Microorganisms 2021 9 10 2041 10.3390/microorganisms9102041 34683362
    [Google Scholar]
  27. Schneider T. Sahl H.G. An oldie but a goodie – cell wall biosynthesis as antibiotic target pathway. Int. J. Med. Microbiol. 2010 300 2-3 161 169 10.1016/j.ijmm.2009.10.005 20005776
    [Google Scholar]
  28. Walsh C. Where will new antibiotics come from? Nat. Rev. Microbiol. 2003 1 1 65 70 10.1038/nrmicro727 15040181
    [Google Scholar]
  29. Ayoub Moubareck C. Polymyxins and bacterial membranes: A review of antibacterial activity and mechanisms of resistance. Membranes (Basel) 2020 10 8 181 10.3390/membranes10080181 32784516
    [Google Scholar]
  30. Naeem A. Badshah S. Muska M. Ahmad N. Khan K. The current case of quinolones: synthetic approaches and antibacterial activity. Molecules 2016 21 4 268 10.3390/molecules21040268 27043501
    [Google Scholar]
  31. Gacto M. Madrid M. Franco A. Soto T. Cansado J. Vicente-Soler J. The cornerstone of nucleic acid-affecting antibiotics in bacteria. Antimicrobial Compounds: Current Strategies and New Alternatives Springer 2017 149 175 10.1007/978‑3‑642‑40444‑3_6
    [Google Scholar]
  32. Drlica K. Zhao X. DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol. Mol. Biol. Rev. 1997 61 3 377 392 9293187
    [Google Scholar]
  33. Schweitzer B.I. Dicker A.P. Bertino J.R. Dihydrofolate reductase as a therapeutic target. FASEB J. 1990 4 8 2441 2452 10.1096/fasebj.4.8.2185970 2185970
    [Google Scholar]
  34. Estrada A. Wright D.L. Anderson A.C. Antibacterial antifolates: From development through resistance to the next generation. Cold Spring Harb. Perspect. Med. 2016 6 8 a028324 10.1101/cshperspect.a028324 27352799
    [Google Scholar]
  35. Goldstein E.J.C. Proctor R.A. Role of folate antagonists in the treatment of methicillin-resistant Staphylococcus aureus infection. Clin. Infect. Dis. 2008 46 4 584 593 10.1086/525536 18197761
    [Google Scholar]
  36. Foster T.J. Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. FEMS Microbiol. Rev. 2017 41 3 430 449 10.1093/femsre/fux007 28419231
    [Google Scholar]
  37. Li K. Wang X. Yang S. Gu J. Deng J. Zhang X.E. Anti-folates potentiate bactericidal effects of other antimicrobial agents. J. Antibiot. (Tokyo) 2017 70 3 285 291 10.1038/ja.2016.159 28074051
    [Google Scholar]
  38. Vestergaard M. Nøhr-Meldgaard K. Bojer M.S. Krogsgård Nielsen C. Meyer R.L. Slavetinsky C. Peschel A. Ingmer H. Inhibition of the ATP synthase eliminates the intrinsic resistance of Staphylococcus aureus towards polymyxins. MBio 2017 8 5 e01114-17 10.1128/mBio.01114‑17 28874470
    [Google Scholar]
  39. Ferri M. Ranucci E. Romagnoli P. Giaccone V. Antimicrobial resistance: A global emerging threat to public health systems. Crit. Rev. Food Sci. Nutr. 2017 57 13 2857 2876 10.1080/10408398.2015.1077192 26464037
    [Google Scholar]
  40. Abdi S.N. Ghotaslou R. Ganbarov K. Mobed A. Tanomand A. Yousefi M. Asgharzadeh M. Kafil H.S. Acinetobacter baumannii efflux pumps and antibiotic resistance. Infect. Drug Resist. 2020 13 423 434 10.2147/IDR.S228089 32104014
    [Google Scholar]
  41. Lomovskaya O. Bostian K.A. Practical applications and feasibility of efflux pump inhibitors in the clinic—A vision for applied use. Biochem. Pharmacol. 2006 71 7 910 918 10.1016/j.bcp.2005.12.008 16427026
    [Google Scholar]
  42. Ghosh J. Palit P. Maity S. Dwivedi V. Das J. Sinha C. Chattopadhyay D. Traditional medicine in the management of microbial infections as antimicrobials: Pros and cons. Antibiotics - Therapeutic Spectrum and Limitations Academic Press 2023 391 434 10.1016/B978‑0‑323‑95388‑7.00020‑6.
    [Google Scholar]
  43. Vergalli J. Bodrenko I.V. Masi M. Moynié L. Acosta-Gutiérrez S. Naismith J.H. Davin-Regli A. Ceccarelli M. van den Berg B. Winterhalter M. Pagès J.M. Porins and small-molecule translocation across the outer membrane of Gram-negative bacteria. Nat. Rev. Microbiol. 2020 18 3 164 176 10.1038/s41579‑019‑0294‑2 31792365
    [Google Scholar]
  44. Zavascki A.P. Carvalhaes C.G. Picão R.C. Gales A.C. Multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii : Resistance mechanisms and implications for therapy. Expert Rev. Anti Infect. Ther. 2010 8 1 71 93 10.1586/eri.09.108 20014903
    [Google Scholar]
  45. Iyer R. Moussa S.H. Durand-Réville T.F. Tommasi R. Miller A. Acinetobacter baumannii OmpA is a selective antibiotic permeant porin. ACS Infect. Dis. 2018 4 3 373 381 10.1021/acsinfecdis.7b00168 29260856
    [Google Scholar]
  46. Vranakis I. Goniotakis I. Psaroulaki A. Sandalakis V. Tselentis Y. Gevaert K. Tsiotis G. Proteome studies of bacterial antibiotic resistance mechanisms. J. Proteomics 2014 97 88 99 10.1016/j.jprot.2013.10.027 24184230
    [Google Scholar]
  47. Tooke C.L. Hinchliffe P. Bragginton E.C. Colenso C.K. Hirvonen V.H.A. Takebayashi Y. Spencer J. β-lactamases and β-lactamase inhibitors in the 21st century. J. Mol. Biol. 2019 431 18 3472 3500 10.1016/j.jmb.2019.04.002 30959050
    [Google Scholar]
  48. Livermore D.M. Defining an extended-spectrum β-lactamase. Clin. Microbiol. Infect. 2008 14 3 10 10.1111/j.1469‑0691.2007.01857.x 18154524
    [Google Scholar]
  49. Talebi M. Pourshafie M.R. Oskouii M. Eshraghi S.S. Molecular analysis of vanHAX element in vancomycin resistant enterococci isolated from hospitalized patients in Tehran. Iran. Biomed. J. 2008 12 4 223 228 19079536
    [Google Scholar]
  50. Luthra S. Rominski A. Sander P. The role of antibiotic-target-modifying and antibiotic-modifying enzymes in Mycobacterium abscessus drug resistance. Front. Microbiol. 2018 9 2179 10.3389/fmicb.2018.02179 30258428
    [Google Scholar]
  51. Brooks B.D. Brooks A.E. Therapeutic strategies to combat antibiotic resistance. Adv. Drug Deliv. Rev. 2014 78 14 27 10.1016/j.addr.2014.10.027 25450262
    [Google Scholar]
  52. Wilson D.N. Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nat. Rev. Microbiol. 2014 12 1 35 48 10.1038/nrmicro3155 24336183
    [Google Scholar]
  53. de la Fuente-Núñez C. Reffuveille F. Fernández L. Hancock R.E.W. Bacterial biofilm development as a multicellular adaptation: antibiotic resistance and new therapeutic strategies. Curr. Opin. Microbiol. 2013 16 5 580 589 10.1016/j.mib.2013.06.013 23880136
    [Google Scholar]
  54. Li Y. Ge X. Role of berberine as a potential efflux pump inhibitor against mdfa from Escherichia coli : In vitro and in silico studies. Microbiol. Spectr. 2023 11 2 e03324-22 10.1128/spectrum.03324‑22 36786641
    [Google Scholar]
  55. Li Y. Wen H. Ge X. Hormesis effect of berberine against Klebsiella pneumoniae is mediated by up-regulation of the efflux pump kmrA. J. Nat. Prod. 2021 84 11 2885 2892 10.1021/acs.jnatprod.1c00642 34665637
    [Google Scholar]
  56. Su F. Wang J. Berberine inhibits the MexXY-OprM efflux pump to reverse imipenem resistance in a clinical carbapenem-resistant Pseudomonas aeruginosa isolate in a planktonic state. Exp. Ther. Med. 2018 15 1 467 472 29387199
    [Google Scholar]
  57. Arya M. Nisha AR. Sujith S. Rani SS. Thomas N. Berberine as an efflux pump inhibitor against quinolone resistant Staphylococcus aureus . J. Animal Res 2023 13 4 493 500 10.30954/2277‑940X.04.2023.2.
    [Google Scholar]
  58. Wang Z.C. Wei B. Pei F.N. Yang T. Tang J. Yang S. Yu L.F. Yang C.G. Yang F. Capsaicin derivatives with nitrothiophene substituents: Design, synthesis and antibacterial activity against multidrug-resistant S. aureus. Eur. J. Med. Chem. 2020 198 112352 10.1016/j.ejmech.2020.112352 32387838
    [Google Scholar]
  59. Peeyananjarassri S. Srisawat P. Duanjamrun S. The efficiency of capsaicin in chilli on antibacterial activity of salmonella. Int J Curr Sci Rese Rev 2022 5 8 3206 3210 10.47191/ijcsrr/V5‑i8‑49
    [Google Scholar]
  60. Khameneh B. Iranshahy M. Ghandadi M. Ghoochi Atashbeyk D. Fazly Bazzaz B.S. Iranshahi M. Investigation of the antibacterial activity and efflux pump inhibitory effect of co-loaded piperine and gentamicin nanoliposomes in methicillin-resistant Staphylococcus aureus. Drug Dev. Ind. Pharm. 2015 41 6 989 994 10.3109/03639045.2014.920025 24842547
    [Google Scholar]
  61. Rodrigues dos Santos E.A. Ereno Tadielo L. Arruda Schmiedt J. Silva Orisio P.H. de Cássia Lima Brugeff E. Sossai Possebon F. Olivia Pereira M. Gonçalves Pereira J. dos Santos Bersot L. Inhibitory effects of piperine and black pepper essential oil on multispecies biofilm formation by Listeria monocytogenes, Salmonella Typhimurium, and Pseudomonas aeruginosa. Lebensm. Wiss. Technol. 2023 182 114851 10.1016/j.lwt.2023.114851
    [Google Scholar]
  62. Parai D. Banerjee M. Dey P. Mukherjee S.K. Reserpine attenuates biofilm formation and virulence of Staphylococcus aureus. Microb. Pathog. 2020 138 103790 10.1016/j.micpath.2019.103790 31605761
    [Google Scholar]
  63. Parai D. Banerjee M. Dey P. Chakraborty A. Islam E. Mukherjee S.K. Effect of reserpine on Pseudomonas aeruginosa quorum sensing mediated virulence factors and biofilm formation. Biofouling 2018 34 3 320 334 10.1080/08927014.2018.1437910 29482361
    [Google Scholar]
  64. Sridevi D. Shankar C. Prakash P. Park JH. Thamaraiselvi K. Inhibitory effects of reserpine against efflux pump activity of antibiotic resistance bacteria. Chem. Biol. Lett. 2017 4 2 69 72
    [Google Scholar]
  65. Langlois J.P. Larose A. Brouillette E. Delbrouck J.A. Boudreault P.L. Malouin F. Mode of antibacterial action of tomatidine C3 -diastereoisomers. Molecules 2024 29 2 343 10.3390/molecules29020343 38257256
    [Google Scholar]
  66. Guay I. Boulanger S. Isabelle C. Brouillette E. Chagnon F. Bouarab K. Marsault E. Malouin F. Tomatidine and analog FCo4–100 possess bactericidal activities against Listeria, Bacillus and Staphylococcus spp. BMC Pharmacol. Toxicol. 2018 19 1 7 10.1186/s40360‑018‑0197‑2 29439722
    [Google Scholar]
  67. Delbrouck J.A. Murza A. Diachenko I. Ben Jamaa A. Devi R. Larose A. Chamberland S. Malouin F. Boudreault P.L. From garden to lab: C-3 chemical modifications of tomatidine unveil broad-spectrum ATP synthase inhibitors to combat bacterial resistance. Eur. J. Med. Chem. 2023 262 115886 10.1016/j.ejmech.2023.115886 37924710
    [Google Scholar]
  68. Song X. Li R. Zhang Q. He S. Wang Y. Antibacterial effect and possible mechanism of salicylic acid microcapsules against Escherichia coli and Staphylococcus aureus. Int. J. Environ. Res. Public Health 2022 19 19 12761 10.3390/ijerph191912761 36232061
    [Google Scholar]
  69. Li K. Guan G. Zhu J. Wu H. Sun Q. Antibacterial activity and mechanism of a laccase-catalyzed chitosan–gallic acid derivative against Escherichia coli and Staphylococcus aureus. Food Control 2019 96 234 243 10.1016/j.foodcont.2018.09.021
    [Google Scholar]
  70. Borges A. Ferreira C. Saavedra M.J. Simões M. Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microb. Drug Resist. 2013 19 4 256 265 10.1089/mdr.2012.0244 23480526
    [Google Scholar]
  71. Knidel C. Pereira M.F. Barcelos D.H.F. Gomes D.C.O. Guimarães M.C.C. Schuenck R.P. Epigallocatechin gallate has antibacterial and antibiofilm activity in methicillin resistant and susceptible Staphylococcus aureus of different lineages in non-cytotoxic concentrations. Nat. Prod. Res. 2021 35 22 4643 4647 10.1080/14786419.2019.1698575 34798693
    [Google Scholar]
  72. Kannan P. Ramadevi S.R. Hopper W. Antibacterial activity of Terminalia chebula fruit extract. Afr. J. Microbiol. Res. 2009 3 4 180 184
    [Google Scholar]
  73. Rao M. Padyana S. Dipin K. Kumar S. Nayak B. Varela M.F. Antimicrobial compounds of plant origin as efflux pump inhibitors: new avenues for controlling multidrug resistant pathogens. J. Antimicrob. Agents 2018 4 1000159 2472 1212
    [Google Scholar]
  74. Ivanova A. Ivanova K. Fiandra L. Mantecca P. Catelani T. Natan M. Banin E. Jacobi G. Tzanov T. Antibacterial, antibiofilm, and antiviral farnesol-containing nanoparticles prevent Staphylococcus aureus from drug resistance development. Int. J. Mol. Sci. 2022 23 14 7527 10.3390/ijms23147527 35886883
    [Google Scholar]
  75. Decarvalho C. Dafonseca M. Carvone: Why and how should one bother to produce this terpene. Food Chem. 2006 95 3 413 422 10.1016/j.foodchem.2005.01.003
    [Google Scholar]
  76. Kachur K. Suntres Z. The antibacterial properties of phenolic isomers, carvacrol and thymol. Crit. Rev. Food Sci. Nutr. 2020 60 18 3042 3053 10.1080/10408398.2019.1675585 31617738
    [Google Scholar]
  77. Doyle A.A. Stephens J.C. A review of cinnamaldehyde and its derivatives as antibacterial agents. Fitoterapia 2019 139 104405 10.1016/j.fitote.2019.104405 31707126
    [Google Scholar]
  78. Hasanvand T. Mohammadi M. Abdollahpour F. Kamarehie B. Jafari A. Ghaderpoori A. Karami M.A. A comparative study on antibacterial activity of carvacrol and glutaraldehyde on Pseudomonas aeruginosa and Staphylococcus aureus isolates: An in vitro study. J. Environ. Health Sci. Eng. 2021 19 1 475 482 10.1007/s40201‑021‑00620‑1 34150251
    [Google Scholar]
  79. Hodák K. Jakesová V. Dadák V. On the antibiotic effects of natural coumarins. VI. The relation of structure to the antibacterial effects of some natural coumarins and the neutralization of such effects. Cesk. Farm. 1967 16 2 86 91 6044315
    [Google Scholar]
  80. Basile A. Sorbo S. Spadaro V. Bruno M. Maggio A. Faraone N. Rosselli S. Antimicrobial and antioxidant activities of coumarins from the roots of Ferulago campestris (Apiaceae). Molecules 2009 14 3 939 952 10.3390/molecules14030939 19255552
    [Google Scholar]
  81. Wei J. Guo N. Liang J. Yuan P. Shi Q. Tang X. Yu L. DNA microarray gene expression profile of Mycobacterium tuberculosis when exposed to osthole. Pol. J. Microbiol. 2013 62 1 23 30 10.33073/pjm‑2013‑003 23829074
    [Google Scholar]
  82. Tan N. Yazıcı-Tütüniş S. Bilgin M. Tan E. Miski M. Antibacterial activities of pyrenylated coumarins from the roots of Prangos hulusii. Molecules 2017 22 7 1098 10.3390/molecules22071098 28671568
    [Google Scholar]
  83. Bezlon G. Shanmugha S.D. Rinu E.R. Design and stabilization of natural antibacterial compound allicin against methicillin-resistant Staphylococcus aureus for treatment as a novel antibiotic. Res. J. Engin. Technol. 2013 4 4 179 181
    [Google Scholar]
  84. Bhatwalkar S.B. Mondal R. Krishna S.B.N. Adam J.K. Govender P. Anupam R. Antibacterial properties of organosulfur compounds of garlic (Allium sativum). Front. Microbiol. 2021 12 613077 10.3389/fmicb.2021.613077 34394014
    [Google Scholar]
  85. Kamilawati Y. Junitasari A. Rosahdi T.D. Comparison of antibacterial power of garlic (Allium sativum ) and shallot (Allium ascalonicum L) against Staphylococcus aureus ATCC 6538. Proceedings of the Symposium on Advance of Sustainable Engineering 2021 (SIMASE 2021): Post Covid-19 Pandemic: Challenges and Opportunities in Environment, Science, and Engineering Research 2023 10.1063/5.0114208.
    [Google Scholar]
  86. Rathi B. Gupta S. Kumar P. Kesarwani V. Dhanda R.S. Kushwaha S.K. Yadav M. Anti-biofilm activity of caffeine against uropathogenic E. coli is mediated by curli biogenesis. Sci. Rep. 2022 12 1 18903 10.1038/s41598‑022‑23647‑2 36344808
    [Google Scholar]
  87. Woziwodzka A. Krychowiak-Maśnicka M. Gołuński G. Łosiewska A. Borowik A. Wyrzykowski D. Piosik J. New life of an old drug: Caffeine as a modulator of antibacterial activity of commonly used antibiotics. Pharmaceuticals (Basel) 2022 15 7 872 10.3390/ph15070872 35890171
    [Google Scholar]
  88. Siriyong T. Chusri S. Srimanote P. Tipmanee V. Voravuthikunchai S.P. Holarrhena antidysenterica extract and its steroidal alkaloid, conessine, as resistance-modifying agents against extensively drug-resistant Acinetobacter baumannii. Microb. Drug Resist. 2016 22 4 273 282 10.1089/mdr.2015.0194 26745443
    [Google Scholar]
  89. Siriyong T. Srimanote P. Chusri S. Yingyongnarongkul B. Suaisom C. Tipmanee V. Voravuthikunchai S.P. Conessine as a novel inhibitor of multidrug efflux pump systems in Pseudomonas aeruginosa. BMC Complement. Altern. Med. 2017 17 1 405 10.1186/s12906‑017‑1913‑y 28806947
    [Google Scholar]
  90. Farooqui A. Khan A. Borghetto I. Kazmi S.U. Rubino S. Paglietti B. Synergistic antimicrobial activity of Camellia sinensis and Juglans regia against multidrug-resistant bacteria. PLoS One 2015 10 2 e0118431 10.1371/journal.pone.0118431 25719410
    [Google Scholar]
  91. Marquez B. Neuville L. Moreau N.J. Genet J.P. dos Santos A.F. Caño de Andrade M.C. Goulart Sant’Ana A.E. Multidrug resistance reversal agent from Jatropha elliptica. Phytochemistry 2005 66 15 1804 1811 10.1016/j.phytochem.2005.06.008 16051285
    [Google Scholar]
  92. Morel C. Stermitz F.R. Tegos G. Lewis K. Isoflavones as potentiators of antibacterial activity. J. Agric. Food Chem. 2003 51 19 5677 5679 10.1021/jf0302714 12952418
    [Google Scholar]
  93. Chovanová R. Mikulášová M. Vaverková Š. In vitro antibacterial and antibiotic resistance modifying effect of bioactive plant extracts on methicillin-resistant Staphylococcus epidermidis. Int. J. Microbiol. 2013 2013 1 7 10.1155/2013/760969 24222768
    [Google Scholar]
  94. Chusri S. Villanueva I. Voravuthikunchai S.P. Davies J. Enhancing antibiotic activity: A strategy to control Acinetobacter infections. J. Antimicrob. Chemother. 2009 64 6 1203 1211 10.1093/jac/dkp381 19861335
    [Google Scholar]
  95. Gallucci N. Casero C. Oliva M. Zygadlo J. Demo M. Interaction between terpenes and penicillin on bacterial strains resistant to beta-lactam antibiotics. Mol. Med. Chem. 2006 10 1 30 32
    [Google Scholar]
  96. Jayaraman P. Sakharkar M.K. Lim C.S. Tang T.H. Sakharkar K.R. Activity and interactions of antibiotic and phytochemical combinations against Pseudomonas aeruginosa in vitro. Int. J. Biol. Sci. 2010 6 6 556 568 10.7150/ijbs.6.556 20941374
    [Google Scholar]
  97. Sakharkar M.K. Jayaraman P. Soe W.M. Chow V.T. Sing L.C. Sakharkar K.R. In vitro combinations of antibiotics and phytochemicals against Pseudomonas aeruginosa. J. Microbiol. Immunol. Infect. 2009 42 5 364 370 20182664
    [Google Scholar]
  98. Lacmata S.T. Kuete V. Dzoyem J.P. Tankeo S.B. Teke G.N. Kuiate J.R. Pages J.M. Antibacterial activities of selected Cameroonian plants and their synergistic effects with antibiotics against bacteria expressing MDR phenotypes. Evid. Based Complement. Alternat. Med. 2012 2012 1 11 10.1155/2012/623723 22474511
    [Google Scholar]
  99. Coimbra A. Miguel S. Ribeiro M. Coutinho P. Silva L. Duarte A.P. Ferreira S. Thymus zygis essential oil: phytochemical characterization, bioactivity evaluation and synergistic effect with antibiotics against Staphylococcus aureus. Antibiotics (Basel) 2022 11 2 146 10.3390/antibiotics11020146 35203749
    [Google Scholar]
  100. Demgne O.M.F. Damen F. Fankam A.G. Guefack M.G.F. Wamba B.E.N. Nayim P. Mbaveng A.T. Bitchagno G.T.M. Tapondjou L.A. Penlap V.B. Tane P. Efferth T. Kuete V. Botanicals and phytochemicals from the bark of Hypericum roeperianum (Hypericaceae) had strong antibacterial activity and showed synergistic effects with antibiotics against multidrug-resistant bacteria expressing active efflux pumps. J. Ethnopharmacol. 2021 277 114257 10.1016/j.jep.2021.114257 34062249
    [Google Scholar]
  101. Trabelsi A. El Kaibi M.A. Abbassi A. Horchani A. Chekir-Ghedira L. Ghedira K. Phytochemical study and antibacterial and antibiotic modulation activity of Punica granatum (pomegranate) leaves. Scientifica (Cairo) 2020 2020 1 7 10.1155/2020/8271203 32318311
    [Google Scholar]
  102. Ramata-Stunda A. Petriņa Z. Valkovska V. Borodušķis M. Gibnere L. Gurkovska E. Nikolajeva V. Synergistic effect of polyphenol-rich complex of plant and green propolis extracts with antibiotics against respiratory infections causing bacteria. Antibiotics (Basel) 2022 11 2 160 10.3390/antibiotics11020160 35203763
    [Google Scholar]
  103. Kuok C.F. Hoi S.O. Hoi C.F. Chan C.H. Fong I.H. Ngok C.K. Meng L.R. Fong P. Synergistic antibacterial effects of herbal extracts and antibiotics on methicillin-resistant Staphylococcus aureus : A computational and experimental study. Exp. Biol. Med. (Maywood) 2017 242 7 731 743 10.1177/1535370216689828 28118725
    [Google Scholar]
  104. Aiyegoro O.A. Afolayan A.J. Okoh A.I. In vitro antibacterial activities of crude extracts of the leaves of Helichrysum longifolium in combination with selected antibiotics. Afr. J. Pharm. Pharmacol. 2009 3 6 293 300
    [Google Scholar]
  105. Baylan B. Erdal B. Investigation of antibacterial activity of curcumin and synergistic effect with gentamicin sulfate. Namık Kemal Med J 2024 12 1 27 33 10.4274/nkmj.galenos.2024.18199
    [Google Scholar]
  106. Eladl A. Attia R. Abdullatif H.K. El-Ganiny A.M. The effect of combinations of antibiotics and natural products on the antimicrobial resistance of Staphylococcus aureus and Pseudomonas aeruginosa. Open Infect. Dis. J. 2024 16 1 10.2174/0118742793303419240422094438
    [Google Scholar]
  107. Odabaş Köse E. Koyuncu Özyurt Ö. Bilmen S. Er H. Kilit C. Aydemir E. Quercetin: Synergistic interaction with antibiotics against colistin-resistant Acinetobacter baumannii. Antibiotics (Basel) 2023 12 4 739 10.3390/antibiotics12040739 37107101
    [Google Scholar]
  108. Luo S. Kang X. Luo X. Li C. Wang G. Study on the inhibitory effect of quercetin combined with gentamicin on the formation of Pseudomonas aeruginosa and its bioenvelope. Microb. Pathog. 2023 182 106274 10.1016/j.micpath.2023.106274 37516213
    [Google Scholar]
  109. Gul S. Bibi S. Nazneen H. Alam M.A. Khan A. Khan Z.U. Evaluation of the anti-bacterial potential of Allium sativum against some resistant human pathogenic isolates and its synergy with antibiotics. Pak J Med Healt Sci 2023 17 02 469 10.53350/pjmhs2023172469
    [Google Scholar]
  110. Akula R. Ravishankar G.A. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal. Behav. 2011 6 11 1720 1731 10.4161/psb.6.11.17613 22041989
    [Google Scholar]
  111. Verma N. Shukla S. Impact of various factors responsible for fluctuation in plant secondary metabolites. J. Appl. Res. Med. Aromat. Plants 2015 2 4 105 113 10.1016/j.jarmap.2015.09.002
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010344474241011070242
Loading
/content/journals/cpb/10.2174/0113892010344474241011070242
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: antibiotics ; disease ; antibacterial resistance ; pathogens ; Phytochemicals ; natural compounds
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test