Skip to content
2000
image of Biomimetic Fe3O4 Nanozymes Promote Apoptosis in Breast Cancer Cell Lines via Free Radical Scavenging and Inhibition of RelA/p65

Abstract

Introduction

Iron oxide nanozyme was synthesized from the fruit peel extract of pomegranate, which served as a reducing agent during the green synthesis. The scavenging of reactive oxygen species is often accompanied by immunomodulation following antiproliferative effects due to the crosstalk between the proteins involved in the inter-related signaling pathways.

Method

In the current study, the green synthesized nanozyme was studied for its ability to induce apoptosis in breast cancer cell lines. The free radical scavenging effect of the nanozyme was reflected as an extension of its intrinsic endogenous enzyme-mimicking property.

Result & Discussion

The cell cycle analysis revealed that the cell death induced by nanozyme mainly affected the G0/G1 phase. The expression of RelA/p65 and the inflammatory mediators affected by the nanozyme established the role of the FeO nanozyme in immunomodulation along with its antiproliferative activity.

Conclusion

This is the first report on the antiproliferative and immunomodulatory activities expressed by the biomimetic iron oxide nanozyme.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010337908241129055322
2025-01-07
2025-03-26
Loading full text...

Full text loading...

References

  1. Fu P.P. Xia Q. Hwang H.M. Ray P.C. Yu H. Mechanisms of nanotoxicity: generation of reactive oxygen species. Yao Wu Shi Pin Fen Xi 2014 22 1 64 75 24673904
    [Google Scholar]
  2. Qian Q. Chen W. Cao Y. Cao Q. Cui Y. Li Y. Wu J. Targeting reactive oxygen species in cancer via Chinese herbal medicine. Oxid. Med. Cell. Longev. 2019 2019 1 1 23 10.1155/2019/9240426 31583051
    [Google Scholar]
  3. Abo Elsoud M.R. Hewala T.I. The clinical significance of serum oxidative stress biomarkers in breast cancer females. Medical Research Journal 2019 4 1 1 7 10.5603/MRJ.a2018.0039
    [Google Scholar]
  4. Kohan R. Collin A. Guizzardi S. Tolosa de Talamoni N. Picotto G. Reactive oxygen species in cancer: a paradox between pro- and anti-tumour activities. Cancer Chemother. Pharmacol. 2020 86 1 1 13 10.1007/s00280‑020‑04103‑2 32572519
    [Google Scholar]
  5. Gao L. Zhuang J. Nie L. Zhang J. Zhang Y. Gu N. Wang T. Feng J. Yang D. Perrett S. Yan X. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007 2 9 577 583 10.1038/nnano.2007.260 18654371
    [Google Scholar]
  6. Gao L. Fan K. Yan X. Iron oxide nanozyme: a multifunctional enzyme mimetic for biomedical applications. Theranostics 2017 7 13 3207 3227 10.7150/thno.19738 28900505
    [Google Scholar]
  7. Bhattacharya K. Gogoi B. Buragohain A.K. Deb P. Fe2O3/C nanocomposites having distinctive antioxidant activity and hemolysis prevention efficiency. Mater. Sci. Eng. C 2014 42 595 600 10.1016/j.msec.2014.05.062 25063158
    [Google Scholar]
  8. Dowlath M.J.H. Musthafa S.A. Mohamed Khalith S.B. Varjani S. Karuppannan S.K. Ramanujam G.M. Arunachalam A.M. Arunachalam K.D. Chandrasekaran M. Chang S.W. Chung W.J. Ravindran B. Comparison of characteristics and biocompatibility of green synthesized iron oxide nanoparticles with chemical synthesized nanoparticles. Environ. Res. 2021 201 111585 10.1016/j.envres.2021.111585 34181925
    [Google Scholar]
  9. Mundekkad D. Alex A.V. Analysis of structural and biomimetic characteristics of the green-synthesized Fe3O4 nanozyme from the fruit peel extract of Punica granatum. Chem. Zvesti 2022 76 6 3863 3878 10.1007/s11696‑022‑02130‑2
    [Google Scholar]
  10. Russell E. Dunne V. Russell B. Mohamud H. Ghita M. McMahon S.J. Butterworth K.T. Schettino G. McGarry C.K. Prise K.M. Impact of superparamagnetic iron oxide nanoparticles on in vitro and in vivo radiosensitisation of cancer cells. Radiat. Oncol. 2021 16 1 104 10.1186/s13014‑021‑01829‑y 34118963
    [Google Scholar]
  11. Sulaiman G.M. Tawfeeq A.T. Naji A.S. Biosynthesis, characterization of magnetic iron oxide nanoparticles and evaluations of the cytotoxicity and DNA damage of human breast carcinoma cell lines. Artif. Cells Nanomed. Biotechnol. 2018 46 6 1215 1229 10.1080/21691401.2017.1366335 28826240
    [Google Scholar]
  12. Xia Y. Shen S. Verma I.M. NF-κB, an active player in human cancers. Cancer Immunol. Res. 2014 2 9 823 830 10.1158/2326‑6066.CIR‑14‑0112 25187272
    [Google Scholar]
  13. Karin M. Cao Y. Greten F.R. Li Z.W. NF-κB in cancer: from innocent bystander to major culprit. Nat. Rev. Cancer 2002 2 4 301 310 10.1038/nrc780 12001991
    [Google Scholar]
  14. Zinatizadeh M.R. Schock B. Chalbatani G.M. Zarandi P.K. Jalali S.A. Miri S.R. The Nuclear Factor Kappa B (NF-kB) signaling in cancer development and immune diseases. Genes Dis. 2021 8 3 287 297 10.1016/j.gendis.2020.06.005 33997176
    [Google Scholar]
  15. Mundekkad D. Kameshwari G.V. Karchalkar P. Koti R. The catalytic and ROS-scavenging activities of green synthesized, antiferromagnetic α-Fe 2 O 3 nanoparticle with a prismatic octahedron morphology from pomegranate rind extract. Nanotechnology 2022 33 4 045706 10.1088/1361‑6528/ac2c45 34598165
    [Google Scholar]
  16. Yusefi M. Shameli K. Ali R.R. Pang S-W. Teow S-Y. Evaluating anticancer activity of plant-mediated synthesized iron oxide nanoparticles using Punica granatum fruit peel extract. J. Mol. Struct. 2020 1204 127539 10.1016/j.molstruc.2019.127539
    [Google Scholar]
  17. Deepa M. Sureshkumar T. Satheeshkumar P.K. Priya S. Antioxidant rich Morus alba leaf extract induces apoptosis in human colon and breast cancer cells by the downregulation of nitric oxide produced by inducible nitric oxide synthase. Nutr. Cancer 2013 65 2 305 310 10.1080/01635581.2013.748924 23441618
    [Google Scholar]
  18. Deepa M. Sureshkumar T. Satheeshkumar P.K. Priya S. Purified mulberry leaf lectin (MLL) induces apoptosis and cell cycle arrest in human breast cancer and colon cancer cells. Chem. Biol. Interact. 2012 200 1 38 44 10.1016/j.cbi.2012.08.025 22982777
    [Google Scholar]
  19. Liu Y. Wang X. Li X. Qiao S. Huang G. Hermann D.M. Doeppner T.R. Zeng M. Liu W. Xu G. Ren L. Zhang Y. Liu W. Casals E. Li W. Wang Y.C. A co-doped Fe3O4 nanozyme shows enhanced reactive oxygen and nitrogen species scavenging activity and ameliorates the deleterious effects of ischemic stroke. ACS Appl. Mater. Interfaces 2021 13 39 46213 46224 10.1021/acsami.1c06449 34546708
    [Google Scholar]
  20. Neumann M. Grieshammer T. Chuvpilo S. Kneitz B. Lohoff M. Schimpl A. Franza B.R. Jr Serfling E. RelA/p65 is a molecular target for the immunosuppressive action of protein kinase A. EMBO J. 1995 14 9 1991 2004 10.1002/j.1460‑2075.1995.tb07191.x 7744006
    [Google Scholar]
  21. Dash S. Analyzing the Role of TNF and#945; and Autophagy in Regulation of TGF and#946; Induced Epithelial to Mesenchymal Transition in Cancer Cells. Birla Institute of Technology and Science 2018
    [Google Scholar]
  22. Persaud S.J. Burns C.J. Belin V.D. Jones P.M. Glucose-induced regulation of COX-2 expression in human islets of Langerhans. Diabetes 2004 53 Suppl. 1 S190 S192 10.2337/diabetes.53.2007.S190 14749287
    [Google Scholar]
  23. Shimizu Y. Hanzawa H. Zhao Y. Fukura S. Nishijima K. Sakamoto T. Zhao S. Tamaki N. Ogawa M. Kuge Y. Immunoglobulin G (IgG)-based imaging probe accumulates in M1 macrophage-infiltrated atherosclerotic plaques independent of IgG target molecule expression. Mol. Imaging Biol. 2017 19 4 531 539 10.1007/s11307‑016‑1036‑8 27981470
    [Google Scholar]
  24. Agarwal H. Shanmugam V.K. Synthesis and optimization of zinc oxide nanoparticles using Kalanchoe pinnata towards the evaluation of its anti-inflammatory activity. J. Drug Deliv. Sci. Technol. 2019 54 101291 10.1016/j.jddst.2019.101291
    [Google Scholar]
  25. Yajima T. Yagihashi A. Kameshima H. Kobayashi D. Furuya D. Hirata K. Watanabe N. Quantitative reverse transcription-PCR assay of the RNA component of human telomerase using the TaqMan fluorogenic detection system. Clin. Chem. 1998 44 12 2441 2445 10.1093/clinchem/44.12.2441 9836710
    [Google Scholar]
  26. Pazouki N. Irani S. Olov N. Atyabi S.M. Bagheri-Khoulenjani S. Fe3O4 nanoparticles coated with carboxymethyl chitosan containing curcumin in combination with hyperthermia induced apoptosis in breast cancer cells. Prog. Biomater. 2022 11 1 43 54 10.1007/s40204‑021‑00178‑z 35025086
    [Google Scholar]
  27. Popescu R.C. Savu D. Dorobantu I. Vasile B.S. Hosser H. Boldeiu A. Temelie M. Straticiuc M. Iancu D.A. Andronescu E. Wenz F. Giordano F.A. Herskind C. Veldwijk M.R. Efficient uptake and retention of iron oxide-based nanoparticles in HeLa cells leads to an effective intracellular delivery of doxorubicin. Sci. Rep. 2020 10 1 10530 10.1038/s41598‑020‑67207‑y 32601333
    [Google Scholar]
  28. Tousi M.S. Sepehri H. Khoee S. Farimani M.M. Delphi L. Mansourizadeh F. Evaluation of apoptotic effects of mPEG-b-PLGA coated iron oxide nanoparticles as a eupatorin carrier on DU-145 and LNCaP human prostate cancer cell lines. J. Pharm. Anal. 2021 11 1 108 121 10.1016/j.jpha.2020.04.002 33717617
    [Google Scholar]
  29. Xiang Y. Lai F. He G. Li Y. Yang L. Shen W. Huo H. Zhu J. Dai H. Zhang Y. Alleviation of Rosup-induced oxidative stress in porcine granulosa cells by anthocyanins from red-fleshed apples. PLoS One 2017 12 8 e0184033 10.1371/journal.pone.0184033 28850606
    [Google Scholar]
  30. Kaur G. Kumar V. Arora A. Tomar A. Ashish Sur R. Dutta D. Affected energy metabolism under manganese stress governs cellular toxicity. Sci. Rep. 2017 7 1 11645 10.1038/s41598‑017‑12004‑3 28928443
    [Google Scholar]
  31. Banerjee S. Islam S. Chattopadhyay A. Sen A. Kar P. Synthesis of silver nanoparticles using underutilized fruit Baccaurea ramiflora (Latka) juice and its biological and cytotoxic efficacy against MCF-7 and MDA-MB 231 cancer cell lines. S. Afr. J. Bot. 2022 145 228 235 10.1016/j.sajb.2021.09.016
    [Google Scholar]
  32. Subedi L. Gaire B.P. Kim S-Y. Parveen A. Nitric oxide as a target for phytochemicals in anti-neuroinflammatory prevention therapy. Int. J. Mol. Sci. 2021 22 9 4771 10.3390/ijms22094771 33946349
    [Google Scholar]
  33. Niu J. Wang K. Kolattukudy P.E. Cerium oxide nanoparticles inhibit oxidative stress and nuclear factor-κB activation in H9c2 cardiomyocytes exposed to cigarette smoke extract. J. Pharmacol. Exp. Ther. 2011 338 1 53 61 10.1124/jpet.111.179978 21464334
    [Google Scholar]
  34. Abdellatif A.A.H. Rasheed Z. Alhowail A.H. Alqasoumi A. Alsharidah M. Khan R.A. Aljohani A.S.M. Aldubayan M.A. Faisal W. Silver citrate nanoparticles inhibit PMA-induced TNFα expression via deactivation of NF-κB activity in human cancer cell-lines, MCF-7. Int. J. Nanomedicine 2020 15 8479 8493 10.2147/IJN.S274098 33154638
    [Google Scholar]
  35. Blaser H. Dostert C. Mak T.W. Brenner D. TNF and ROS crosstalk in inflammation. Trends Cell Biol. 2016 26 4 249 261 10.1016/j.tcb.2015.12.002 26791157
    [Google Scholar]
  36. Kumari M. Sharma N. Manchanda R. Gupta N. Syed A. Bahkali A.H. Nimesh S. PGMD/curcumin nanoparticles for the treatment of breast cancer. Sci. Rep. 2021 11 1 3824 10.1038/s41598‑021‑81701‑x 33589661
    [Google Scholar]
  37. Moin A. Wani S.U.D. Osmani R.A. Abu Lila A.S. Khafagy E.S. Arab H.H. Gangadharappa H.V. Allam A.N. Formulation, characterization, and cellular toxicity assessment of tamoxifen-loaded silk fibroin nanoparticles in breast cancer. Drug Deliv. 2021 28 1 1626 1636 10.1080/10717544.2021.1958106 34328806
    [Google Scholar]
  38. Deepa M. Darsan M.B. Ramalingam C. In Vitro Evaluation of the antioxidant, anti-inflammatory and antiproliferative activities of the leaf extracts of Excoecaria agallocha L. Int. J. Pharma Sci. 2015 7 11 346 352
    [Google Scholar]
  39. Ahamed M. Akhtar M.J. Khan M.A.M. Alhadlaq H.A. Alshamsan A. Cobalt iron oxide nanoparticles induce cytotoxicity and regulate the apoptotic genes through ROS in human liver cells (HepG2). Colloids Surf. B Biointerfaces 2016 148 665 673 10.1016/j.colsurfb.2016.09.047 27701048
    [Google Scholar]
  40. Alarifi S. Ali D. Alkahtani S. Alhader M.S. Iron oxide nanoparticles induce oxidative stress, DNA damage, and caspase activation in the human breast cancer cell line. Biol. Trace Elem. Res. 2014 159 1-3 416 424 10.1007/s12011‑014‑9972‑0 24748114
    [Google Scholar]
  41. Khan M.I. Mohammad A. Patil G. Naqvi S.A.H. Chauhan L.K.S. Ahmad I. Induction of ROS, mitochondrial damage and autophagy in lung epithelial cancer cells by iron oxide nanoparticles. Biomaterials 2012 33 5 1477 1488 10.1016/j.biomaterials.2011.10.080 22098780
    [Google Scholar]
  42. Wang L. Min Y. Xu D. Yu F. Zhou W. Cuschieri A. Membrane lipid peroxidation by the peroxidase-like activity of magnetite nanoparticles. Chem. Commun. (Camb.) 2014 50 76 11147 11150 10.1039/C4CC03082F 25109366
    [Google Scholar]
  43. Chen Z. Yin J.J. Zhou Y.T. Zhang Y. Song L. Song M. Hu S. Gu N. Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano 2012 6 5 4001 4012 10.1021/nn300291r 22533614
    [Google Scholar]
  44. Wang L. Wang Z. Li X. Zhang Y. Yin M. Li J. Song H. Shi J. Ling D. Wang L. Chen N. Fan C. Deciphering active biocompatibility of iron oxide nanoparticles from their intrinsic antagonism. Nano Res. 2018 11 5 2746 2755 10.1007/s12274‑017‑1905‑8
    [Google Scholar]
  45. Das S. Diyali S. Vinothini G. Perumalsamy B. Balakrishnan G. Ramasamy T. Dharumadurai D. Biswas B. Synthesis, morphological analysis, antibacterial activity of iron oxide nanoparticles and the cytotoxic effect on lung cancer cell line. Heliyon 2020 6 9 e04953 10.1016/j.heliyon.2020.e04953 33005785
    [Google Scholar]
  46. Teoh-Fitzgerald M.L.T. Fitzgerald M.P. Jensen T.J. Futscher B.W. Domann F.E. Genetic and epigenetic inactivation of extracellular superoxide dismutase promotes an invasive phenotype in human lung cancer by disrupting ECM homeostasis. Mol. Cancer Res. 2012 10 1 40 51 10.1158/1541‑7786.MCR‑11‑0501 22064654
    [Google Scholar]
  47. Chen Y.P. Chen C.T. Liu T.P. Chien F.C. Wu S.H. Chen P. Mou C.Y. Catcher in the rel: Nanoparticles-antibody conjugate as NF-κB nuclear translocation blocker. Biomaterials 2020 246 119997 10.1016/j.biomaterials.2020.119997 32247937
    [Google Scholar]
  48. Nathan C. Cunningham-Bussel A. Beyond oxidative stress: an immunologist’s guide to reactive oxygen species. Nat. Rev. Immunol. 2013 13 5 349 361 10.1038/nri3423 23618831
    [Google Scholar]
  49. Morgan M.J. Liu Z. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res. 2011 21 1 103 115 10.1038/cr.2010.178 21187859
    [Google Scholar]
  50. Huang S. Pettaway C.A. Uehara H. Bucana C.D. Fidler I.J. Blockade of NF-κB activity in human prostate cancer cells is associated with suppression of angiogenesis, invasion, and metastasis. Oncogene 2001 20 31 4188 4197 10.1038/sj.onc.1204535 11464285
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010337908241129055322
Loading
/content/journals/cpb/10.2174/0113892010337908241129055322
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test