Skip to content
2000
Volume 26, Issue 3
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Background

Chemotherapy-induced alopecia (CIA) significantly impacts patients' emotional and psychological well-being and treatment regimen. Phenylephrine, a topical vasoconstrictor, can potentially reduce hair loss by limiting chemotherapy drug delivery to hair follicles. However, effective delivery of Phenylephrine through the skin remains challenging. This study investigates lipid vesicles as delivery vehicles to enhance Phenylephrine's skin permeation and sustained release due to their biocompatibility and encapsulation capabilities.

Objective

This study aimed to formulate and compare different lipid vesicles of Phenylephrine HCl for enhanced permeation through the skin for deep dermal delivery with sustained release of the drug so as to achieve local vasoconstriction.

Methods

Phenylephrine-loaded ethosomes, invasomes, and transfersomes were prepared and characterized for particle size (PS), polydispersity index (PDI), and entrapment efficiency (EE %). These lipid vesicles were incorporated into hydrogels to facilitate sustained drug release to deep dermal layers where they could target local vasculature and cause vasoconstriction. The prepared vesicular gels were evaluated for various permeation parameters.

Results

The entrapment efficiencies of the developed vesicles ranged from 49.51 ± 3.25% to 69.09 ± 2.32%, with vesicle sizes ranging from 162.5 ± 5.21 nm to 321.32 ± 3.75 nm. Statistical analysis revealed significantly higher flux values (Jss, µg/cm2 h) of 0.6251, 0.6314, and 0.4075 for invasomal gel, ethosomal gel, and transfersomal gel, respectively, compared to plain gel (0.1254) ( < 0.005). The enhancement factors were 4.9848, 5.0350, and 3.2496 for invasomal gel, ethosomal gel, and transfersomal gel, respectively, indicating superior permeation abilities of ethosomal and invasomal formulations.

Conclusion

The results demonstrate that ethosomal and invasomal formulations were efficient in delivering the drug to deep dermal layers of skin in a sustained manner. These findings suggest that these Lipidic vesicles would be able to target the local vasoconstrictor to vasculature, causing reduced hair loss by limiting chemotherapy drug delivery to hair follicles and managing chemotherapy-induced alopecia.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010336809240815050316
2024-10-18
2025-03-07
Loading full text...

Full text loading...

References

  1. CarelleN. PiottoE. BellangerA. GermanaudJ. ThuillierA. KhayatD. Changing patient perceptions of the side effects of cancer chemotherapy.Cancer200295115516310.1002/cncr.1063012115329
    [Google Scholar]
  2. BalagulaY. RosenS.T. LacoutureM.E. The emergence of supportive oncodermatology: The study of dermatologic adverse events to cancer therapies.J. Am. Acad. Dermatol.201165362463510.1016/j.jaad.2010.06.05121777992
    [Google Scholar]
  3. WangJ. LuZ. AuJ.L.S. Protection against chemotherapy-induced alopecia.Pharm. Res.200623112505251410.1007/s11095‑006‑9105‑316972183
    [Google Scholar]
  4. BernardM. BrignoneM. AdehossiA. PefouraS. BriquetC. ChouaidC. TilleulP. Perception of alopecia by patients requiring chemotherapy for non-small-cell lung cancer: A willingness to pay study.Lung Cancer201172111411810.1016/j.lungcan.2010.07.00420701993
    [Google Scholar]
  5. McGarveyE.L. BaumL.D. PinkertonR.C. RogersL.M. Psychological sequelae and alopecia among women with cancer.Cancer Pract.20019628328910.1111/j.1523‑5394.2001.96007.pp.x11879330
    [Google Scholar]
  6. RossiA. CaroG. FortunaM.C. PigliacelliF. D’ArinoA. CarlesimoM. Prevention and treatment of chemotherapy-induced alopecia.Dermatol. Pract. Concept.2020103e202007410.5826/dpc.1003a7432642317
    [Google Scholar]
  7. SantosT.S. Hernandéz GalvisK. Vañó GalvánS. Saceda-CorraloD. Post‐chemotherapy alopecia: What the dermatologist needs to know.Int. J. Dermatol.202160111313131710.1111/ijd.1581234348414
    [Google Scholar]
  8. Freites-MartinezA. ChanD. SibaudV. ShapiroJ. FabbrociniG. TostiA. ChoJ. GoldfarbS. ModiS. GajriaD. NortonL. PausR. CiglerT. LacoutureM.E. Assessment of quality of life and treatment outcomes of patients with persistent postchemotherapy alopecia.JAMA Dermatol.2019155672472810.1001/jamadermatol.2018.507130840033
    [Google Scholar]
  9. KangD. KimI.R. ChoiE.K. ImY.H. ParkY.H. AhnJ.S. LeeJ.E. NamS.J. LeeH.K. ParkJ.H. LeeD.Y. LacoutureM.E. GuallarE. ChoJ. Permanent chemotherapy-induced alopecia in patients with breast cancer: A 3-year prospective cohort study.Oncologist201924341442010.1634/theoncologist.2018‑018430120165
    [Google Scholar]
  10. ChanJ. AdderleyH. AlameddineM. ArmstrongA. ArundellD. FoxR. HarriesM. LimJ. SalihZ. TetlowC. WongH. ThorpN. Permanent hair loss associated with taxane chemotherapy use in breast cancer: A retrospective survey at two tertiary UK cancer centres.Eur. J. Cancer Care (Engl.)2021303e1339510.1111/ecc.1339533350015
    [Google Scholar]
  11. TrüebR.M. Chemotherapy-induced hair loss.Skin Therapy Lett.20101575720700552
    [Google Scholar]
  12. PausR. HaslamI.S. SharovA.A. BotchkarevV.A. Pathobiology of chemotherapy-induced hair loss.Lancet Oncol.2013142e50e5910.1016/S1470‑2045(12)70553‑323369683
    [Google Scholar]
  13. BreedW.P.M. van den HurkC.J.G. PeerboomsM. Presentation, impact and prevention of chemotherapy-induced hair loss: Scalp cooling potentials and limitations.Expert. Rev. Dermatol.20116110912510.1586/edm.10.76
    [Google Scholar]
  14. KomenM.M.C. SmorenburgC.H. HurkC.J.G. NortierJ.W.R. Factors influencing the effectiveness of scalp cooling in the prevention of chemotherapy-induced alopecia.Oncologist201318788589110.1634/theoncologist.2012‑033223650021
    [Google Scholar]
  15. LemenagerM. LecomteS. BonneterreM.E. BessaE. DaubaJ. BonneterreJ. Effectiveness of cold cap in the prevention of docetaxel-induced alopecia.Eur. J. Cancer199733229730010.1016/S0959‑8049(96)00374‑79135504
    [Google Scholar]
  16. HillenH.F. BreedW.P. BotmanC.J. Scalp cooling by cold air for the prevention of chemotherapy-induced alopecia.Neth. J. Med.1990375-62312352074916
    [Google Scholar]
  17. Delgado RodríguezJ. Ramos-GarcíaV. Infante-VenturaD. Suarez-HerreraJ.C. Rueda-DomínguezA. Serrano-AguilarP. del Mar Trujillo-MartínM. Ethical, legal, organizational and social issues related to the use of scalp cooling for the prevention of chemotherapy‐induced alopecia: A systematic review.Health Expect.202326256757810.1111/hex.1367936585793
    [Google Scholar]
  18. WangS. YangT. ShenA. QiangW. ZhaoZ. ZhangF. The scalp cooling therapy for hair loss in breast cancer patients undergoing chemotherapy: A systematic review and meta-analysis.Support. Care Cancer202129116943695610.1007/s00520‑021‑06188‑833847828
    [Google Scholar]
  19. SorefC.M. FahlW.E. A new strategy to prevent chemotherapy and radiotherapy-induced alopecia using topically applied vasoconstrictor.Int. J. Cancer2015136119520310.1002/ijc.2896124811525
    [Google Scholar]
  20. Rathman-JosserandM. GentyG. LecardonnelJ. ChabaneS. CoussonA. François MicheletJ. BernardB.A. Human hair follicle stem/progenitor cells express hypoxia markers.J. Invest. Dermatol.201313382094209710.1038/jid.2013.11323474947
    [Google Scholar]
  21. TouitouE. DayanN. BergelsonL. GodinB. EliazM. Ethosomes — Novel vesicular carriers for enhanced delivery: Characterization and skin penetration properties.J. Control. Release200065340341810.1016/S0168‑3659(99)00222‑910699298
    [Google Scholar]
  22. ElsayedM.M.A. AbdallahO.Y. NaggarV.F. KhalafallahN.M. Lipid vesicles for skin delivery of drugs: Reviewing three decades of research.Int. J. Pharm.2007b3321-211610.1016/j.ijpharm.2006.12.00517222523
    [Google Scholar]
  23. DragicevicN. MaibachH.I. Liposomes in transdermal and topical drug delivery.CRC Press2018
    [Google Scholar]
  24. MoenE.K. YangS. AndersonJ.L. Arndt-JovinD.J. Overcoming the stratum corneum barrier: A study of permeation enhancers in liposomal delivery systems.J. Control. Release2019295738410.1016/j.jconrel.2019.01.021
    [Google Scholar]
  25. JøraholmenM.W. Škalko-BasnetN. AcharyaG. BasnetP. Liposomal delivery system enhancing dermal and transdermal drug delivery.ACS Omega20172128578858910.1021/acsomega.7b01518
    [Google Scholar]
  26. El MaghrabyG.M. BarryB.W. WilliamsA.C. Liposomes and skin: From drug delivery to model membranes.Eur. J. Pharm. Sci.2008344-520322210.1016/j.ejps.2008.05.00218572392
    [Google Scholar]
  27. CevcG. BlumeG. Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force.Biochim. Biophys. Acta Biomembr.19921104122623210.1016/0005‑2736(92)90154‑E1550849
    [Google Scholar]
  28. CevcG. BlumeG. New, highly efficient formulation of diclofenac for the topical, transdermal administration in ultradeformable drug carriers, transfersomes.Biochim. Biophys. Acta Biomembr.20011514219120510.1016/S0005‑2736(01)00369‑811557020
    [Google Scholar]
  29. MaestrelliF. González-RodríguezM.L. RabascoA.M. GhelardiniC. MuraP. New “drug-in cyclodextrin-in deformable liposomes” formulations to improve the therapeutic efficacy of local anaesthetics.Int. J. Pharm.20103951-222223110.1016/j.ijpharm.2010.05.04620594944
    [Google Scholar]
  30. DayanN. TouitouE. Carriers for skin delivery of trihexyphenidyl HCl: Ethosomes vs. liposomes.Biomaterials200021181879188510.1016/S0142‑9612(00)00063‑610919691
    [Google Scholar]
  31. GodinB. TouitouE. Ethosomes: New prospects in transdermal delivery.Crit. Rev. Ther. Drug Carrier Syst.20032016310210.1615/CritRevTherDrugCarrierSyst.v20.i1.2012911264
    [Google Scholar]
  32. KamranM. AhadA. AqilM. ImamS.S. SultanaY. AliA. Design, formulation and optimization of novel soft nano-carriers for transdermal olmesartan medoxomil delivery: In vitro characterization and in vivo pharmacokinetic assessment.Int. J. Pharm.20165051-214715810.1016/j.ijpharm.2016.03.03027005906
    [Google Scholar]
  33. AhmedO.A.A. Badr-EldinS.M. Development of an optimized avanafil-loaded invasomal transdermal film: Ex vivo skin permeation and in vivo evaluation.Int. J. Pharm.201957011865710.1016/j.ijpharm.2019.11865731491483
    [Google Scholar]
  34. El-NabarawiM.A. ShammaR.N. FaroukF. NasrallaS.M. Dapsone-loaded invasomes as a potential treatment of acne: Preparation, characterization, and in vivo skin deposition assay.AAPS PharmSciTech20181952174218410.1208/s12249‑018‑1025‑029725903
    [Google Scholar]
  35. LinH. YuC. LeiW. ZhouX. Development of tacrolimus-loaded transfersomes for deeper skin penetration enhancement and therapeutic effect improvement in vivo . Asian.Asian. Jour. Pharm. Sci.201333634510.1016/j.ajps.2013.09.005.
    [Google Scholar]
  36. AbdelbaryA.A. AbouGhalyM.H.H. Design and optimization of topical methotrexate loaded niosomes for enhanced management of psoriasis: Application of Box–Behnken design, in-vitro evaluation and in-vivo skin deposition study.Int. J. Pharm.20154851-223524310.1016/j.ijpharm.2015.03.02025773359
    [Google Scholar]
  37. ZweersM.L.T. GrijpmaD.W. EngbersG.H.M. FeijenJ. The preparation of monodisperse biodegradable polyester nanoparticles with a controlled size.J. Biomed. Mater. Res. B Appl. Biomater.200366B255956610.1002/jbm.b.1004612861608
    [Google Scholar]
  38. IchinoT. YotsuyanagiT. MizunoI. AkamoY. YamamotoT. SaitoT. KurahashiS. TanimotoN. YuraJ. Antitumor effect of liposome-entrapped adriamycin administered via the portal vein.Jpn. J. Cancer Res.199081101052105610.1111/j.1349‑7006.1990.tb03345.x2121678
    [Google Scholar]
  39. PatelN.A. PatelN.J. PatelR.P. Formulation and evaluation of curcumin gel for topical application.Pharm. Dev. Technol.2009141839210.1080/1083745080240943818821270
    [Google Scholar]
  40. PavelićŽ. Škalko-BasnetN. SchubertR. Liposomal gels for vaginal drug delivery.Int. J. Pharm.20012191-213914910.1016/S0378‑5173(01)00637‑811337174
    [Google Scholar]
  41. KaurL.P. GargR. GuptaG.D. Development and evaluation of topical gel of minoxidil from different polymer bases in application of alopecia.Int. J. Pharm. Pharm. Sci.201024347
    [Google Scholar]
  42. BachhavYG. PatravaleVB. Microemulsion based vaginal gel of fluconazole: Formulation, in vitro and in vivo evaluation.Int J Pharm.20093651-2175910.1016/j.ijpharm.2008.08.021.
    [Google Scholar]
  43. ChaudharyH. RohillaA. RatheeP. KumarV. Optimization and formulation design of carbopol loaded Piroxicam gel using novel penetration enhancers.Int. J. Biol. Macromol.20135524625310.1016/j.ijbiomac.2013.01.01523376559
    [Google Scholar]
  44. VermaH. PalD.P. JoshiD. Formulation, development and evaluation of invasomes loaded gel for fungal treatment.Sch. Acad. J. Pharm.202211710510810.36347/sajp.2022.v11i07.001
    [Google Scholar]
  45. KumarB. SahooP.K. ManchandaS. Formulation, characterization and ex vivo study of curcumin nano-invasomal gel for enhanced transdermal delivery.OpenNano2022710005810.1016/j.onano.2022.100058
    [Google Scholar]
  46. RamtekeS. BarupalA.K. GuptaV. Preparation and characterization of ethosomes for topical delivery of aceclofenac.Indian J. Pharm. Sci.201072558258610.4103/0250‑474X.7852421694989
    [Google Scholar]
  47. MauryaSheo Datta. PrajapatiSunil Kumar. GuptaAnish Kumar. SaxenaGyanendra Kumar. DhakarRam Chand. Formulation development and evaluation of ethosome of stavudine.Indian. J. Pharm. Educ. Res.201044110210810.2139/ssrn.3774625.2010
    [Google Scholar]
  48. PaolinoD. LucaniaG. MardenteD. AlhaiqueF. FrestaM. Ethosomes for skin delivery of ammonium glycyrrhizinate: In vitro percutaneous permeation through human skin and in vivo anti-inflammatory activity on human volunteers.J. Control. Release20051061-29911010.1016/j.jconrel.2005.04.00715935505
    [Google Scholar]
  49. NurmahliatiH. WidodoF. PuspitaO. Effect of soy lecithin and sodium cholate concentration on characterization pterostilbene transfersomes.Indones. J. Pharm20205210911510.21776/ub.pji.2020.005.02.7
    [Google Scholar]
  50. ZubaydahW. O. S. AndrianiR. SuryaniS. Indalifiani.A JannahS.R.N. HidayatiD. Optimization of soya phosphatidylcholine and tween 80 as a preparation of diclofenac sodium transfersome vesicles using design-expert.Galenika J. Pharm.202391849810.22487/j24428744.2023.v9.i1.16085
    [Google Scholar]
  51. JadupatiM. KumarN.A. Transferosome: An opportunistic carrier for transdermal drug delivery system.Int. Res. J. Pharm.201233538
    [Google Scholar]
  52. DubeyV. MishraD. DuttaT. NaharM. SarafD.K. JainN.K. Dermal and transdermal delivery of an anti-psoriatic agent via ethanolic liposomes.J. Control. Release2007123214815410.1016/j.jconrel.2007.08.00517884226
    [Google Scholar]
  53. KimB.P.G. MendesL.P. LuM.J.T.Y. Optimizing vesicle size for effective skin penetration and drug delivery.J. Control. Release2018285132310.1016/j.jconrel.2018.06.029
    [Google Scholar]
  54. TariqM.A.S. SinghA.G. SmithA.H. LopezC.M. Nanoparticle size and skin penetration: The role of vesicle size in dermal drug delivery.Eur. J. Pharm. Biopharm.201813013214510.1016/j.ejpb.2018.07.012
    [Google Scholar]
  55. ParkJ.H. JangL.B. LeeM.K. The role of vesicle size in dermal delivery of therapeutics: comparative analysis of different lipid vesicles.J. Control. Release201930011813010.1016/j.jconrel.2019.01.002
    [Google Scholar]
  56. SaryantiD. ZulfaI.N. Optimization carbopol and glycerol as basis of hand gel antiseptics extract ethanol ceremai leaf (Phyllantus acidus (L.) Skeels) with simplex lattice design.JPSCR201721354310.20961/jpscr.v2i01.5238
    [Google Scholar]
  57. RoweR.C. SheskeyP.J. QuinnM.E. Handbook of Pharmaceutical Excipients.Pharmaceutical Press and American Pharmacists Association2009
    [Google Scholar]
  58. KurniawansyahI.S. RusdianaT. SopyanI. Desy AryaI.F. WahabH.A. NurzanahD. Comparative study of in situ gel formulation based on the physico-chemical aspect: Systematic review.Gels20239864510.3390/gels908064537623100
    [Google Scholar]
  59. ShindeU. PokharkarS. ModaniS. Design and evaluation of microemulsion gel system of nadifloxacin.Indian J. Pharm. Sci.201274323724710.4103/0250‑474X.10606623439454
    [Google Scholar]
  60. LohaniA. Formulation, development and evaluation of ciprofloxacin hydrochloride soft gel for oral administration.2011
    [Google Scholar]
  61. CarvalhoF.C. BarbiM.S. SarmentoV.H.V. ChiavacciL.A. NettoF.M. GremiãoM.P.D. Surfactant systems for nasal zidovudine delivery: structural, rheological and mucoadhesive properties.J. Pharm. Pharmacol.201062443043910.1211/jpp.62.04.000420604831
    [Google Scholar]
  62. LeiW. YuC. LinH. ZhouX. Development of tacrolimus-loaded transfersomes for deeper skin penetration enhancement and therapeutic effect improvement in vivo .Asian. Jour. Pharm. Sci20138633634510.1016/j.ajps.2013.09.005
    [Google Scholar]
  63. ZhangJ.P. WeiY.H. ZhouY. LiY.Q. WuX.A. Ethosomes, binary ethosomes and transfersomes of terbinafine hydrochloride: A comparative study.Arch. Pharm. Res.201235110911710.1007/s12272‑012‑0112‑022297749
    [Google Scholar]
  64. ElsayedM.M. AbdallahO.Y. NaggarV.F. KhalafallahN.M. Deformable liposomes and ethosomes as carriers for skin delivery of ketotifen.Pharmazie200762213313717341034
    [Google Scholar]
  65. AhadA. AqilM. KohliK. SultanaY. MujeebM. AliA. Role of novel terpenes in transcutaneous permeation of valsartan: effectiveness and mechanism of action.Drug Dev. Ind. Pharm.201137558359610.3109/03639045.2010.53221921469947
    [Google Scholar]
  66. LakshmiP.K. KalpanaB. PrasanthiD. Invasomes-novel vesicular carriers for enhanced skin permeation.Sys Rev Pharm201341263010.4103/0975‑8453.135837
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010336809240815050316
Loading
/content/journals/cpb/10.2174/0113892010336809240815050316
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test