Skip to content
2000
image of COL1A1, COL1A2, CHN1, and FN1 Promote Tumorogenesis and Act as Markers of Diagnosis and Survival in Gastric Cancer Patients

Abstract

Objectives

This study aimed to comprehensively investigate the molecular landscape of gastric cancer (GC) by integrating various bioinformatics tools and experimental validations.

Methodology

GSE79973 dataset, limma package, STRING, UALCAN, GEPIA, OncoDB, cBioPortal, DAVID, TISIDB, Gene Set Cancer Analysis (GSCA), tissue samples, RT-qPCR, and cell proliferation assay were employed in this study.

Results

Analysis of the GSE79973 dataset identified 300 differentially expressed genes (DEGs), from which COL1A1, COL1A2, CHN1, and FN1 emerged as pivotal hub genes using protein-protein interaction network analysis. Subsequent validation across The Cancer Genome Atlas (TCGA) datasets confirmed their up-regulation in GC tissues compared to normal controls. Promoter methylation analysis revealed decreased methylation levels of these hubs in GC tissues, suggesting their potential role in tumorigenesis. Mutational analysis using cBioPortal showcased frequent mutations in these genes, particularly FN1, further highlighting their significance in GC pathogenesis. Survival analysis indicated their correlation with reduced overall survival rates among GC patients, supported by the development of a robust prognostic model. Prediction of hub-associated miRNAs and gene enrichment analysis provided insights into their regulatory mechanisms and downstream pathways, implicating their involvement in extracellular matrix remodeling and cell migration. Drug sensitivity analysis revealed correlations between hub gene expression and drug response, while RT-qPCR validation confirmed their up-regulation in clinical GC samples. Finally, functional assays demonstrated the impact of FN1 knockdown on cellular proliferation, colony formation, and wound healing capacities.

Conclusion

Overall, this study elucidates the crucial role of COL1A1, COL1A2, CHN1, and FN1 in GC pathogenesis and underscores their potential as diagnostic markers and therapeutic targets.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010332329241119104430
2025-01-13
2025-03-26
Loading full text...

Full text loading...

References

  1. Guan W.L. He Y. Xu R.H. Gastric cancer treatment: recent progress and future perspectives. J. Hematol. Oncol. 2023 16 1 57 10.1186/s13045‑023‑01451‑3 37245017
    [Google Scholar]
  2. Lu J. Wang Q. Zhang H. Liu J. Ren J. Fan J. Gong J. Sui Y. Chen X. Analysis of endoscopic and pathological features of 6961 cases of gastric cancer. Sci. Rep. 2024 14 1 7159 10.1038/s41598‑024‑58018‑6 38532198
    [Google Scholar]
  3. Gatasheh M.K. Natarajan S.R. Krishnamoorthy R. Alsulami T.S. Rajagopal P. Palanisamy C.P. Veeraraghavan V.P. Jayaraman S. Molecular analysis to identify novel potential biomarkers as drug targets in colorectal cancer therapy: An integrated bioinformatics analysis. Mol. Cell. Oncol. 2024 11 1 2326699 10.1080/23723556.2024.2326699 38505173
    [Google Scholar]
  4. Yuqin L. Zhu Y. Niyazi G. Haoran Y. Gaoheng D. Gongjian D. Trend in incidence and mortality of cancer, a high -risk area in Gansu province: Analysis of the 2010 to 2018 in Gansu Central Cancer Registry. Res. Sq. 2022 10.21203/rs.3.rs‑1600018/v1
    [Google Scholar]
  5. Yang W.J. Zhao H.P. Yu Y. Wang J.H. Guo L. Liu J.Y. Pu J. Lv J. Updates on global epidemiology, risk and prognostic factors of gastric cancer. World J. Gastroenterol. 2023 29 16 2452 2468 10.3748/wjg.v29.i16.2452 37179585
    [Google Scholar]
  6. López M.J. Carbajal J. Alfaro A.L. Saravia L.G. Zanabria D. Araujo J.M. Quispe L. Zevallos A. Buleje J.L. Cho C.E. Sarmiento M. Pinto J.A. Fajardo W. Characteristics of gastric cancer around the world. Crit. Rev. Oncol. Hematol. 2023 181 103841 10.1016/j.critrevonc.2022.103841 36240980
    [Google Scholar]
  7. Yang Q. Xu D. Yang Y. Lu S. Wang D. Wang L. Global, regional, and national burden of gastric cancer in adolescents and young adults, 1990–2019: A systematic analysis for the global burden of disease study 2019. Am. J. Gastroenterol. 119 3 454 467 2024 10.14309/ajg.0000000000002551
    [Google Scholar]
  8. Morazán-Fernández D. Mora J. Molina-Mora J.A. In silico pipeline to identify tumor-specific antigens for cancer immunotherapy using exome sequencing data. Phenomics 2023 3 2 130 137 10.1007/s43657‑022‑00084‑9 37197645
    [Google Scholar]
  9. Huang N. He H. He Y. Gu W. Xu M. Liu L. Xiaotan Sanjie recipe, a compound Chinese herbal medicine, inhibits gastric cancer metastasis by regulating GnT-V-mediated E-cadherin glycosylation. J. Integr. Med. 2023 21 6 561 574 10.1016/j.joim.2023.11.001 37980180
    [Google Scholar]
  10. Zhang X.L. Yang Y.S. Xu D.P. Qu J.H. Guo M.Z. Gong Y. Huang J. Comparative study on overexpression of HER2/neu and HER3 in gastric cancer. World J. Surg. 2009 33 10 2112 2118 10.1007/s00268‑009‑0142‑z 19636613
    [Google Scholar]
  11. Hameed Y. Usman M. Ahmad M. Does mouse mammary tumor-like virus cause human breast cancer? Applying Bradford Hill criteria postulates. Bull. Natl. Res. Cent. 2020 44 1 183 10.1186/s42269‑020‑00439‑0
    [Google Scholar]
  12. Ahmad M. Khan M. Asif R. Sial N. Abid U. Shamim T. Hameed Z. Iqbal M.J. Sarfraz U. Saeed H. Asghar Z. Akram M. Ullah Q. Younas Q.A. Rauf L. Hadi A. Maryam S. Hameed Y. Khan M.R. Tariq E. Saeed S. Expression characteristics and significant diagnostic and prognostic values of ANLN in human cancers. Int. J. Gen. Med. 2022 15 1957 1972 10.2147/IJGM.S343975
    [Google Scholar]
  13. Xu W. Li H. Hameed Y. Abdel-Maksoud M.A. Almutairi S.M. Mubarak A. Aufy M. Alturaiki W. Alshalani A.J. Mahmoud A.M. Li C. Elucidating the clinical and immunological value of m6A regulator-mediated methylation modification patterns in adrenocortical carcinoma. Oncol. Res. 2023 31 5 819 831 10.32604/or.2023.029414 37547754
    [Google Scholar]
  14. Yıldırım M.E. Genetic and Epigenetic Changes of CDKN2A in Gastric Cancer. Cumhuriyet Medical Journal 2024 46 2 99 103
    [Google Scholar]
  15. Zhao J. Ding X. Peng C. Tian X. Wang M. Fu Y. Guo H. Bai X. Zhai X. Huang Q. Assessment of Ki-67 proliferation index in prognosis prediction in patients with nonmetastatic clear cell renal cell carcinoma and tumor thrombus. Urol. Oncol. 42 1 23.e5 23.e13 2024 10.1016/j.urolonc.2023.11.001 38030468
    [Google Scholar]
  16. Kumar S. Pandey J. Bharti S. Senapati S. Analysis of the Ki-67 proliferation index in relation to tumor, node, and metastasis (TNM) stage in patients with oral cavity squamous cell carcinoma. Cureus 2024 16 7 e63751 10.7759/cureus.63751 39100007
    [Google Scholar]
  17. Usman M. Hameed Y. GNB1, a novel diagnostic and prognostic potential biomarker of head and neck and liver hepatocellular carcinoma. J. Cancer Res. Ther. 2023
    [Google Scholar]
  18. Zhou D. Fan X. Xie S. Lu M. Gao L. Zhang R. Zhu M. Clinical application of serum CST4 combined with tumor markers in the diagnosis of digestive system malignant tumors. Oncol. Lett. 2024 28 2 384 10.3892/ol.2024.14517 38966578
    [Google Scholar]
  19. Tutan M.B. Canal K. Aslan O. Sezikli İ. Yüksek M.A. Topçu R. Turhan V.B. Kendirci M. Şahiner İ.T. Prognostic significance of tumor and inflammatory markers in disease-free and overall survival duration in colonic adenocarcinoma patients. Cureus 2024 16 9 e68667 10.7759/cureus.68667 39371828
    [Google Scholar]
  20. Joshi S.S. Badgwell B.D. Current treatment and recent progress in gastric cancer. CA Cancer J. Clin. 2021 71 3 264 279 10.3322/caac.21657 33592120
    [Google Scholar]
  21. Shin W.S. Xie F. Chen B. Yu P. Yu J. To K.F. Kang W. Updated epidemiology of gastric cancer in Asia: Decreased incidence but still a big challenge. Cancers (Basel) 2023 15 9 2639 10.3390/cancers15092639 37174105
    [Google Scholar]
  22. Wang F.H. Zhang X.T. Tang L. Wu Q. Cai M.Y. Li Y.F. Qu X.J. Qiu H. Zhang Y.J. Ying J.E. Zhang J. Sun L.Y. Lin R.B. Wang C. Liu H. Qiu M.Z. Guan W.L. Rao S.X. Ji J.F. Xin Y. Sheng W.Q. Xu H.M. Zhou Z.W. Zhou A.P. Jin J. Yuan X.L. Bi F. Liu T.S. Liang H. Zhang Y.Q. Li G.X. Liang J. Liu B.R. Shen L. Li J. Xu R.H. The Chinese Society of Clinical Oncology (CSCO): Clinical guidelines for the diagnosis and treatment of gastric cancer, 2023. Cancer Commun. (Lond.) 2024 44 1 127 172 10.1002/cac2.12516 38160327
    [Google Scholar]
  23. Ogunjobi T.T. Bioinformatics applications in chronic diseases: A comprehensive review of genomic, transcriptomics, proteomic, metabolomics, and machine learning approaches. Medinformatics 2024 1 18 10.47852/bonviewMEDIN42022335
    [Google Scholar]
  24. Panchal S. Biomarkers for disease identification. Biomarkers in Environmental and Human Health Biomonitoring. Elsevier 2024 269 291 10.1016/B978‑0‑443‑13860‑7.00011‑2
    [Google Scholar]
  25. Wang Y. Cottman M. Schiffman J.D. Molecular inversion probes: A novel microarray technology and its application in cancer research. Cancer Genet. 2012 205 7-8 341 355 10.1016/j.cancergen.2012.06.005 22867995
    [Google Scholar]
  26. Ma Y. Jiang Z. Pan L. Zhou Y. Xia R. Liu Z. Yuan L. Current development of molecular classifications of gastric cancer based on omics (Review). Int. J. Oncol. 2024 65 3 89 10.3892/ijo.2024.5677 39092559
    [Google Scholar]
  27. Ullah I. Yang L. Yin F.T. Sun Y. Li X.H. Li J. Wang X.J. Multi-omics approaches in colorectal cancer screening and diagnosis, recent updates and future perspectives. Cancers (Basel) 2022 14 22 5545 10.3390/cancers14225545 36428637
    [Google Scholar]
  28. Long F. Li S. Xu Y. Liu M. Zhang X. Zhou J. Chen Y. Rong Y. Meng X. Wang F. Dynamic gene screening enabled identification of a 10-gene panel for early detection and progression assessment of gastric cancer. Comput. Struct. Biotechnol. J. 2023 21 677 687 10.1016/j.csbj.2022.12.036 36659923
    [Google Scholar]
  29. Orsini A. Diquigiovanni C. Bonora E. Omics technologies improving breast cancer research and diagnostics. Int. J. Mol. Sci. 2023 24 16 12690 10.3390/ijms241612690 37628869
    [Google Scholar]
  30. Mering C. Huynen M. Jaeggi D. Schmidt S. Bork P. Snel B. STRING: A database of predicted functional associations between proteins. Nucleic Acids Res. 2003 31 1 258 261 10.1093/nar/gkg034 12519996
    [Google Scholar]
  31. Chandrashekar D.S. Bashel B. Balasubramanya S.A.H. Creighton C.J. Ponce-Rodriguez I. Chakravarthi B.V.S.K. Varambally S. UALCAN: A portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia 2017 19 8 649 658 10.1016/j.neo.2017.05.002 28732212
    [Google Scholar]
  32. Tang Z. Kang B. Li C. Chen T. Zhang Z. GEPIA2: An enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019 47 W1 W556 W560 10.1093/nar/gkz430 31114875
    [Google Scholar]
  33. Thul P.J. Lindskog C. The human protein atlas: A spatial map of the human proteome. Protein Sci. 2018 27 1 233 244 10.1002/pro.3307 28940711
    [Google Scholar]
  34. Tang G. Cho M. Wang X. OncoDB: An interactive online database for analysis of gene expression and viral infection in cancer. Nucleic Acids Res. 2022 50 D1 D1334 D1339 10.1093/nar/gkab970 34718715
    [Google Scholar]
  35. Cerami E. Gao J. Dogrusoz U. Gross B.E. Sumer S.O. Aksoy B.A. Jacobsen A. Byrne C.J. Heuer M.L. Larsson E. Antipin Y. Reva B. Goldberg A.P. Sander C. Schultz N. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 2 5 401 404 10.1158/2159‑8290.CD‑12‑0095 22588877
    [Google Scholar]
  36. Musoro J.Z. Zwinderman A.H. Puhan M.A. ter Riet G. Geskus R.B. Validation of prediction models based on lasso regression with multiply imputed data. BMC Med. Res. Methodol. 2014 14 1 116 10.1186/1471‑2288‑14‑116 25323009
    [Google Scholar]
  37. Dennis G. Sherman B.T. Hosack D.A. Yang J. Gao W. Lane H.C. Lempicki R.A. DAVID: Database for annotation, visualization, and integrated discovery. Genome Biol. 2003 4 5 P3 10.1186/gb‑2003‑4‑5‑p3 12734009
    [Google Scholar]
  38. Chen Y. Wang X. miRDB: An online database for prediction of functional microRNA targets. Nucleic Acids Res. 2020 48 D1 D127 D131 10.1093/nar/gkz757 31504780
    [Google Scholar]
  39. Liu C.J. Hu F.F. Xie G.Y. Miao Y.R. Li X.W. Zeng Y. Guo A.Y. GSCA: An integrated platform for gene set cancer analysis at genomic, pharmacogenomic and immunogenomic levels. Brief. Bioinform. 2023 24 1 bbac558 10.1093/bib/bbac558 36549921
    [Google Scholar]
  40. Ru B. Wong C.N. Tong Y. Zhong J.Y. Zhong S.S.W. Wu W.C. Chu K.C. Wong C.Y. Lau C.Y. Chen I. Chan N.W. Zhang J. TISIDB: An integrated repository portal for tumor–immune system interactions. Bioinformatics 2019 35 20 4200 4202 10.1093/bioinformatics/btz210 30903160
    [Google Scholar]
  41. Sun W. Bunn P. Jin C. Little P. Zhabotynsky V. Perou C.M. Hayes D.N. Chen M. Lin D.Y. The association between copy number aberration, DNA methylation and gene expression in tumor samples. Nucleic Acids Res. 2018 46 6 3009 3018 10.1093/nar/gky131 29529299
    [Google Scholar]
  42. Wang X. Dong Y. Zhang H. Zhao Y. Miao T. Mohseni G. Du L. Wang C. DNA methylation drives a new path in gastric cancer early detection: Current impact and prospects. Genes Dis. 2024 11 2 847 860 10.1016/j.gendis.2023.02.038 37692483
    [Google Scholar]
  43. Zang Y. Ran X. Yuan J. Wu H. Wang Y. Li H. Teng H. Sun Z. Genomic hallmarks and therapeutic targets of ribosome biogenesis in cancer. Brief. Bioinform. 2024 25 2 bbae023 10.1093/bib/bbae023 38343327
    [Google Scholar]
  44. Clark A.J. Lillard J.W. A comprehensive review of bioinformatics tools for genomic biomarker discovery driving precision oncology. Genes (Basel) 2024 15 8 1036 10.3390/genes15081036 39202397
    [Google Scholar]
  45. Matsuoka T. Yashiro M. Bioinformatics analysis and validation of potential markers associated with prediction and prognosis of gastric cancer. Int. J. Mol. Sci. 2024 25 11 5880 10.3390/ijms25115880 38892067
    [Google Scholar]
  46. Zheng S. Yang L. Dai Y. Jiang L. Wei Y. Wen H. Xu Y. Screening and survival analysis of hub genes in gastric cancer based on bioinformatics. J. Comput. Biol. 2019 26 11 1316 1325 10.1089/cmb.2019.0119 31233344
    [Google Scholar]
  47. Liu X. Wu J. Zhang D. Bing Z. Tian J. Ni M. Zhang X. Meng Z. Liu S. Identification of potential key genes associated with the pathogenesis and prognosis of gastric cancer based on integrated bioinformatics analysis. Front. Genet. 2018 9 265 10.3389/fgene.2018.00265 30065754
    [Google Scholar]
  48. Li C.Y. Liang G.Y. Yao W.Z. Sui J. Shen X. Zhang Y.Q. Peng H. Hong W.W. Ye Y.C. Zhang Z.Y. Zhang W.H. Yin L.H. Pu Y.P. Identification and functional characterization of microRNAs reveal a potential role in gastric cancer progression. Clin. Transl. Oncol. 2017 19 2 162 172 10.1007/s12094‑016‑1516‑y 27173517
    [Google Scholar]
  49. Li C.Y. Liang G.Y. Yao W.Z. Sui J. Shen X. Zhang Y.Q. Peng H. Hong W.W. Ye Y.C. Zhang Z.Y. Zhang W.H. Yin L.H. Pu Y.P. Integrated analysis of long non-coding RNA competing interactions reveals the potential role in progression of human gastric cancer. Int. J. Oncol. 2016 48 5 1965 1976 10.3892/ijo.2016.3407 26935047
    [Google Scholar]
  50. Xu S. Xu H. Wang W. Li S. Li H. Li T. Zhang W. Yu X. Liu L. The role of collagen in cancer: From bench to bedside. J. Transl. Med. 2019 17 1 309 10.1186/s12967‑019‑2058‑1 31521169
    [Google Scholar]
  51. Martins Cavaco A.C. Dâmaso S. Casimiro S. Costa L. Collagen biology making inroads into prognosis and treatment of cancer progression and metastasis. Cancer Metastasis Rev. 2020 39 3 603 623 10.1007/s10555‑020‑09888‑5 32447477
    [Google Scholar]
  52. Chivu-Economescu M. Necula L.G. Matei L. Dragu D. Bleotu C. Sorop A. Herlea V. Dima S. Popescu I. Diaconu C.C. Collagen family and other matrix remodeling proteins identified by bioinformatics analysis as hub genes involved in gastric cancer progression and prognosis. Int. J. Mol. Sci. 2022 23 6 3214 10.3390/ijms23063214 35328635
    [Google Scholar]
  53. Niftullayev S. Lamarche-Vane N. Regulators of Rho GTPases in the nervous system: Molecular implication in axon guidance and neurological disorders. Int. J. Mol. Sci. 2019 20 6 1497 10.3390/ijms20061497 30934641
    [Google Scholar]
  54. Dong Y. Wu X. Xu C. Hameed Y. Abdel-Maksoud M.A. Almanaa T.N. Kotob M.H. Al-Qahtani W.H. Mahmoud A.M. Cho W.C. Li C. Prognostic model development and molecular subtypes identification in bladder urothelial cancer by oxidative stress signatures. Aging (Albany NY) 2024 16 3 2591 2616 10.18632/aging.205499 38305808
    [Google Scholar]
  55. Peng D.H. The role of the epithelial-to-mesenchymal transition (emt) in lung cancer progression. Doctor of Philosophy, The University of Texas MD Anderson Cancer 2017
    [Google Scholar]
  56. Abdel-Maksoud M.A. Ullah S. Nadeem A. Shaikh A. Zia M.K. Zakri A.M. Almanaa T.N. Alfuraydi A.A. Mubarak A. Hameed Y. Unlocking the diagnostic, prognostic roles, and immune implications of BAX gene expression in pan-cancer analysis. Am. J. Transl. Res. 2024 16 1 63 74 10.62347/TWOY1681 38322551
    [Google Scholar]
  57. Hameed Y. Decoding the significant diagnostic and prognostic importance of maternal embryonic leucine zipper kinase in human cancers through deep integrative analyses. J. Cancer Res. Ther. 2023 19 7 1852 1864 10.4103/jcrt.jcrt_1902_21 38376289
    [Google Scholar]
  58. Efthymiou G. Saint A. Ruff M. Rekad Z. Ciais D. Van Obberghen-Schilling E. Shaping up the tumor microenvironment with cellular fibronectin. Front. Oncol. 2020 10 641 10.3389/fonc.2020.00641 32426283
    [Google Scholar]
  59. Sheng S. Guo B. Wang Z. Zhang Z. Zhou J. Huo Z. Aberrant methylation and immune microenvironment are associated with overexpressed fibronectin 1: A diagnostic and prognostic target in head and neck squamous cell carcinoma. Front. Mol. Biosci. 2021 8 753563 10.3389/fmolb.2021.753563 34746236
    [Google Scholar]
  60. Paolillo M. Schinelli S. Extracellular matrix alterations in metastatic processes. Int. J. Mol. Sci. 2019 20 19 4947 10.3390/ijms20194947 31591367
    [Google Scholar]
  61. Kciuk M. Yahya E.B. Mohamed Ibrahim Mohamed M. Rashid S. Iqbal M.O. Kontek R. Abdulsamad M.A. Allaq A.A. Recent advances in molecular mechanisms of cancer immunotherapy. Cancers (Basel) 2023 15 10 2721 10.3390/cancers15102721 37345057
    [Google Scholar]
  62. Galbo P.M. Cancer associated fibroblasts: Functional diversity across cancer types and roles in glioblastoma. Doctor of Philosophy, Albert Einstein College of Medicine 2022
    [Google Scholar]
  63. Vastrad B. Vastrad C. Investigation of the underlying hub genes and molexular pathogensis in gastric cancer by integrated bioinformatic analyses. bioRxiv 2020 10.1101/2020.12.20.423656
    [Google Scholar]
  64. Zhang L. Sahar A.M. Li C. Chaudhary A. Yousaf I. Saeedah M.A. Mubarak A. Haris M. Nawaz M. Reem M.A. Ramadan F.A. Mostafa A.A.M. Feng W. Hameed Y. A detailed multi-omics analysis of GNB2 gene in human cancers. Braz. J. Biol. 2024 84 e260169 10.1590/1519‑6984.260169 35730811
    [Google Scholar]
  65. Kumar S. Patel G.K. Ghoshal U.C. Helicobacter pylori-induced inflammation: Possible factors modulating the risk of gastric cancer. Pathogens 2021 10 9 1099 10.3390/pathogens10091099 34578132
    [Google Scholar]
  66. Alzahrani S. Lina T.T. Gonzalez J. Pinchuk I.V. Beswick E.J. Reyes V.E. Effect of Helicobacter pylori on gastric epithelial cells. World J. Gastroenterol. 2014 20 36 12767 12780 10.3748/wjg.v20.i36.12767 25278677
    [Google Scholar]
  67. Hardbower D.M. de Sablet T. Chaturvedi R. Wilson K.T. Chronic inflammation and oxidative stress. Gut Microbes 2013 4 6 475 481 10.4161/gmic.25583 23811829
    [Google Scholar]
  68. Salvatori S. Marafini I. Laudisi F. Monteleone G. Stolfi C. Helicobacter pylori and gastric cancer: Pathogenetic mechanisms. Int. J. Mol. Sci. 2023 24 3 2895 10.3390/ijms24032895 36769214
    [Google Scholar]
  69. Torres J. Touati E. Mitochondrial function in health and disease: Responses to Helicobacter pylori metabolism and impact in gastric cancer development. Helicobacter pylori and Gastric Cancer Springer Cham Backert S. 2024 53 81 10.1007/978‑3‑031‑47331‑9_3
    [Google Scholar]
  70. Yan L. Li W. Chen F. Wang J. Chen J. Chen Y. Ye W. Inflammation as a mediator of microbiome dysbiosis-associated DNA methylation changes in gastric premalignant lesions. Phenomics 2023 3 5 496 501 10.1007/s43657‑023‑00118‑w 37881317
    [Google Scholar]
  71. Bai S. Xiong X. Tang B. Ji T. Li X. Qu X. Li W. hsa-miR-199b-3p prevents the epithelial-mesenchymal transition and dysfunction of the renal tubule by regulating E-cadherin through targeting kdm6a in diabetic nephropathy. Oxid. Med. Cell Longev. 2021 2021 10.1155/2021/8814163 34257820
    [Google Scholar]
  72. Tang B. Li W. Ji T. Li X. Qu X. Bai S. MiR-199b-3p prevent the epithelial-mesenchymal transition (EMT) and brosis of renal tubule by regulating E-cadherin through targeting KDM6A in Diabetic nephropathy (DN). Res. Sq. 2020 10.21203/rs.3.rs‑24819/v1
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010332329241119104430
Loading
/content/journals/cpb/10.2174/0113892010332329241119104430
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Gastric cancer ; hub genes ; prognosis ; GSE79973
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test