Skip to content
2000
Volume 26, Issue 5
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Background

Inflammatory Bowel Disease (IBD) represents a chronic and recurrent inflammatory condition affecting the gastrointestinal tract, with a rising global incidence. Current treatment approaches include surgery and drugs. However, surgeries are invasive procedures, while drug treatments often present with various side effects. Gossypetin, a flavonoid found abundantly in plants such as hibiscus, exhibits anti-oxidant and anti-cancer properties. However, its potential impact on IBD remains unexplored.

Objective

This study aimed to investigate the therapeutic potential of gossypetin on colitis.

Methods

We employed the DSS-induced colitis model to evaluate the therapeutic potential of gossypetin on colitis. The efficacy of gossypetin was assessed within this model using the Disease Activity Index (DAI) score and histological analysis. Additionally, we utilized qRT-PCR to measure the levels of inflammatory cytokines and Superoxide Dismutase (SOD). Immunohistochemistry confirmed the expression of tight junction markers, COX-2, and phosphorylated JNK protein, normally associated with disease progression. Furthermore, Western blot analysis was conducted to examine the SOD levels and anti-apoptotic effects of gossypetin.

Results

In DSS-induced colitis mice, gossypetin treatment ameliorated weight loss and reduced colon length caused by DSS treatment. Additionally, gossypetin-treated groups exhibited DAI scores and reduced histological damage. Moreover, gossypetin treatment increased tight junction expression, decreased inflammatory responses, reduced ROS levels, attenuated JNK signaling, and decreased apoptosis.

Conclusion

Gossypetin shows therapeutic potential for mitigating the symptoms and progression of colitis by targeting ROS–JNK signaling involved in inflammation and tissue damage. This highlights the potential of natural compounds such as gossypetin for targeted therapies with reduced side effects and improved efficacy.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010331882240901095733
2025-04-01
2025-07-12
Loading full text...

Full text loading...

References

  1. NgS.C. ShiH.Y. HamidiN. UnderwoodF.E. TangW. BenchimolE.I. PanaccioneR. GhoshS. WuJ.C.Y. ChanF.K.L. SungJ.J.Y. KaplanG.G. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies.Lancet2017390101142769277810.1016/S0140‑6736(17)32448‑0 29050646
    [Google Scholar]
  2. KwakM.S. ChaJ.M. LeeH.H. ChoiY.S. SeoS.I. KoK.J. ParkD.I. KimS.H. KimT.J. Emerging trends of inflammatory bowel disease in South Korea: A nationwide population‐based study.J. Gastroenterol. Hepatol.20193461018102610.1111/jgh.14542 30447025
    [Google Scholar]
  3. AnanthakrishnanA.N. Epidemiology and risk factors for IBD.Nat. Rev. Gastroenterol. Hepatol.201512420521710.1038/nrgastro.2015.34 25732745
    [Google Scholar]
  4. KnowlesS.R. GraffL.A. WildingH. HewittC. KeeferL. Mikocka-WalusA. Quality of Life in Inflammatory Bowel Disease: A Systematic Review and Meta-analyses—Part I.Inflamm. Bowel Dis.201824474275110.1093/ibd/izx100 29562277
    [Google Scholar]
  5. GuanQ. A comprehensive review and update on the pathogenesis of inflammatory bowel disease.J. Immunol. Res.2019201911610.1155/2019/7247238 31886308
    [Google Scholar]
  6. FordA.C. AchkarJ.P. KhanK.J. KaneS.V. TalleyN.J. MarshallJ.K. MoayyediP. Efficacy of 5-aminosalicylates in ulcerative colitis: Systematic review and meta-analysis.Am. J. Gastroenterol.2011106460161610.1038/ajg.2011.67 21407188
    [Google Scholar]
  7. CaiZ. WangS. LiJ. Treatment of inflammatory bowel disease: A comprehensive review.Front. Med. (Lausanne)2021876547410.3389/fmed.2021.765474 34988090
    [Google Scholar]
  8. CarvalhoF.A. NalbantogluI. Ortega-FernandezS. AitkenJ.D. SuY. KorenO. WaltersW.A. KnightR. LeyR.E. Vijay-KumarM. GewirtzA.T. Interleukin-1β (IL-1β) promotes susceptibility of Toll-like receptor 5 (TLR5) deficient mice to colitis.Gut201261337338410.1136/gut.2011.240556 21646247
    [Google Scholar]
  9. CorridoniD. PastorelliL. MattioliB. LocoveiS. IshikawaD. ArseneauK.O. ChieppaM. CominelliF. PizarroT.T. Probiotic bacteria regulate intestinal epithelial permeability in experimental ileitis by a TNF-dependent mechanism.PLoS One201277e4206710.1371/journal.pone.0042067 22848704
    [Google Scholar]
  10. WangW. LiX. ZhengD. ZhangD. PengX. ZhangX. AiF. WangX. MaJ. XiongW. LiG. ZhouY. ShenS. Dynamic changes and functions of macrophages and M1/M2 subpopulations during ulcerative colitis-associated carcinogenesis in an AOM/DSS mouse model.Mol. Med. Rep.20151142397240610.3892/mmr.2014.3018 25434400
    [Google Scholar]
  11. ChenW. ZhuoM. LuX. XiaX. ZhaoY. HuangZ. XuJ. LiW. YuC. SRC-3 protects intestine from DSS-induced colitis by inhibiting inflammation and promoting goblet cell differentiation through enhancement of KLF4 expression.Int. J. Biol. Sci.201814142051206410.7150/ijbs.28576 30585268
    [Google Scholar]
  12. YaoD. DongM. DaiC. WuS. Inflammation and Inflammatory Cytokine Contribute to the Initiation and Development of Ulcerative Colitis and Its Associated Cancer.Inflamm. Bowel Dis.201925101595160210.1093/ibd/izz149 31287863
    [Google Scholar]
  13. ShahiniA. ShahiniA. Role of interleukin-6-mediated inflammation in the pathogenesis of inflammatory bowel disease: focus on the available therapeutic approaches and gut microbiome.J. Cell Commun. Signal.2023171557410.1007/s12079‑022‑00695‑x 36112307
    [Google Scholar]
  14. LiY. SoendergaardC. BergenheimF.H. AronoffD.M. MilneG. RiisL.B. SeidelinJ.B. JensenK.B. NielsenO.H. COX-2–PGE2 Signaling Impairs Intestinal Epithelial Regeneration and Associates with TNF Inhibitor Responsiveness in Ulcerative Colitis.EBioMedicine20183649750710.1016/j.ebiom.2018.08.040 30190207
    [Google Scholar]
  15. LeeM.S. TsaiC.W. WangC.P. ChenJ.H. LinH.H. Anti‐prostate cancer potential of gossypetin via inducing apoptotic and autophagic cell death.Mol. Carcinog.201756122578259210.1002/mc.22702 28671312
    [Google Scholar]
  16. KuoW.T. ShenL. ZuoL. ShashikanthN. OngM.L.D.M. WuL. ZhaJ. EdelblumK.L. WangY. WangY. NilsenS.P. TurnerJ.R. Inflammation-induced Occludin Downregulation Limits Epithelial Apoptosis by Suppressing Caspase-3 Expression.Gastroenterology201915751323133710.1053/j.gastro.2019.07.058 31401143
    [Google Scholar]
  17. HwangJ. JinJ. JeonS. MoonS.H. ParkM.Y. YumD.Y. KimJ.H. KangJ.E. ParkM.H. KimE.J. PanJ.G. KwonO. OhG.T. SOD1 suppresses pro-inflammatory immune responses by protecting against oxidative stress in colitis.Redox Biol.20203710176010.1016/j.redox.2020.101760 33096425
    [Google Scholar]
  18. TianT. WangZ. ZhangJ. Pathomechanisms of Oxidative Stress in Inflammatory Bowel Disease and Potential Antioxidant Therapies.Oxid. Med. Cell. Longev.2017201711810.1155/2017/4535194 28744337
    [Google Scholar]
  19. PanZ. HeX. ShaoY. ChenW. FangB. ROS/JNK-mediated lysosomal injury in rat intestinal epithelial-6 cells during heat stress.J. Therm. Biol.202210910332610.1016/j.jtherbio.2022.103326 36195392
    [Google Scholar]
  20. ChambersJ.W. LoGrassoP.V. Mitochondrial c-Jun N-terminal kinase (JNK) signaling initiates physiological changes resulting in amplification of reactive oxygen species generation.J. Biol. Chem.201128618160521606210.1074/jbc.M111.223602 21454558
    [Google Scholar]
  21. DouW. ZhangJ. RenG. DingL. SunA. DengC. WuX. WeiX. ManiS. WangZ. Mangiferin attenuates the symptoms of dextran sulfate sodium-induced colitis in mice via NF-κB and MAPK signaling inactivation.Int. Immunopharmacol.201423117017810.1016/j.intimp.2014.08.025 25194678
    [Google Scholar]
  22. ShimokawaS. IwashinaT. MurakamiN. Flower color changes in three Japanese hibiscus species: further quantitative variation of anthocyanin and flavonols.Nat. Prod. Commun.20151031934578X150100010.1177/1934578X1501000319 25924527
    [Google Scholar]
  23. GadottiV.M. CaballeroA.G. BergerN.D. GladdingC.M. ChenL. PfeiferT.A. ZamponiG.W. Small organic molecule disruptors of Cav3.2 - USP5 interactions reverse inflammatory and neuropathic pain.Mol. Pain201511s12990-015-001110.1186/s12990‑015‑0011‑8 25889575
    [Google Scholar]
  24. KhanA. MannaK. DasD.K. KeshS.B. SinhaM. DasU. BiswasS. SenguptaA. SikderK. DattaS. GhoshM. ChakrabartyA. BanerjiA. DeyS. Gossypetin ameliorates ionizing radiation-induced oxidative stress in mice liver—a molecular approach.Free Radic. Res.201549101173118610.3109/10715762.2015.1053878 25994373
    [Google Scholar]
  25. DiyahN.W. Isnaeni; Hidayati, S.W.; Purwanto, B.T.; Siswandono, Design of gossypetin derivatives based on naturally occurring flavonoid in Hibiscus sabdariffa and the molecular docking as antibacterial agents.J. Basic Clin. Physiol. Pharmacol.202132470771410.1515/jbcpp‑2020‑0455 34214320
    [Google Scholar]
  26. JangS. JangS. KoJ. KimE. HyungH. ParkJ.Y. LimS.G. ParkS. KimM.O. RyooZ.Y. Protection of Neuronal Cells from Lipopolysaccharide-Induced Systemic Inflammation by Gossypetin.Curr. Top. Nutraceutical Res.202321213814310.37290/ctnr2641‑452X.21:138‑143
    [Google Scholar]
  27. ZhangD. ZhuP. LiuY. ShuY. ZhouJ.Y. JiangF. ChenT. YangB.L. ChenY.G. Total flavone of Abelmoschus manihot ameliorates Crohn’s disease by regulating the NF κB and MAPK signaling pathways.Int. J. Mol. Med.201944132433410.3892/ijmm.2019.4180 31059072
    [Google Scholar]
  28. SpisniE. ValeriiM.C. De FazioL. CavazzaE. BorsettiF. SgromoA. CandelaM. CentanniM. RizelloF. StrillacciA. Cyclooxygenase-2 silencing for the treatment of colitis: A combined in vivo strategy based on RNA interference and engineered Escherichia coli.Mol. Ther.201523227828910.1038/mt.2014.222 25393372
    [Google Scholar]
  29. LiH. FanC. LuH. FengC. HeP. YangX. XiangC. ZuoJ. TangW. Protective role of berberine on ulcerative colitis through modulating enteric glial cells–intestinal epithelial cells–immune cells interactions.Acta Pharm. Sin. B202010344746110.1016/j.apsb.2019.08.006 32140391
    [Google Scholar]
  30. PastorelliL. De SalvoC. MercadoJ.R. VecchiM. PizarroT.T. Central role of the gut epithelial barrier in the pathogenesis of chronic intestinal inflammation: lessons learned from animal models and human genetics.Front. Immunol.2013428010.3389/fimmu.2013.00280 24062746
    [Google Scholar]
  31. ParikhK. AntanaviciuteA. Fawkner-CorbettD. JagielowiczM. AulicinoA. LagerholmC. DavisS. KinchenJ. ChenH.H. AlhamN.K. AshleyN. JohnsonE. HublitzP. BaoL. LukomskaJ. AndevR.S. BjörklundE. KesslerB.M. FischerR. GoldinR. KoohyH. SimmonsA. Colonic epithelial cell diversity in health and inflammatory bowel disease.Nature20195677746495510.1038/s41586‑019‑0992‑y 30814735
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010331882240901095733
Loading
/content/journals/cpb/10.2174/0113892010331882240901095733
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test