Skip to content
2000
image of Gossypetin Alleviates DSS-induced Colitis by Regulating COX2 and ROS–JNK Signaling

Abstract

Background

Inflammatory Bowel Disease (IBD) represents a chronic and recurrent inflammatory condition affecting the gastrointestinal tract, with a rising global incidence. Current treatment approaches include surgery and drugs. However, surgeries are invasive procedures, while drug treatments often present with various side effects. Gossypetin, a flavonoid found abundantly in plants such as hibiscus, exhibits anti-oxidant and anti-cancer properties. However, its potential impact on IBD remains unexplored.

Objective

This study aimed to investigate the therapeutic potential of gossypetin on colitis.

Methods

We employed the DSS-induced colitis model to evaluate the therapeutic potential of gossypetin on colitis. The efficacy of gossypetin was assessed within this model using the Disease Activity Index (DAI) score and histological analysis. Additionally, we utilized qRT-PCR to measure the levels of inflammatory cytokines and Superoxide Dismutase (SOD). Immunohistochemistry confirmed the expression of tight junction markers, COX-2, and phosphorylated JNK protein, normally associated with disease progression. Furthermore, Western blot analysis was conducted to examine the SOD levels and anti-apoptotic effects of gossypetin.

Results

In DSS-induced colitis mice, gossypetin treatment ameliorated weight loss and reduced colon length caused by DSS treatment. Additionally, gossypetin-treated groups exhibited DAI scores and reduced histological damage. Moreover, gossypetin treatment increased tight junction expression, decreased inflammatory responses, reduced ROS levels, attenuated JNK signaling, and decreased apoptosis.

Conclusion

Gossypetin shows therapeutic potential for mitigating the symptoms and progression of colitis by targeting ROS–JNK signaling involved in inflammation and tissue damage. This highlights the potential of natural compounds such as gossypetin for targeted therapies with reduced side effects and improved efficacy.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010331882240901095733
2024-11-26
2024-12-26
Loading full text...

Full text loading...

References

  1. Ng S.C. Shi H.Y. Hamidi N. Underwood F.E. Tang W. Benchimol E.I. Panaccione R. Ghosh S. Wu J.C.Y. Chan F.K.L. Sung J.J.Y. Kaplan G.G. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet 2017 390 10114 2769 2778 10.1016/S0140‑6736(17)32448‑0 29050646
    [Google Scholar]
  2. Kwak M.S. Cha J.M. Lee H.H. Choi Y.S. Seo S.I. Ko K.J. Park D.I. Kim S.H. Kim T.J. Emerging trends of inflammatory bowel disease in South Korea: A nationwide population‐based study. J. Gastroenterol. Hepatol. 2019 34 6 1018 1026 10.1111/jgh.14542 30447025
    [Google Scholar]
  3. Ananthakrishnan A.N. Epidemiology and risk factors for IBD. Nat. Rev. Gastroenterol. Hepatol. 2015 12 4 205 217 10.1038/nrgastro.2015.34 25732745
    [Google Scholar]
  4. Knowles S.R. Graff L.A. Wilding H. Hewitt C. Keefer L. Mikocka-Walus A. Quality of Life in Inflammatory Bowel Disease: A Systematic Review and Meta-analyses—Part I. Inflamm. Bowel Dis. 2018 24 4 742 751 10.1093/ibd/izx100 29562277
    [Google Scholar]
  5. Guan Q. A comprehensive review and update on the pathogenesis of inflammatory bowel disease. J. Immunol. Res. 2019 2019 1 16 10.1155/2019/7247238 31886308
    [Google Scholar]
  6. Ford A.C. Achkar J.P. Khan K.J. Kane S.V. Talley N.J. Marshall J.K. Moayyedi P. Efficacy of 5-aminosalicylates in ulcerative colitis: Systematic review and meta-analysis. Am. J. Gastroenterol. 2011 106 4 601 616 10.1038/ajg.2011.67 21407188
    [Google Scholar]
  7. Cai Z. Wang S. Li J. Treatment of inflammatory bowel disease: A comprehensive review. Front. Med. (Lausanne) 2021 8 765474 10.3389/fmed.2021.765474 34988090
    [Google Scholar]
  8. Carvalho F.A. Nalbantoglu I. Ortega-Fernandez S. Aitken J.D. Su Y. Koren O. Walters W.A. Knight R. Ley R.E. Vijay-Kumar M. Gewirtz A.T. Interleukin-1β (IL-1β) promotes susceptibility of Toll-like receptor 5 (TLR5) deficient mice to colitis. Gut 2012 61 3 373 384 10.1136/gut.2011.240556 21646247
    [Google Scholar]
  9. Corridoni D. Pastorelli L. Mattioli B. Locovei S. Ishikawa D. Arseneau K.O. Chieppa M. Cominelli F. Pizarro T.T. Probiotic bacteria regulate intestinal epithelial permeability in experimental ileitis by a TNF-dependent mechanism. PLoS One 2012 7 7 e42067 10.1371/journal.pone.0042067 22848704
    [Google Scholar]
  10. Wang W. Li X. Zheng D. Zhang D. Peng X. Zhang X. Ai F. Wang X. Ma J. Xiong W. Li G. Zhou Y. Shen S. Dynamic changes and functions of macrophages and M1/M2 subpopulations during ulcerative colitis-associated carcinogenesis in an AOM/DSS mouse model. Mol. Med. Rep. 2015 11 4 2397 2406 10.3892/mmr.2014.3018 25434400
    [Google Scholar]
  11. Chen W. Zhuo M. Lu X. Xia X. Zhao Y. Huang Z. Xu J. Li W. Yu C. SRC-3 protects intestine from DSS-induced colitis by inhibiting inflammation and promoting goblet cell differentiation through enhancement of KLF4 expression. Int. J. Biol. Sci. 2018 14 14 2051 2064 10.7150/ijbs.28576 30585268
    [Google Scholar]
  12. Yao D. Dong M. Dai C. Wu S. Inflammation and Inflammatory Cytokine Contribute to the Initiation and Development of Ulcerative Colitis and Its Associated Cancer. Inflamm. Bowel Dis. 2019 25 10 1595 1602 10.1093/ibd/izz149 31287863
    [Google Scholar]
  13. Shahini A. Shahini A. Role of interleukin-6-mediated inflammation in the pathogenesis of inflammatory bowel disease: focus on the available therapeutic approaches and gut microbiome. J. Cell Commun. Signal. 2023 17 1 55 74 10.1007/s12079‑022‑00695‑x 36112307
    [Google Scholar]
  14. Li Y. Soendergaard C. Bergenheim F.H. Aronoff D.M. Milne G. Riis L.B. Seidelin J.B. Jensen K.B. Nielsen O.H. COX-2–PGE2 Signaling Impairs Intestinal Epithelial Regeneration and Associates with TNF Inhibitor Responsiveness in Ulcerative Colitis. EBioMedicine 2018 36 497 507 10.1016/j.ebiom.2018.08.040 30190207
    [Google Scholar]
  15. Lee M.S. Tsai C.W. Wang C.P. Chen J.H. Lin H.H. Anti‐prostate cancer potential of gossypetin via inducing apoptotic and autophagic cell death. Mol. Carcinog. 2017 56 12 2578 2592 10.1002/mc.22702 28671312
    [Google Scholar]
  16. Kuo W.T. Shen L. Zuo L. Shashikanth N. Ong M.L.D.M. Wu L. Zha J. Edelblum K.L. Wang Y. Wang Y. Nilsen S.P. Turner J.R. Inflammation-induced Occludin Downregulation Limits Epithelial Apoptosis by Suppressing Caspase-3 Expression. Gastroenterology 2019 157 5 1323 1337 10.1053/j.gastro.2019.07.058 31401143
    [Google Scholar]
  17. Hwang J. Jin J. Jeon S. Moon S.H. Park M.Y. Yum D.Y. Kim J.H. Kang J.E. Park M.H. Kim E.J. Pan J.G. Kwon O. Oh G.T. SOD1 suppresses pro-inflammatory immune responses by protecting against oxidative stress in colitis. Redox Biol. 2020 37 101760 10.1016/j.redox.2020.101760 33096425
    [Google Scholar]
  18. Tian T. Wang Z. Zhang J. Pathomechanisms of Oxidative Stress in Inflammatory Bowel Disease and Potential Antioxidant Therapies. Oxid. Med. Cell. Longev. 2017 2017 1 18 10.1155/2017/4535194 28744337
    [Google Scholar]
  19. Pan Z. He X. Shao Y. Chen W. Fang B. ROS/JNK-mediated lysosomal injury in rat intestinal epithelial-6 cells during heat stress. J. Therm. Biol. 2022 109 103326 10.1016/j.jtherbio.2022.103326 36195392
    [Google Scholar]
  20. Chambers J.W. LoGrasso P.V. Mitochondrial c-Jun N-terminal kinase (JNK) signaling initiates physiological changes resulting in amplification of reactive oxygen species generation. J. Biol. Chem. 2011 286 18 16052 16062 10.1074/jbc.M111.223602 21454558
    [Google Scholar]
  21. Dou W. Zhang J. Ren G. Ding L. Sun A. Deng C. Wu X. Wei X. Mani S. Wang Z. Mangiferin attenuates the symptoms of dextran sulfate sodium-induced colitis in mice via NF-κB and MAPK signaling inactivation. Int. Immunopharmacol. 2014 23 1 170 178 10.1016/j.intimp.2014.08.025 25194678
    [Google Scholar]
  22. Shimokawa S. Iwashina T. Murakami N. Flower color changes in three Japanese hibiscus species: further quantitative variation of anthocyanin and flavonols. Nat. Prod. Commun. 2015 10 3 1934578X1501000 10.1177/1934578X1501000319 25924527
    [Google Scholar]
  23. Gadotti V.M. Caballero A.G. Berger N.D. Gladding C.M. Chen L. Pfeifer T.A. Zamponi G.W. Small organic molecule disruptors of Cav3.2 - USP5 interactions reverse inflammatory and neuropathic pain. Mol. Pain 2015 11 s12990-015-0011 10.1186/s12990‑015‑0011‑8 25889575
    [Google Scholar]
  24. Khan A. Manna K. Das D.K. Kesh S.B. Sinha M. Das U. Biswas S. Sengupta A. Sikder K. Datta S. Ghosh M. Chakrabarty A. Banerji A. Dey S. Gossypetin ameliorates ionizing radiation-induced oxidative stress in mice liver—a molecular approach. Free Radic. Res. 2015 49 10 1173 1186 10.3109/10715762.2015.1053878 25994373
    [Google Scholar]
  25. Diyah N.W. Isnaeni Hidayati S.W. Purwanto B.T. Siswandono Design of gossypetin derivatives based on naturally occurring flavonoid in Hibiscus sabdariffa and the molecular docking as antibacterial agents. J. Basic Clin. Physiol. Pharmacol. 2021 32 4 707 714 10.1515/jbcpp‑2020‑0455 34214320
    [Google Scholar]
  26. Jang S. Jang S. Ko J. Kim E. Hyung H. Park J.Y. Lim S.G. Park S. Kim M.O. Ryoo Z.Y. Protection of Neuronal Cells from Lipopolysaccharide-Induced Systemic Inflammation by Gossypetin. Curr. Top. Nutraceutical Res. 2023 21 2 138 143 10.37290/ctnr2641‑452X.21:138‑143
    [Google Scholar]
  27. Zhang D. Zhu P. Liu Y. Shu Y. Zhou J.Y. Jiang F. Chen T. Yang B.L. Chen Y.G. Total flavone of Abelmoschus manihot ameliorates Crohn’s disease by regulating the NF‑κB and MAPK signaling pathways. Int. J. Mol. Med. 2019 44 1 324 334 10.3892/ijmm.2019.4180 31059072
    [Google Scholar]
  28. Spisni E. Valerii M.C. De Fazio L. Cavazza E. Borsetti F. Sgromo A. Candela M. Centanni M. Rizello F. Strillacci A. Cyclooxygenase-2 silencing for the treatment of colitis: A combined in vivo strategy based on RNA interference and engineered Escherichia coli. Mol. Ther. 2015 23 2 278 289 10.1038/mt.2014.222 25393372
    [Google Scholar]
  29. Li H. Fan C. Lu H. Feng C. He P. Yang X. Xiang C. Zuo J. Tang W. Protective role of berberine on ulcerative colitis through modulating enteric glial cells–intestinal epithelial cells–immune cells interactions. Acta Pharm. Sin. B 2020 10 3 447 461 10.1016/j.apsb.2019.08.006 32140391
    [Google Scholar]
  30. Pastorelli L. De Salvo C. Mercado J.R. Vecchi M. Pizarro T.T. Central role of the gut epithelial barrier in the pathogenesis of chronic intestinal inflammation: lessons learned from animal models and human genetics. Front. Immunol. 2013 4 280 10.3389/fimmu.2013.00280 24062746
    [Google Scholar]
  31. Parikh K. Antanaviciute A. Fawkner-Corbett D. Jagielowicz M. Aulicino A. Lagerholm C. Davis S. Kinchen J. Chen H.H. Alham N.K. Ashley N. Johnson E. Hublitz P. Bao L. Lukomska J. Andev R.S. Björklund E. Kessler B.M. Fischer R. Goldin R. Koohy H. Simmons A. Colonic epithelial cell diversity in health and inflammatory bowel disease. Nature 2019 567 7746 49 55 10.1038/s41586‑019‑0992‑y 30814735
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010331882240901095733
Loading
/content/journals/cpb/10.2174/0113892010331882240901095733
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: gossypetin ; anti-oxidant ; inflammatory bowel disease ; Anti-inflammation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test