Skip to content
2000
image of Integrated Transcriptomics and Metabolomics Studies Reveal Steroid Biosynthesis Pathway and BCL2 Inhibitory Diazo-Progesterone of Drimia indica for Conservation and Sustainable Utilization

Abstract

Background

This study is the first report on the sequence of the transcriptome of , a non-model plant with medicinal properties found in a forest tribal belt, using the Illumina NovaSeq platform. The primary objectives of this study were to elucidate the gene expression profiles in different tissues, identify key regulatory genes and pathways involved in secondary metabolite biosynthesis, and explore the plant's potential pharmacological properties.

Methods

The study generated 670087 unigenes from both leaves and roots and identified putative homologs of annotated sequences against UniProt/Swiss-Prot and KEGG databases. The functional annotation of the identified unigenes revealed the secondary metabolite biosynthetic process as the most prominent pathway, with gene enrichment analysis predominantly accounting for secondary metabolite pathways, such as terpenoid, steroid, flavonoid, alkaloid, selenocompound, and cortisol synthesis. The study also identified regulatory genes NAC, Bhlh, WRKY, and C2H2 on the transcriptome dataset.

Results

The functionally annotated unigenes suggested phytocompounds in to have multi-potent properties, such as anti-cancer, anti-inflammatory, and anti-diabetic activities, which has been further validated by GC-MS-based metabolite profiling. Notably, we have identified two novel molecules, di-azo progesterone and 4H-pyran-4-one 2,3-dihydro-3,5-dihydroxy-6-methyl, with potential BCL2 inhibitory anticancer properties, supported by stable binding interactions observed in molecular docking and dynamics simulations. Additionally, an abundance of mono-nucleotide SSR markers has been identified, useful for genetic diversity studies.

Conclusion

This study provides a foundational understanding of the molecular mechanisms in , highlighting its potential as a source for novel therapeutic agents and contributing valuable insights for future pharmacological and agricultural applications. However, further studies are warranted to confirm these findings and validate their pharmacological efficacy and therapeutic potential. The SSR markers identified also offer valuable tools for molecular genetics, plant breeding, and sustainable drug development.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010322778240927073617
2024-10-09
2025-01-19
Loading full text...

Full text loading...

References

  1. Flagship programme: Threatened plants conservation | NBRI 2023 Available from: https://nbri.res.in/threatened-plants-conservation
  2. Hippocratic journal of unani medicine, Ministry of AYUSH, Government of India. 2023 Available from: https://ccrum.res.in/ViewData/MultipleArchive?mid=1600
  3. CBIC. Customs. 2023 Available from: https://old.cbic.gov.in/htdocs-cbec/customs
  4. Kameshwari M.N.S. Chemical Constituents of Wild Onion Urginea Indica Kunth Liliaceae. Int. J. Pharm. Life Sci. 2013 4 2 2414 2420
    [Google Scholar]
  5. Chunekar K.C. Pandey G.S. BhavaprakashNighantu (Indian Materiamedica) of Shri Bhavamisra. Varanasi Chaukhambha Bharati Academy 2002
    [Google Scholar]
  6. NMPB. Medicinal List | National Medicinal Plants Board. 2023 Available from: https://nmpb.nic.in/medicinal_list
  7. Kamble P. Ghatge-Patil S. Current scenario of Bauhinia racemosa and Drimia indica as medicinal plants and their future prospects. Int. J. Innov. Res. Sci. Eng. Technol. 2023 08 1646 1649 10.5281/zenodo.8115836
    [Google Scholar]
  8. Aswal S. Kumar A. Semwal R.B. Chauhan A. Kumar A. Lehmann J. Semwal D.K. Drimia indica: A plant used in traditional medicine and its potential for clinical uses. Medicina (Kaunas) 2019 55 6 255 10.3390/medicina55060255 31181697
    [Google Scholar]
  9. Nath J. Studies on the numerous medicinal utilities of the plant Urginea indica: A comprehensive overvieW. Int. J. Curr. Pharm. Res. 2020 1–4 1 4 10.22159/ijcpr.2020v12i6.40276
    [Google Scholar]
  10. Sankhyadhar S.C. Sankhyadhar D.D. Sri Narhari Pandit’s Raj Nighantu. Varanasi, India Chaukhambha Orientalia 2012 310
    [Google Scholar]
  11. Alluri N. Ravi B.V. Puttarudrappa L. Majumdar M. in vitro antioxidant, anti-inflammatory, thrombolytic potential of Drimia nagarjunae, a tribal medicinal plant from South India. Int. J. Adv. Life Sci. 2016 9 362 368
    [Google Scholar]
  12. Alluri N. Majumdar m. in vitro anticancer potential and GC-MS analysis of Drimia nagarjunae, an endangered medicinal plant. Bangladesh J. Pharmacol. 2015 10 2 303 10.3329/bjp.v10i2.21909
    [Google Scholar]
  13. Kalimuthu A.K. Panneerselvam T. Pavadai P. Pandian S.R.K. Sundar K. Murugesan S. Ammunje D.N. Kumar S. Arunachalam S. Kunjiappan S. Pharmacoinformatics-based investigation of bioactive compounds of Rasam (South Indian recipe) against human cancer. Sci. Rep. 2021 11 1 21488 10.1038/s41598‑021‑01008‑9 34728718
    [Google Scholar]
  14. Chen J. Tang X. Ren C. Wei B. Wu Y. Wu Q. Pei J. Full-length transcriptome sequences and the identification of putative genes for flavonoid biosynthesis in safflower. BMC Genomics 2018 19 1 548 10.1186/s12864‑018‑4946‑9 30041604
    [Google Scholar]
  15. Jha S. Sen S. Bufadienolides in different chromosomal races of Indian squill. Phytochemistry 1981 20 3 524 526 10.1016/S0031‑9422(00)84185‑0
    [Google Scholar]
  16. Grabherr M.G. Haas B.J. Yassour M. Levin J.Z. Thompson D.A. Amit I. Adiconis X. Fan L. Raychowdhury R. Zeng Q. Chen Z. Mauceli E. Hacohen N. Gnirke A. Rhind N. di Palma F. Birren B.W. Nusbaum C. Lindblad-Toh K. Friedman N. Regev A. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011 29 7 644 652 10.1038/nbt.1883 21572440
    [Google Scholar]
  17. Pandey D. Gupta A.K. Bioactive compound in Urginea indica (Kunth.) from bastar and its spectral analysis by HPLC, UV-Vis, FT-IR, NMR, and ESI-MS. SN Compr. Clin. Med. 2019 1 4 241 254 10.1007/s42399‑018‑0039‑y
    [Google Scholar]
  18. Soltani Howyzeh M. Sadat Noori S.A. Shariati J V. Amiripour M. Comparative transcriptome analysis to identify putative genes involved in thymol biosynthesis pathway in medicinal plant Trachyspermum ammi L. Sci. Rep. 2018 8 1 13405 10.1038/s41598‑018‑31618‑9 30194320
    [Google Scholar]
  19. Mazumdar A.B. Chattopadhyay S. sequencing, De novo assembly, functional annotation and analysis of Phyllanthus amarus leaf transcriptome using the illumina Platform. Front. Plant Sci. 2016 6 1199 10.3389/fpls.2015.01199
    [Google Scholar]
  20. Dhiman N. Kumar A. Kumar D. Bhattacharya A. De novo transcriptome analysis of the critically endangered alpine Himalayan herb Nardostachys jatamansi reveals the biosynthesis pathway genes of tissue-specific secondary metabolites. Sci. Rep. 2020 10 1 17186 10.1038/s41598‑020‑74049‑1 33057076
    [Google Scholar]
  21. Li D. Deng Z. Qin B. Liu X. Men Z. De novo assembly and characterization of bark transcriptome using Illumina sequencing and development of EST-SSR markers in rubber tree (Hevea brasiliensis Muell. Arg.). BMC Genomics 2012 13 1 192 10.1186/1471‑2164‑13‑192 22607098
    [Google Scholar]
  22. Mudalkar S. Golla R. Ghatty S. Reddy A.R. De novo transcriptome analysis of an imminent biofuel crop, Camelina sativa L. using Illumina GAIIX sequencing platform and identification of SSR markers. Plant Mol. Biol. 2014 84 1-2 159 171 10.1007/s11103‑013‑0125‑1 24002439
    [Google Scholar]
  23. Kalra S. Puniya B.L. Kulshreshtha D. Kumar S. Kaur J. Ramachandran S. Singh K. De Novo transcriptome sequencing reveals important molecular networks and metabolic pathways of the plant, Chlorophytum borivilianum. PLoS One 2013 8 12 e83336 10.1371/journal.pone.0083336 24376689
    [Google Scholar]
  24. Zhang Y.H. Zhang S.D. Ling L.Z. De novo transcriptome analysis to identify flavonoid biosynthesis genes in Stellera chamaejasme. Plant Gene 2015 4 64 68 10.1016/j.plgene.2015.09.006
    [Google Scholar]
  25. Schroeder A. Mueller O. Stocker S. Salowsky R. Leiber M. Gassmann M. Lightfoot S. Menzel W. Granzow M. Ragg T. The RIN: An RNA integrity number for assigning integrity values to RNA measurements. BMC Mol. Biol. 2006 7 1 3 10.1186/1471‑2199‑7‑3 16448564
    [Google Scholar]
  26. Ewels P. Magnusson M. Lundin S. Käller M. Multi Q.C. MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics 2016 32 19 3047 3048 10.1093/bioinformatics/btw354 27312411
    [Google Scholar]
  27. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011 17 1 10 12 10.14806/ej.17.1.200
    [Google Scholar]
  28. Haas B.J. Papanicolaou A. Yassour M. Grabherr M. Blood P.D. Bowden J. Couger M.B. Eccles D. Li B. Lieber M. MacManes M.D. Ott M. Orvis J. Pochet N. Strozzi F. Weeks N. Westerman R. William T. Dewey C.N. Henschel R. LeDuc R.D. Friedman N. Regev A. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 2013 8 8 1494 1512 10.1038/nprot.2013.084 23845962
    [Google Scholar]
  29. Fu L. Niu B. Zhu Z. Wu S. Li W. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics 2012 28 23 3150 3152 10.1093/bioinformatics/bts565 23060610
    [Google Scholar]
  30. Kamenetsky R. Faigenboim A. Shemesh Mayer E. Ben Michael T. Gershberg C. Kimhi S. Esquira I. Rohkin Shalom S. Eshel D. Rabinowitch H.D. Sherman A. Integrated transcriptome catalogue and organ-specific profiling of gene expression in fertile garlic (Allium sativum L.). BMC Genomics 2015 16 1 12 10.1186/s12864‑015‑1212‑2 25609311
    [Google Scholar]
  31. Li B. Dewey C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 2011 12 1 323 10.1186/1471‑2105‑12‑323 21816040
    [Google Scholar]
  32. Huang Q. Huang X. Deng J. Liu H. Liu Y. Yu K. Huang B. Differential gene expression between leaf and rhizome in Atractylodes lancea: A comparative transcriptome analysis. Front. Plant Sci. 2016 7 348 10.3389/fpls.2016.00348 27066021
    [Google Scholar]
  33. Robinson M.D. McCarthy D.J. Smyth G.K. edgeR: A bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010 26 1 139 140 10.1093/bioinformatics/btp616
    [Google Scholar]
  34. Raudvere U. Kolberg L. Kuzmin I. Arak T. Adler P. Peterson H. Vilo J. g:Profiler: A web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019 47 W1 W191 W198 10.1093/nar/gkz369 31066453
    [Google Scholar]
  35. Tang D. Chen M. Huang X. Zhang G. Zeng L. Zhang G. Wu S. Wang Y. SRplot: A free online platform for data visualization and graphing. PLoS One 2023 18 11 e0294236 10.1371/journal.pone.0294236 37943830
    [Google Scholar]
  36. Kanehisa M. Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000 28 1 27 30 10.1093/nar/28.1.27 10592173
    [Google Scholar]
  37. Kanehisa M. The KEGG database. Novartis Found. Symp. 2002 247 91 101 10.1002/0470857897.ch8 12539951
    [Google Scholar]
  38. Beier S. Thiel T. Münch T. Scholz U. Mascher M. MISA-web: A web server for microsatellite prediction. Bioinformatics 2017 33 16 2583 2585 10.1093/bioinformatics/btx198 28398459
    [Google Scholar]
  39. Bar-Lev Y. Senden E. Pasmanik-Chor M. Sapir Y. De novo transcriptome characterization of Iris atropurpurea (the Royal Iris) and phylogenetic analysis of MADS-box and R2R3-MYB gene families. Sci. Rep. 2021 11 1 16246 10.1038/s41598‑021‑95085‑5 34376711
    [Google Scholar]
  40. Riaño-Pachón D.M. Ruzicic S. Dreyer I. Mueller-Roeber B. PlnTFDB: An integrative plant transcription factor database. BMC Bioinformatics 2007 8 1 42 10.1186/1471‑2105‑8‑42 17286856
    [Google Scholar]
  41. Tian S. Gu C. Liu L. Zhu X. Zhao Y. Huang S. Transcriptome profiling of Louisiana iris root and identification of genes involved in lead-stress response. Int. J. Mol. Sci. 2015 16 12 28087 28097 10.3390/ijms161226084 26602925
    [Google Scholar]
  42. Altemimi A. Lakhssassi N. Baharlouei A. Watson D. Lightfoot D. Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants 2017 6 4 42 10.3390/plants6040042 28937585
    [Google Scholar]
  43. Ralte L. Khiangte L. Thangjam N.M. Kumar A. Singh Y.T. GC–MS and molecular docking analyses of phytochemicals from the underutilized plant, Parkia timoriana revealed candidate anti-cancerous and anti-inflammatory agents. Sci. Rep. 2022 12 1 3395 10.1038/s41598‑022‑07320‑2 35233058
    [Google Scholar]
  44. Halket J.M. Waterman D. Przyborowska A.M. Patel R.K.P. Fraser P.D. Bramley P.M. Chemical derivatization and mass spectral libraries in metabolic profiling by GC/MS and LC/MS/MS. J. Exp. Bot. 2005 56 410 219 243 10.1093/jxb/eri069 15618298
    [Google Scholar]
  45. Loganathan T. Barathinivas A. Soorya C. Balamurugan S. Nagajothi T.G. Jayakumararaj R. GCMS profile of bioactive secondary metabolites with therapeutic potential in the ethanolic leaf extracts of Azadirachta indica: A sacred traditional medicinal plant of INDIA. J. Drug Deliv. Ther. 2021 11 4-S 119 126 10.22270/jddt.v11i4‑S.4967
    [Google Scholar]
  46. Dallakyan S. Olson A.J. Small-molecule library screening by docking with PyRx. Methods Mol. Biol. 2015 1263 243 250 10.1007/978‑1‑4939‑2269‑7_19 25618350
    [Google Scholar]
  47. Abraham M.J. Murtola T. Schulz R. Páll S. Smith J.C. Hess B. Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015 1-2 19 25 10.1016/j.softx.2015.06.001
    [Google Scholar]
  48. Langdon W.B. Performance of genetic programming optimised Bowtie2 on genome comparison and analytic testing (GCAT) benchmarks. BioData Min. 2015 8 1 1 7 10.1186/s13040‑014‑0034‑0 25621011
    [Google Scholar]
  49. Gavilanes-Martínez M.A. Coral-Garzón A. Cáceres D.H. García A.M. Antifungal activity of boric acid, triclosan and zinc oxide against different clinically relevant Candida species. Mycoses 2021 64 9 1045 1052 10.1111/myc.13302 33969547
    [Google Scholar]
  50. Nader W. Zahm A. Jaschik J. Phosphonic acid in plant-based food and feed products – Where does it come from? Food Control 2023 150 109701 10.1016/j.foodcont.2023.109701
    [Google Scholar]
  51. Stolarska M. Gucwa K. Urbańczyk-Lipkowska Z. Andruszkiewicz R. Peptide dendrimers as antifungal agents and carriers for potential antifungal agent— N 3 ‐(4‐methoxyfumaroyl)‐( S )‐2,3‐diaminopropanoic acid—synthesis and antimicrobial activity. J. Pept. Sci. 2020 26 1 e3226 10.1002/psc.3226 31845463
    [Google Scholar]
  52. Agarwal G. Tichenor H. Roo S. Lane T.R. Ekins S. McElroy C.A. Targeted metabolomics of organophosphate pesticides and chemical warfare nerve agent simulants using high- and low-dose exposure in human liver microsomes. Metabolites 2023 13 4 495 10.3390/metabo13040495 37110155
    [Google Scholar]
  53. Lovecka P. Thimova M. Grznarova P. Lipov J. Knejzlik Z. Stiborova H. Nindhia T.G.T. Demnerova K. Ruml T. Study of cytotoxic effects of benzonitrile pesticides. Biomed Res. Int. 2015 2015 381264 10.1155/2015/381264
    [Google Scholar]
  54. Long C. Zhu G.Y. Sheng X.H. Xing K. Venema K. Wang X.G. Xiao L.F. Guo Y. Ni H.M. Zhu N.H. Qi X.L. Dietary supplementation with selenomethionine enhances antioxidant capacity and selenoprotein gene expression in layer breeder roosters. Poult. Sci. 2022 101 11 102113 10.1016/j.psj.2022.102113 36087443
    [Google Scholar]
  55. Sak K. Dietary flavonoids with catechol moiety inhibit anticancer action of bortezomib: What about the other boronic acid-based drugs? Curr. Cancer Drug Targets 2022 22 9 741 748 10.2174/1568009622666220516102235 35578889
    [Google Scholar]
  56. Zhang J. Liang S. Duan J. Wang J. Chen S. Cheng Z. Zhang Q. Liang X. Li Y. De novo assembly and characterisation of the transcriptome during seed development, and generation of genic-SSR markers in Peanut (Arachis hypogaea L.). BMC Genomics 2012 13 1 90 10.1186/1471‑2164‑13‑90 22409576
    [Google Scholar]
  57. Ballerini E.S. Mockaitis K. Arnold M.L. Transcriptome sequencing and phylogenetic analysis of floral and leaf MIKCC MADS-box and R2R3 MYB transcription factors from the monocot Iris fulva. Gene 2013 531 2 337 346 10.1016/j.gene.2013.08.067 23994293
    [Google Scholar]
  58. Jun D. Musilova L. Pohanka M. Jung Y.S. Bostik P. Kuca K. Reactivation of human acetylcholinesterase and butyrylcholinesterase inhibited by leptophos-oxon with different oxime reactivators in vitro. Int. J. Mol. Sci. 2010 11 8 2856 2863 10.3390/ijms11082856 21152278
    [Google Scholar]
  59. Naffaa M.M. Hibbs D.E. Chebib M. Hanrahan J.R. Roles of hydrophilic residues in GABA binding site of GABA-ρ1 receptor explain the addition/inhibition effects of competitive ligands. Neurochem. Int. 2022 153 105258 10.1016/j.neuint.2021.105258 34933011
    [Google Scholar]
  60. McGinty D. Letizia C.S. Api A.M. Fragrance material review on 2-hexadecen-1-ol, 3,7,11,15-tetramethyl. Food Chem. Toxicol. 2010 48 S101 S102 10.1016/j.fct.2009.11.023 20141872
    [Google Scholar]
  61. Ko G.A. Cho S.K. Phytol suppresses melanogenesis through proteasomal degradation of MITF via the ROS-ERK signaling pathway. Chem. Biol. Interact. 2018 286 132 140 10.1016/j.cbi.2018.02.033 29486182
    [Google Scholar]
  62. El-fayoumy E.A. Shanab S.M.M. Gaballa H.S. Tantawy M.A. Shalaby E.A. Evaluation of antioxidant and anticancer activity of crude extract and different fractions of Chlorella vulgaris axenic culture grown under various concentrations of copper ions. BMC Complement. Med. Ther. 2021 21 1 51 10.1186/s12906‑020‑03194‑x 33546663
    [Google Scholar]
  63. Fan K. Yu Y. Hu Z. Qian S. Zhao Z. Meng J. Zheng S. Huang Q. Zhang Z. Nie D. Han Z. Antifungal activity and action mechanisms of 2,4-Di- tert -butylphenol against Ustilaginoidea virens. J. Agric. Food Chem. 2023 71 46 17723 17732 10.1021/acs.jafc.3c05157 37938806
    [Google Scholar]
  64. Kaari M. Joseph J. Manikkam R. Kalyanasundaram R. Sivaraj A. Anbalmani S. Murthy S. Sahu A.K. Said M. Dastager S.G. Ramasamy B. A novel finding: 2,4-Di-tert-butylphenol from Streptomyces bacillaris ANS2 effective against Mycobacterium tuberculosis and cancer cell lines. Appl. Biochem. Biotechnol. 2023 195 11 6572 6585 10.1007/s12010‑023‑04403‑2 36881320
    [Google Scholar]
  65. Mujeeb F. Bajpai P. Pathak N. Phytochemical evaluation, antimicrobial activity, and determination of bioactive components from leaves of Aegle marmelos. BioMed Res. Int. 2014 2014 1 11 10.1155/2014/497606 24900969
    [Google Scholar]
  66. Shaaban M.T. Ghaly M.F. Fahmi S.M. Antibacterial activities of hexadecanoic acid methyl ester and green‐synthesized silver nanoparticles against multidrug‐resistant bacteria. J. Basic Microbiol. 2021 61 6 557 568 10.1002/jobm.202100061 33871873
    [Google Scholar]
  67. Bhardwaj M. Sali V.K. Mani S. Vasanthi H.R. Correction to: Neophytadiene from Turbinaria ornata suppresses LPS-induced inflammatory response in RAW 264.7 macrophages and sprague dawley rats. Inflammation 2020 43 3 951 952 10.1007/s10753‑020‑01197‑x 32076939
    [Google Scholar]
  68. Gonzalez-Rivera M.L. Barragan-Galvez J.C. Gasca-Martínez D. Hidalgo-Figueroa S. Isiordia-Espinoza M. Alonso-Castro A.J. In vivo neuropharmacological effects of neophytadiene. Molecules 2023 28 8 3457 10.3390/molecules28083457 37110691
    [Google Scholar]
  69. Aparna V. Dileep K.V. Mandal P.K. Karthe P. Sadasivan C. Haridas M. Anti-inflammatory property of n-hexadecanoic acid: Structural evidence and kinetic assessment. Chem. Biol. Drug Des. 2012 80 3 434 439 10.1111/j.1747‑0285.2012.01418.x 22642495
    [Google Scholar]
  70. Bharath B. Perinbam K. Devanesan S. AlSalhi M.S. Saravanan M. Evaluation of the anticancer potential of Hexadecanoic acid from brown algae Turbinaria ornata on HT–29 colon cancer cells. J. Mol. Struct. 2021 1235 130229 10.1016/j.molstruc.2021.130229
    [Google Scholar]
  71. Kocaçalışkan I. Talan I. Terzi I. Antimicrobial activity of catechol and pyrogallol as allelochemicals. Z. Naturforsch. C J. Biosci. 2006 61 9-10 639 642 10.1515/znc‑2006‑9‑1004 17137106
    [Google Scholar]
  72. Ranaei V. Pilevar Z. Mousavi Khaneghah A. Hosseini H. Propionic Acid. Food Technol. Biotechnol. 2020 58 2 115 127 10.17113/ftb.58.02.20.6356 32831564
    [Google Scholar]
  73. Büyükgüzel E. Büyükgüzel K. Snela M. Erdem M. Radtke K. Ziemnicki K. Adamski Z. Effect of boric acid on antioxidant enzyme activity, lipid peroxidation, and ultrastructure of midgut and fat body of Galleria mellonella. Cell Biol. Toxicol. 2013 29 2 117 129 10.1007/s10565‑013‑9240‑7 23475114
    [Google Scholar]
  74. Froestl W. Cooke N.G. Mickel S.J. Chemistry of GABAB modulators. The GABA Receptors Humana Press 2007 239 251 10.1007/978‑1‑59745‑465‑0_9
    [Google Scholar]
  75. Jang Y.W. Jung J.Y. Lee I.K. Kang S.Y. Yun B.S. Nonanoic acid, an antifungal compound from Hibiscus syriacus Ggoma. Mycobiology 2012 40 2 145 146 10.5941/MYCO.2012.40.2.145 22870060
    [Google Scholar]
  76. Arora S. Meena S. GC-MS profiling of Ceropegia Bulbosa roxb. var. bulbosa, an endangered plant from Thar Desert, Rajasthan. Pharma Innovation Journal 2017 6 11 568 573
    [Google Scholar]
  77. Kim B.R. Kim H.M. Jin C.H. Kang S.Y. Kim J.B. Jeon Y.G. Park K.Y. Lee I.S. Han A.R. Composition and antioxidant activities of volatile organic compounds in radiation-bred Coreopsis cultivars. Plants 2020 9 6 717 10.3390/plants9060717 32512839
    [Google Scholar]
  78. Krishnamoorthy K. Subramaniam P. Phytochemical profiling of leaf, stem, and tuber parts of Solena amplexicaulis (Lam.) gandhi using GC-MS. Int. Sch. Res. Notices 2014 2014 567409 10.1155/2014/567409
    [Google Scholar]
  79. Krishnan K. Mani A. Jasmine S. Cytotoxic activity of bioactive compound 1, 2- benzene dicarboxylic acid, mono 2- ethylhexyl ester extracted from a marine derived Streptomyces sp. VITSJK8. Int. J. Mol. Cell. Med. 2014 3 4 246 254 25635251
    [Google Scholar]
  80. Varsha K.K. Devendra L. Shilpa G. Priya S. Pandey A. Nampoothiri K.M. 2,4-Di-tert-butyl phenol as the antifungal, antioxidant bioactive purified from a newly isolated Lactococcus sp. Int. J. Food Microbiol. 2015 211 44 50 10.1016/j.ijfoodmicro.2015.06.025 26164257
    [Google Scholar]
  81. Jeong J.B. Hong S.C. Jeong H.J. Koo J.S. Anti-inflammatory effect of 2-methoxy-4-vinylphenol via the suppression of NF-κB and MAPK activation, and acetylation of histone H3. Arch. Pharm. Res. 2011 34 12 2109 2116 10.1007/s12272‑011‑1214‑9 22210037
    [Google Scholar]
  82. Kim D.H. Han S. Go B. Oh U.H. Kim C.S. Jung Y.H. Lee J. Kim J.H. 2-Methoxy-4-vinylphenol attenuates migration of human pancreatic cancer cells via blockade of FAK and AKT signaling. Anticancer Res. 2019 39 12 6685 6691 10.21873/anticanres.13883 31810933
    [Google Scholar]
  83. Jia M. Wang Y. Wang J. Qin D. Wang M. Chai L. Fu Y. Zhao C. Gao C. Jia J. Zhao W. Myristic acid as a checkpoint to regulate STING-dependent autophagy and interferon responses by promoting N-myristoylation. Nat. Commun. 2023 14 1 660 10.1038/s41467‑023‑36332‑3 36750575
    [Google Scholar]
  84. Shit V. Dhakar M.K. Kumar M. Transcriptome-wide identification and characterization of the regulatory landscape of NAC genes in Drimia indica. Genet. Resour. Crop Evol. 2023 1 11
    [Google Scholar]
  85. Nicolas P. Lecourieux D. Kappel C. Cluzet S. Cramer G. Delrot S. Lecourieux F. The basic leucine zipper transcription factor ABSCISIC ACID RESPONSE ELEMENT-BINDING FACTOR2 is an important transcriptional regulator of abscisic acid-dependent grape berry ripening processes. Plant Physiol. 2014 164 1 365 383 10.1104/pp.113.231977 24276949
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010322778240927073617
Loading
/content/journals/cpb/10.2174/0113892010322778240927073617
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test