Skip to content
2000
image of Dihydroartemisinin Modulates Prostate Cancer Progression by Regulating Multiple Genes via the Transcription Factor NR2F2

Abstract

Objective

This study aimed to investigate the effect of dihydroartemisinin (DHA) on DU145 cells and the role of NR2F2 (COUP-TFII) and its potential target genes in this process.

Methods

GSE122625 was used to identify differentially expressed genes (DEGs) between the DHA-treated and control groups. Protein-protein interaction (PPI) network analysis was performed to identify hub genes, and the ChEA3 database was used to identify potential transcription factors. qRT-PCR and Western blot were used to validate the expression of genes of interest and functional assays were performed to evaluate the effect of DHA on DU145 and PC-3 cells. To solidify the regulatory relationship of NR2F2 with EFNB2, EBF1, ETS1, and VEGFA, a Chromatin Immunoprecipitation (ChIP) experiment was performed.

Results

We identified 85 DEGs in DU145 cells treated with DHA, and PPI network analysis identified NR2F2 as a hub gene and potential transcription factor. The regulatory network of NR2F2 and its potential target genes (EFNB2, EBF1, ETS1, and VEGFA) was constructed, and the expression of these genes was upregulated in DHA-treated cells compared to control cells. Functional assays showed that DHA treatment inhibited epithelial-mesenchymal transition, reduced inflammation, and promoted apoptosis in DU145 and PC-3 cells. Furthermore, NR2F2 knockdown receded the DHA-induced upregulation of target genes and functional changes of DU145 and PC-3 cells. The outcomes of ChIP unequivocally pointed to a positive regulatory role of NR2F2 in these gene expressions.

Conclusion

Our study suggests that DHA treatment affects the functions of DU145 and PC-3 cells by regulating the expression of NR2F2 and its potential target genes, and NR2F2 may serve as a potential therapeutic target for prostate cancer.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010311317240919061821
2024-10-03
2024-12-26
Loading full text...

Full text loading...

References

  1. Wang L. Lu B. He M. Wang Y. Wang Z. Du L. Prostate Cancer Incidence and Mortality: Global Status and Temporal Trends in 89 Countries From 2000 to 2019. Front. Public Health 2022 10 811044 10.3389/fpubh.2022.811044 35252092
    [Google Scholar]
  2. Culp M.B. Soerjomataram I. Efstathiou J.A. Bray F. Jemal A. Recent Global Patterns in Prostate Cancer Incidence and Mortality Rates. Eur. Urol. 2020 77 1 38 52 10.1016/j.eururo.2019.08.005 31493960
    [Google Scholar]
  3. Taitt H.E. Global Trends and Prostate Cancer: A Review of Incidence, Detection, and Mortality as Influenced by Race, Ethnicity, and Geographic Location. Am. J. Men Health 2018 12 6 1807 1823 10.1177/1557988318798279 30203706
    [Google Scholar]
  4. Dai X. Zhang X. Chen W. Chen Y. Zhang Q. Mo S. Lu J. Dihydroartemisinin: A Potential Natural Anticancer Drug. Int. J. Biol. Sci. 2021 17 2 603 622 10.7150/ijbs.50364 33613116
    [Google Scholar]
  5. Yong J. Lu C. Olatunde O.Z. An Overview of Dihydroartemisinin as a Promising Lead Compound for Development of Anticancer Agents. Mini Rev. Med. Chem. 2023 23 3 265 289 10.2174/1389557522666220425124923 35469566
    [Google Scholar]
  6. Gour R. Ahmad F. Prajapati S.K. Giri S.K. Lal Karna S.K. Kartha K.P.R. Pokharel Y.R. Synthesis of novel S-linked dihydroartemisinin derivatives and evaluation of their anticancer activity. Eur. J. Med. Chem. 2019 178 552 570 10.1016/j.ejmech.2019.06.018 31216504
    [Google Scholar]
  7. He Q. Shi J. Shen X.L. An J. Sun H. Wang L. Hu Y.J. Sun Q. Fu L.C. Sheikh M.S. Huang Y. Dihydroartemisinin upregulates death receptor 5 expression and cooperates with TRAIL to induce apoptosis in human prostate cancer cells. Cancer Biol. Ther. 2010 9 10 819 824 10.4161/cbt.9.10.11552 20224297
    [Google Scholar]
  8. Du S. Xu G. Zou W. Xiang T. Luo Z. Effect of dihydroartemisinin on UHRF1 gene expression in human prostate cancer PC-3 cells. Anticancer Drugs 2017 28 4 384 391 10.1097/CAD.0000000000000469 28059831
    [Google Scholar]
  9. Dey A. Sen S. Maulik U. Study of transcription factor druggabilty for prostate cancer using structure information, gene regulatory networks and protein moonlighting. Brief. Bioinform. 2022 23 1 bbab465 10.1093/bib/bbab465 34849560
    [Google Scholar]
  10. Singh A. Happel C. Manna S.K. Acquaah-Mensah G. Carrerero J. Kumar S. Nasipuri P. Krausz K.W. Wakabayashi N. Dewi R. Boros L.G. Gonzalez F.J. Gabrielson E. Wong K.K. Girnun G. Biswal S. Transcription factor NRF2 regulates miR-1 and miR-206 to drive tumorigenesis. J. Clin. Invest. 2013 123 7 2921 2934 10.1172/JCI66353 23921124
    [Google Scholar]
  11. Kumar V. Cheng P. Condamine T. Mony S. Languino L.R. McCaffrey J.C. Hockstein N. Guarino M. Masters G. Penman E. Denstman F. Xu X. Altieri D.C. Du H. Yan C. Gabrilovich D.I. CD45 Phosphatase Inhibits STAT3 Transcription Factor Activity in Myeloid Cells and Promotes Tumor-Associated Macrophage Differentiation. Immunity 2016 44 2 303 315 10.1016/j.immuni.2016.01.014 26885857
    [Google Scholar]
  12. Bushweller J.H. Targeting transcription factors in cancer — from undruggable to reality. Nat. Rev. Cancer 2019 19 11 611 624 10.1038/s41568‑019‑0196‑7 31511663
    [Google Scholar]
  13. Xia T. Liu S. Xu G. Zhou S. Luo Z. Dihydroartemisinin induces cell apoptosis through repression of UHRF1 in prostate cancer cells. Anticancer Drugs 2022 33 1 e113 e124 10.1097/CAD.0000000000001156 34387595
    [Google Scholar]
  14. Liang Y. Wu X. Lee J. Yu D. Su J. Guo M. Meng N. Qin J. Fan X. lncRNA NR2F2-AS1 inhibits the methylation of miR-494 to regulate oral squamous cell carcinoma cell proliferation. Arch. Oral Biol. 2022 134 105316 10.1016/j.archoralbio.2021.105316 34896865
    [Google Scholar]
  15. Ma L. Huang M. Liao X. Cai X. Wu Q. NR2F2 Regulates Cell Proliferation and Immunomodulation in Whartons’ Jelly Stem Cells. Genes (Basel) 2022 13 8 1458 10.3390/genes13081458 36011369
    [Google Scholar]
  16. Mauri F. Schepkens C. Lapouge G. Drogat B. Song Y. Pastushenko I. Rorive S. Blondeau J. Golstein S. Bareche Y. Miglianico M. Nkusi E. Rozzi M. Moers V. Brisebarre A. Raphaël M. Dubois C. Allard J. Durdu B. Ribeiro F. Sotiriou C. Salmon I. Vakili J. Blanpain C. NR2F2 controls malignant squamous cell carcinoma state by promoting stemness and invasion and repressing differentiation. Nat. Cancer 2021 2 11 1152 1169 10.1038/s43018‑021‑00287‑5 35122061
    [Google Scholar]
  17. Cai Y.Y. NR2F2 mediates cell growth and endocrine resistance in NF1 loss, ER+ breast cancer. Cancer Res. 2022 82 12
    [Google Scholar]
  18. Cristina Fugazza Gloria Barbarani Sudharshan Elangovan Serena Giolitto Isaura Font-Monclus Laura Manunza John Strouboulis Claudio Cantù Fabio Gasparri Yukio Nakamura Sergio Ottolenghi Paolo Moi Nakamura Y. Ottolenghi S. Moi P. Ronchi A.E. The Coup-TFII orphan nuclear receptor is an activator of the γ-globin gene. Haematologica 2020 106 2 474 482 10.3324/haematol.2019.241224 32107331
    [Google Scholar]
  19. Polvani S. Pepe S. Milani S. Galli A. COUP-TFII in Health and Disease. Cells 2019 9 1 101 10.3390/cells9010101 31906104
    [Google Scholar]
  20. Bao Y. Lu Y. Feng W. Yu H. Guo H. Tao Y. Shi Q. Chen W. Wang X. COUP‑TFII promotes epithelial‑mesenchymal transition by inhibiting miR‑34a expression in colorectal cancer. Int. J. Oncol. 2019 54 4 1337 1344 10.3892/ijo.2019.4718 30968145
    [Google Scholar]
  21. Erdős E. Bálint B.L. COUP-TFII is a modulator of cell-type-specific genetic programs based on genomic localization maps. J. Biotechnol. 2019 301 11 17 10.1016/j.jbiotec.2019.05.305 31158411
    [Google Scholar]
  22. Ashraf U.M. Sanchez E.R. Kumarasamy S. COUP-TFII revisited: Its role in metabolic gene regulation. Steroids 2019 141 63 69 10.1016/j.steroids.2018.11.013 30481528
    [Google Scholar]
  23. Lin S.C. Kao C.Y. Lee H.J. Creighton C.J. Ittmann M.M. Tsai S.J. Tsai S.Y. Tsai M.J. Dysregulation of miRNAs-COUP-TFII-FOXM1-CENPF axis contributes to the metastasis of prostate cancer. Nat. Commun. 2016 7 1 11418 10.1038/ncomms11418 27108958
    [Google Scholar]
  24. Zhang W. Liu J. Qiu J. Fu X. Tang Q. Yang F. Zhao Z. Wang H. MicroRNA-382 inhibits prostate cancer cell proliferation and metastasis through targeting COUP-TFII. Oncol. Rep. 2016 36 6 3707 3715 10.3892/or.2016.5141 27748848
    [Google Scholar]
  25. Yun S.H. Park J.I. Recent progress on the role and molecular mechanism of chicken ovalbumin upstream promoter-transcription factor II in cancer. J. Int. Med. Res. 2020 48 4 10.1177/0300060520919236 32338091
    [Google Scholar]
  26. Qin J. Wu S.P. Creighton C.J. Dai F. Xie X. Cheng C.M. Frolov A. Ayala G. Lin X. Feng X.H. Ittmann M.M. Tsai S.J. Tsai M.J. Tsai S.Y. COUP-TFII inhibits TGF-β-induced growth barrier to promote prostate tumorigenesis. Nature 2013 493 7431 236 240 10.1038/nature11674 23201680
    [Google Scholar]
  27. Lilis I. The expression of p-mTOR and COUP-TFII correlates with increased lymphangiogenesis and lymph node metastasis in prostate adenocarcinoma. Urol Oncol. 2018 36 6 311.e27 311.e35 10.1016/j.urolonc.2018.02.007
    [Google Scholar]
  28. Wang L. Xu M. Qin J. Lin S.C. Lee H.J. Tsai S.Y. Tsai M.J. MPC1, a key gene in cancer metabolism, is regulated by COUPTFII in human prostate cancer. Oncotarget 2016 7 12 14673 14683 10.18632/oncotarget.7405 26895100
    [Google Scholar]
  29. Qin J. Tsai S. Tsai M.J. COUP-TFII, a prognostic marker and therapeutic target for prostate cancer. Asian J. Androl. 2013 15 3 360 361 10.1038/aja.2013.12 23435470
    [Google Scholar]
  30. Lee H.C. Ou C.H. Huang Y.C. Hou P.C. Creighton C.J. Lin Y.S. Hu C.Y. Lin S.C. YAP1 overexpression contributes to the development of enzalutamide resistance by induction of cancer stemness and lipid metabolism in prostate cancer. Oncogene 2021 40 13 2407 2421 10.1038/s41388‑021‑01718‑4 33664454
    [Google Scholar]
  31. Safe S. Jin U.H. Hedrick E. Reeder A. Lee S.O. Minireview: role of orphan nuclear receptors in cancer and potential as drug targets. Mol. Endocrinol. 2014 28 2 157 172 10.1210/me.2013‑1291 24295738
    [Google Scholar]
  32. Wang L. Cheng C.M. Qin J. Xu M. Kao C.Y. Shi J. You E. Gong W. Rosa L.P. Chase P. Scampavia L. Madoux F. Spicer T. Hodder P. Xu H.E. Tsai S.Y. Tsai M.J. Small-molecule inhibitor targeting orphan nuclear receptor COUP-TFII for prostate cancer treatment. Sci. Adv. 2020 6 18 eaaz8031 10.1126/sciadv.aaz8031 32494682
    [Google Scholar]
  33. Xu C. Gu L. Kuerbanjiang M. Jiang C. Hu L. Liu Y. Xue H. Li J. Zhang Z. Xu Q. Adaptive activation of EFNB2/EPHB4 axis promotes post-metastatic growth of colorectal cancer liver metastases by LDLR-mediated cholesterol uptake. Oncogene 2023 42 2 99 112 10.1038/s41388‑022‑02519‑z 36376513
    [Google Scholar]
  34. Inoue C. Miki Y. Saito-Koyama R. Kobayashi K. Seyama K. Okada Y. Sasano H. Vasohibin-1 and -2 in pulmonary lymphangioleiomyomatosis (LAM) cells associated with angiogenic and prognostic factors. Pathol. Res. Pract. 2022 230 153758 10.1016/j.prp.2022.153758 35026646
    [Google Scholar]
  35. Shuang O. Zhou J. Cai Z. Liao L. Wang Y. Wang W. Xu M. EBF1-mediated up-regulation of lncRNA FGD5-AS1 facilitates osteosarcoma progression by regulating miR-124-3p/G3BP2 axis as a ceRNA. J. Orthop. Surg. Res. 2022 17 1 332 10.1186/s13018‑022‑03181‑7 35761386
    [Google Scholar]
  36. Luo H. Yang L. Liu C. Wang X. Dong Q. Liu L. Wei Q. TMPO-AS1/miR-98-5p/EBF1 feedback loop contributes to the progression of bladder cancer. Int. J. Biochem. Cell Biol. 2020 122 105702 10.1016/j.biocel.2020.105702 32087328
    [Google Scholar]
  37. Qiu K. Zheng Z. Huang Y. Long intergenic noncoding RNA 00844 promotes apoptosis and represses proliferation of prostate cancer cells through upregulating GSTP1 by recruiting EBF1. J. Cell. Physiol. 2020 235 11 8472 8485 10.1002/jcp.29690 32329523
    [Google Scholar]
  38. Xu S. Ge J. Zhang Z. Zhou W. MiR-129 inhibits cell proliferation and metastasis by targeting ETS1 via PI3K/AKT/mTOR pathway in prostate cancer. Biomed. Pharmacother. 2017 96 634 641 10.1016/j.biopha.2017.10.037 29035829
    [Google Scholar]
  39. Gu Y. Wu S. Chong Y. Guan B. Li L. He D. Wang X. Wang B. Wu K. DAB2IP regulates intratumoral testosterone synthesis and CRPC tumor growth by ETS1/AKR1C3 signaling. Cell. Signal. 2022 95 110336 10.1016/j.cellsig.2022.110336 35452821
    [Google Scholar]
  40. Lu G. Zhang Q. Huang Y. Song J. Tomaino R. Ehrenberger T. Lim E. Liu W. Bronson R.T. Bowden M. Brock J. Krop I.E. Dillon D.A. Gygi S.P. Mills G.B. Richardson A.L. Signoretti S. Yaffe M.B. Kaelin W.G. Jr Phosphorylation of ETS1 by Src family kinases prevents its recognition by the COP1 tumor suppressor. Cancer Cell 2014 26 2 222 234 10.1016/j.ccr.2014.06.026 25117710
    [Google Scholar]
  41. Ma J. Chen X. Chen Y. Tao N. Qin Z. Ligustilide Inhibits Tumor Angiogenesis by Downregulating VEGFA Secretion from Cancer-Associated Fibroblasts in Prostate Cancer via TLR4. Cancers (Basel) 2022 14 10 2406 10.3390/cancers14102406 35626012
    [Google Scholar]
  42. Ganapathy K. Staklinski S. Hasan M.F. Ottman R. Andl T. Berglund A.E. Park J.Y. Chakrabarti R. Multifaceted Function of MicroRNA-299-3p Fosters an Antitumor Environment Through Modulation of Androgen Receptor and VEGFA Signaling Pathways in Prostate Cancer. Sci. Rep. 2020 10 1 5167 10.1038/s41598‑020‑62038‑3 32198489
    [Google Scholar]
  43. Mushimiyimana I. Tomas Bosch V. Niskanen H. Downes N.L. Moreau P.R. Hartigan K. Ylä-Herttuala S. Laham-Karam N. Kaikkonen M.U. Genomic Landscapes of Noncoding RNAs Regulating VEGFA and VEGFC Expression in Endothelial Cells. Mol. Cell. Biol. 2021 41 7 e00594-20 10.1128/MCB.00594‑20 33875575
    [Google Scholar]
  44. Mu H.Q. He Y.H. Wang S.B. Yang S. Wang Y.J. Nan C.J. Bao Y.F. Xie Q.P. Chen Y.H. MiR-130b/TNF-α/NF-κB/VEGFA loop inhibits prostate cancer angiogenesis. Clin. Transl. Oncol. 2020 22 1 111 121 10.1007/s12094‑019‑02217‑5 31667686
    [Google Scholar]
  45. Paccez J.D. Duncan K. Sekar D. Correa R.G. Wang Y. Gu X. Bashin M. Chibale K. Libermann T.A. Zerbini L.F. Dihydroartemisinin inhibits prostate cancer via JARID2/miR-7/miR-34a-dependent downregulation of Axl. Oncogenesis 2019 8 3 14 10.1038/s41389‑019‑0122‑6 30783079
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010311317240919061821
Loading
/content/journals/cpb/10.2174/0113892010311317240919061821
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: prostate cancer ; DHA ; NR2F2 ; transcription factor ; DU145 and PC-3 cells
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test