Skip to content
2000
image of Unwinding the Threads of Mesoporous Silica Nanoparticles as Cutting-Edge for the Management of Inflammation: An Updated Review

Abstract

Background

Inflammation serves as a protective response to combat cellular and tissue damage. There is currently a wide array of synthetic and traditional therapies available for the treatment of inflammatory diseases. However, it is necessary to create a drug delivery system based on nanotechnology that can improve the solubility, permeability, and bioavailability of current treatments. Mesoporous silica nanoparticles (MSNPs) are inorganic materials known for their organised porous interiors, high pore volumes, substantial surface area, exceptional selectivity, permeability, low refractive index, and customisable pore sizes.

Objective

This review offers concise insights into the progression of the pathophysiology of inflammation, as well as the inducers, mediators, and effectors that are involved in the inflammatory pathway. This study focuses on the growing significance of MSNPs in the treatment of neuroinflammation, inflammatory bowel disease, arthritic inflammation, lung inflammation, and wound healing applications. This review also presents the latest information on the crucial role of MSNPs in delivering herbal medicines for the treatment of inflammation.

Methods

A comprehensive literature search was conducted for this aim, utilising the Google Scholar, PubMed, and ScienceDirect databases. A systematic review was undertaken utilising scholarly articles published in peer-reviewed journals from 2000 to 2024.

Results

The inflammatory mediators involved in the pathophysiology of inflammation include platelet-activating factor, lipoxygenase, cyclooxygenase, Interferon-α, interleukin-6, interleukin-1β, matrix metalloproteinases, inducible nitric oxide synthase, nuclear factor-κB, prostaglandins, nitric oxide, and phospholipase A2. MSNPs have the potential to be used in the treatment of neuroinflammation, inflammatory bowel disease, arthritic inflammation, lung inflammation, and wound healing. The investigation of the MSNPs of plant-based compounds such as berberine, tetrahydrocannabinol, curcumin, and resveratrol has shown successful results in recent years for the purpose of managing inflammation.

Conclusion

This review demonstrates that MSNPs have a strong potential to play a positive role in delivering synthetic and plant-based therapies for the treatment of inflammatory illnesses.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010310578240926051158
2024-10-11
2024-11-20
Loading full text...

Full text loading...

References

  1. Sullivan G.W. Sarembock I.J. Linden J. The role of in-flammation in vascular diseases. J. Leukoc. Biol. 2000 67 5 591 602 10.1002/jlb.67.5.591 10810997
    [Google Scholar]
  2. Isailovic N. Daigo K. Mantovani A. Selmi C. Interleukin-17 and innate immunity in infections and chronic inflamma-tion. J. Autoimmun. 2015 60 1 11 10.1016/j.jaut.2015.04.006 25998834
    [Google Scholar]
  3. Serhan C.N. Dalli J. Colas R.A. Winkler J.W. Chiang N. Protectins and maresins: New pro-resolving families of medi-ators in acute inflammation and resolution bioactive metabo-lome. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2015 1851 4 397 413 10.1016/j.bbalip.2014.08.006 25139562
    [Google Scholar]
  4. Matsuda M. Huh Y. Ji R.R. Roles of inflammation, neuro-genic inflammation, and neuroinflammation in pain. J. Anesth. 2019 33 1 131 139 10.1007/s00540‑018‑2579‑4 30448975
    [Google Scholar]
  5. Barton G.M. A calculated response: Control of inflammation by the innate immune system. J. Clin. Invest. 2008 118 2 413 420 10.1172/JCI34431 18246191
    [Google Scholar]
  6. Chen L. Deng H. Cui H. Fang J. Zuo Z. Deng J. Li Y. Wang X. Zhao L. Inflammatory responses and inflamma-tion-associated diseases in organs. Oncotarget 2018 9 6 7204 7218 10.18632/oncotarget.23208 29467962
    [Google Scholar]
  7. Ballantyne C.M. Nambi V. Markers of inflammation and their clinical significance. Atheroscler. Suppl. 2005 6 2 21 29 10.1016/j.atherosclerosissup.2005.02.005 15823493
    [Google Scholar]
  8. Mack M. Inflammation and fibrosis. Matrix Biol. 2018 68-69 106 121 10.1016/j.matbio.2017.11.010 29196207
    [Google Scholar]
  9. Mamaeva V. Sahlgren C. Lindén M. Mesoporous silica nanoparticles in medicine—Recent advances. Adv. Drug Deliv. Rev. 2013 65 5 689 702 10.1016/j.addr.2012.07.018 22921598
    [Google Scholar]
  10. Vivero-Escoto J.L. Slowing I.I. Trewyn B.G. Lin V.S.Y. Mesoporous silica nanoparticles for intracellular controlled drug delivery. Small 2010 6 18 1952 1967 10.1002/smll.200901789 20690133
    [Google Scholar]
  11. Johnson-Léger C. Imhof B.A. Forging the endothelium dur-ing inflammation: Pushing at a half-open door? Cell Tissue Res. 2003 314 1 93 105 10.1007/s00441‑003‑0775‑4 12955495
    [Google Scholar]
  12. Moniczewski A. Gawlik M. Smaga I. Niedzielska E. Krzek J. Przegaliński E. Pera J. Filip M. Oxidative stress as an etiological factor and a potential treatment target of psy-chiatric disorders. Part 1. Chemical aspects and biological sources of oxidative stress in the brain. Pharmacol. Rep. 2015 67 3 560 568 10.1016/j.pharep.2014.12.014 25933970
    [Google Scholar]
  13. Hirano T. IL-6 in inflammation, autoimmunity and cancer. Int. Immunol. 2021 33 3 127 148 10.1093/intimm/dxaa078 33337480
    [Google Scholar]
  14. Kumar R. Clermont G. Vodovotz Y. Chow C.C. The dy-namics of acute inflammation. J. Theor. Biol. 2004 230 2 145 155 10.1016/j.jtbi.2004.04.044 15321710
    [Google Scholar]
  15. Anjani G. Vignesh P. Joshi V. Shandilya J.K. Bhattarai D. Sharma J. Rawat A. Recent advances in chronic granu-lomatous disease. Genes Dis. 2020 7 1 84 92 10.1016/j.gendis.2019.07.010 32181279
    [Google Scholar]
  16. Wilson J.L. Mayr H.K. Weichhart T. Metabolic program-ming of macrophages: Implications in the pathogenesis of granulomatous disease. Front. Immunol. 2019 10 2265 10.3389/fimmu.2019.02265 31681260
    [Google Scholar]
  17. Sehgal A. Behl T. Kaur I. Singh S. Sharma N. Aleya L. Targeting NLRP3 inflammasome as a chief instigator of obesi-ty, contributing to local adipose tissue inflammation and insu-lin resistance. Environ. Sci. Pollut. Res. Int. 2021 28 32 43102 43113 10.1007/s11356‑021‑14904‑4 34145545
    [Google Scholar]
  18. Holgate S.T. Peters-Golden M. Panettieri R.A. Henderson W.R. Jr Roles of cysteinyl leukotrienes in airway inflamma-tion, smooth muscle function, and remodeling. J. Allergy Clin. Immunol. 2003 111 1 Suppl. S18 S36 10.1067/mai.2003.25 12532084
    [Google Scholar]
  19. Hinz B. Brune K. Pahl A. Prostaglandin E(2) upregulates cyclooxygenase-2 expression in lipopolysaccharide-stimulated RAW 264.7 macrophages. Biochem. Biophys. Res. Commun. 2000 272 3 744 748 10.1006/bbrc.2000.2859 10860826
    [Google Scholar]
  20. Thangam E.B. Jemima E.A. Singh H. Baig M.S. Khan M. Mathias C.B. Church M.K. Saluja R. The role of his-tamine and histamine receptors in mast cell-mediated allergy and inflammation: The hunt for new therapeutic targets. Front. Immunol. 2018 9 1873 10.3389/fimmu.2018.01873 30150993
    [Google Scholar]
  21. Ben-Shmuel S. Danon A. Fleisher-Berkovich S. Bradykin-in decreases nitric oxide release from microglia via inhibition of cyclic adenosine monophosphate signaling. Peptides 2013 40 133 140 10.1016/j.peptides.2013.01.006 23340021
    [Google Scholar]
  22. Drenichev M.S. Oslovsky V.E. Mikhailov S.N. Cytokinin nucleosides-natural compounds with a unique spectrum of biological activities. Curr. Top. Med. Chem. 2016 16 23 2562 2576 10.2174/1568026616666160414123717 27086793
    [Google Scholar]
  23. Hofman Z. de Maat S. Hack C.E. Maas C. Bradykinin: Inflammatory product of the coagulation system. Clin. Rev. Allergy Immunol. 2016 51 2 152 161 10.1007/s12016‑016‑8540‑0 27122021
    [Google Scholar]
  24. Bandawane A. Saudagar R. A review on novel drug delivery system: A recent trend. J. Drug Deliv. Ther. 2019 9 3 517 521 10.22270/jddt.v9i3.2610
    [Google Scholar]
  25. Rajitha P. Gopinath D. Biswas R. Sabitha M. Jayakumar R. Chitosan nanoparticles in drug therapy of infectious and inflammatory diseases. Expert Opin. Drug Deliv. 2016 13 8 1177 1194 10.1080/17425247.2016.1178232 27087148
    [Google Scholar]
  26. Kim H. Kim B.H. Huh B.K. Yoo Y.C. Heo C.Y. Choy Y.B. Park J.H. Surgical suture releasing macrophage-targeted drug-loaded nanoparticles for an enhanced anti-inflammatory effect. Biomater. Sci. 2017 5 8 1670 1677 10.1039/C7BM00345E 28715515
    [Google Scholar]
  27. Stevenson R. Hueber A.J. Hutton A. McInnes I.B. Gra-ham D. Nanoparticles and Inflammation. ScientificWorldJournal 2011 11 1 1300 1312 10.1100/tsw.2011.106 21666995
    [Google Scholar]
  28. Sur S. Rathore A. Dave V. Reddy K.R. Chouhan R.S. Sadhu V. Recent developments in functionalized polymer nanoparticles for efficient drug delivery system. Nano-Struct. Nano-Objects 2019 20 100397 10.1016/j.nanoso.2019.100397
    [Google Scholar]
  29. Zahin N. Anwar R. Tewari D. Kabir M.T. Sajid A. Mathew B. Uddin M.S. Aleya L. Abdel-Daim M.M. Na-noparticles and its biomedical applications in health and dis-eases: Special focus on drug delivery. Environ. Sci. Pollut. Res. Int. 2020 27 16 19151 19168 10.1007/s11356‑019‑05211‑0 31079299
    [Google Scholar]
  30. Bakhshian Nik A. Zare H. Razavi S. Mohammadi H. Torab Ahmadi P. Yazdani N. Bayandori M. Rabiee N. Izadi Mobarakeh J. Smart drug delivery: Capping strategies for mesoporous silica nanoparticles. Microporous Mesoporous Mater. 2020 299 110115 10.1016/j.micromeso.2020.110115
    [Google Scholar]
  31. Ghaferi M. Koohi Moftakhari Esfahani M. Raza A. Al Harthi S. Ebrahimi Shahmabadi H. Alavi S.E. Mesoporous silica nanoparticles: Synthesis methods and their therapeutic use-recent advances. J. Drug Target. 2021 29 2 131 154 10.1080/1061186X.2020.1812614 32815741
    [Google Scholar]
  32. Li T. Shi S. Goel S. Shen X. Xie X. Chen Z. Zhang H. Li S. Qin X. Yang H. Wu C. Liu Y. Recent advance-ments in mesoporous silica nanoparticles towards therapeutic applications for cancer. Acta Biomater. 2019 89 1 13 10.1016/j.actbio.2019.02.031 30797106
    [Google Scholar]
  33. Tang F. Li L. Chen D. Mesoporous silica nanoparticles: Synthesis, biocompatibility and drug delivery. Adv. Mater. 2012 24 12 1504 1534 10.1002/adma.201104763 22378538
    [Google Scholar]
  34. Manzano M. Vallet-Regí M. Mesoporous silica nanoparti-cles for drug delivery. Adv. Funct. Mater. 2020 30 2 1902634 10.1002/adfm.201902634
    [Google Scholar]
  35. Gisbert-Garzarán M. Manzano M. Vallet-Regí M. Mesopo-rous silica nanoparticles for the treatment of complex bone diseases: Bone cancer, bone infection and osteoporosis. Pharmaceutics 2020 12 1 83 10.3390/pharmaceutics12010083 31968690
    [Google Scholar]
  36. Saroj S. Rajput S.J. Composite smart mesoporous silica nanoparticles as promising therapeutic and diagnostic candi-dates: Recent trends and applications. J. Drug Deliv. Sci. Technol. 2018 44 349 365 10.1016/j.jddst.2018.01.014
    [Google Scholar]
  37. Hu Y. Wang J. Zhi Z. Jiang T. Wang S. Facile synthesis of 3D cubic mesoporous silica microspheres with a controlla-ble pore size and their application for improved delivery of a water-insoluble drug. J. Colloid Interface Sci. 2011 363 1 410 417 10.1016/j.jcis.2011.07.022 21820127
    [Google Scholar]
  38. Manzano M. Aina V. Areán C.O. Balas F. Cauda V. Colilla M. Delgado M.R. Vallet-Regí M. Studies on MCM-41 mesoporous silica for drug delivery: Effect of particle morphology and amine functionalization. Chem. Eng. J. 2008 137 1 30 37 10.1016/j.cej.2007.07.078
    [Google Scholar]
  39. Mirzaei M. Zarch M.B. Darroudi M. Sayyadi K. Keshavarz S.T. Sayyadi J. Fallah A. Maleki H. Silica mesoporous structures: Effective nanocarriers in drug deliv-ery and nanocatalysts. Appl. Sci. (Basel) 2020 10 21 7533 10.3390/app10217533
    [Google Scholar]
  40. Ji Y. Song S. Li X. Lv R. Wu L. Wang H. Cao M. Facile fabrication of nanocarriers with yolk-shell mesoporous silica nanoparticles for effective drug delivery. J. Drug Deliv. Sci. Technol. 2021 63 102531 10.1016/j.jddst.2021.102531
    [Google Scholar]
  41. Mehmood Y. Shahid H. Rashid M.A. Alhamhoom Y. Kazi M. Developing of SiO2 nanoshells loaded with fluticasone propionate for potential nasal drug delivery: De-termination of pro-inflammatory cytokines through mRNA expression. J. Funct. Biomater. 2022 13 4 229 10.3390/jfb13040229 36412870
    [Google Scholar]
  42. Liew S.S. Qin X. Zhou J. Li L. Huang W. Yao S.Q. Smart Design of Nanomaterials for Mitochondria‐Targeted Nanotherapeutics. Angew. Chem. Int. Ed. 2021 60 5 2232 2256 10.1002/anie.201915826 32128948
    [Google Scholar]
  43. Stewart C.A. Finer Y. Hatton B.D. Drug self-assembly for synthesis of highly-loaded antimicrobial drug-silica particles. Sci. Rep. 2018 8 1 895 10.1038/s41598‑018‑19166‑8 29343729
    [Google Scholar]
  44. Slowing I.I. Trewyn B.G. Giri S. Lin V.S.Y. Mesoporous silica nanoparticles for drug delivery and biosensing applica-tions. Adv. Funct. Mater. 2007 17 8 1225 1236 10.1002/adfm.200601191
    [Google Scholar]
  45. Sayed E. Haj-Ahmad R. Ruparelia K. Arshad M.S. Chang M.W. Ahmad Z. Porous inorganic drug delivery sys-tems-a review. AAPS PharmSciTech 2017 18 5 1507 1525 10.1208/s12249‑017‑0740‑2 28247293
    [Google Scholar]
  46. Jafari S. Derakhshankhah H. Alaei L. Fattahi A. Var-namkhasti B.S. Saboury A.A. Mesoporous silica nanoparti-cles for therapeutic/diagnostic applications. Biomed. Pharmacother. 2019 109 1100 1111 10.1016/j.biopha.2018.10.167 30551360
    [Google Scholar]
  47. Rizzi F. Castaldo R. Latronico T. Lasala P. Gentile G. Lavorgna M. Striccoli M. Agostiano A. Comparelli R. Depalo N. Curri M.L. Fanizza E. High surface area meso-porous silica nanoparticles with tunable size in the sub-micrometer regime: Insights on the size and porosity control mechanisms. Molecules 2021 26 14 4247 10.3390/molecules26144247 34299522
    [Google Scholar]
  48. Rámila A. Muñoz B. Pérez-Pariente J. Vallet-Regí M. Mesoporous MCM-41 as drug host system. J. Sol-Gel Sci. Technol. 2003 26 1/3 1199 1202 10.1023/A:1020764319963
    [Google Scholar]
  49. Lee J.W. Shim W.G. Moon H. Adsorption equilibrium and kinetics for capillary condensation of trichloroethylene on MCM-41 and MCM-48. Microporous Mesoporous Mater. 2004 73 3 109 119 10.1016/j.micromeso.2004.04.020
    [Google Scholar]
  50. Yan X. Komarneni S. Yan Z. CO2 adsorption on Santa Barbara Amorphous-15 (SBA-15) and amine-modified Santa Barbara Amorphous-15 (SBA-15) with and without controlled microporosity. J. Colloid Interface Sci. 2013 390 1 217 224 10.1016/j.jcis.2012.09.038 23084869
    [Google Scholar]
  51. Tan B. Rankin S.E. Dual latex/surfactant templating of hol-low spherical silica particles with ordered mesoporous shells. Langmuir 2005 21 18 8180 8187 10.1021/la050618s 16114920
    [Google Scholar]
  52. Nagesetti A. McGoron A.J. Multifunctional organically modified silica nanoparticles for chemotherapy, adjuvant hy-perthermia and near infrared imaging. Colloids Surf. B Biointerfaces 2016 147 492 500 10.1016/j.colsurfb.2016.07.048 27614237
    [Google Scholar]
  53. Dash S. Mishra S. Patel S. Mishra B.K. Organically modi-fied silica: Synthesis and applications due to its surface inter-action with organic molecules. Adv. Colloid Interface Sci. 2008 140 2 77 94 10.1016/j.cis.2007.12.006 18321464
    [Google Scholar]
  54. Park S.S. Santha Moorthy M. Ha C.S. Periodic mesoporous organosilicas for advanced applications. NPG Asia Mater. 2014 6 4 e96 10.1038/am.2014.13
    [Google Scholar]
  55. Mizoshita N. Tani T. Inagaki S. Syntheses, properties and applications of periodic mesoporous organosilicas prepared from bridged organosilane precursors. Chem. Soc. Rev. 2011 40 2 789 800 10.1039/C0CS00010H 21135951
    [Google Scholar]
  56. Xia H.S. Zhou C.H.C. Tong D.S. Lin C.X. Synthesis chemistry and application development of periodic mesopo-rous organosilicas. J. Porous Mater. 2010 17 2 225 252 10.1007/s10934‑009‑9284‑5
    [Google Scholar]
  57. García-Fernández A. Sancho M. Bisbal V. Amorós P. Marcos M.D. Orzáez M. Sancenón F. Martínez-Máñez R. Targeted-lung delivery of dexamethasone using gated meso-porous silica nanoparticles. A new therapeutic approach for acute lung injury treatment. J. Control. Release 2021 337 14 26 10.1016/j.jconrel.2021.07.010 34265332
    [Google Scholar]
  58. Barui S. Cauda V. Multimodal decorations of mesoporous silica nanoparticles for improved cancer therapy. Pharmaceutics 2020 12 6 527 10.3390/pharmaceutics12060527 32521802
    [Google Scholar]
  59. Youdim M.B.H. Buccafusco J.J. Multi-functional drugs for various CNS targets in the treatment of neurodegenerative disorders. Trends Pharmacol. Sci. 2005 26 1 27 35 10.1016/j.tips.2004.11.007 15629202
    [Google Scholar]
  60. Yang Q. Zhou J. Neuroinflammation in the central nervous system: Symphony of glial cells. Glia 2019 67 6 1017 1035 10.1002/glia.23571 30548343
    [Google Scholar]
  61. Vaquer-Alicea J. Diamond M.I. Propagation of protein ag-gregation in neurodegenerative diseases. Annu. Rev. Biochem. 2019 88 1 785 810 10.1146/annurev‑biochem‑061516‑045049 30917002
    [Google Scholar]
  62. Niesler B. Kuerten S. Demir I.E. Schäfer K.H. Disorders of the enteric nervous system — a holistic view. Nat. Rev. Gastroenterol. Hepatol. 2021 18 6 393 410 10.1038/s41575‑020‑00385‑2 33514916
    [Google Scholar]
  63. DiSabato D.J. Quan N. Godbout J.P. Neuroinflammation: The devil is in the details. J. Neurochem. 2016 139 S2 Suppl. 2 136 153 10.1111/jnc.13607 26990767
    [Google Scholar]
  64. Díaz-González F. Sánchez-Madrid F. NSAIDs: Learning new tricks from old drugs. Eur. J. Immunol. 2015 45 3 679 686 10.1002/eji.201445222 25523026
    [Google Scholar]
  65. Shabab T. Khanabdali R. Moghadamtousi S.Z. Kadir H.A. Mohan G. Neuroinflammation pathways: A general re-view. Int. J. Neurosci. 2017 127 7 624 633 10.1080/00207454.2016.1212854 27412492
    [Google Scholar]
  66. Mendiratta S. Hussein M. Nasser H.A. Ali A.A.A. Multi-disciplinary role of mesoporous silica nanoparticles in brain regeneration and cancers: From crossing the blood–brain bar-rier to treatment. Part. Part. Syst. Charact. 2019 36 9 1900195 10.1002/ppsc.201900195
    [Google Scholar]
  67. Nigro A. Pellegrino M. Greco M. Comandè A. Sisci D. Pasqua L. Leggio A. Morelli C. Dealing with skin and blood-brain barriers: The unconventional challenges of mes-oporous silica nanoparticles. Pharmaceutics 2018 10 4 250 10.3390/pharmaceutics10040250 30513731
    [Google Scholar]
  68. Rastegari E. Hsiao Y.J. Lai W.Y. Lai Y.H. Yang T.C. Chen S.J. Huang P.I. Chiou S.H. Mou C.Y. Chien Y. An update on mesoporous silica nanoparticle applications in na-nomedicine. Pharmaceutics 2021 13 7 1067 10.3390/pharmaceutics13071067 34371758
    [Google Scholar]
  69. Wang Y. Zhao Q. Han N. Bai L. Li J. Liu J. Che E. Hu L. Zhang Q. Jiang T. Wang S. Mesoporous silica na-noparticles in drug delivery and biomedical applications. Nanomedicine (Lond.) 2015 11 2 313 327 10.1016/j.nano.2014.09.014 25461284
    [Google Scholar]
  70. Koo A.N. Rim H.P. Park D.J. Kim J.H. Jeong S.Y. Lee S.C. Glutathione-mediated intracellular release of anti-inflammatory N-acetyl-L-cysteine from mesoporous silica nanoparticles. Macromol. Res. 2013 21 7 809 814 10.1007/s13233‑013‑1082‑x
    [Google Scholar]
  71. Adolph T.E. Meyer M. Schwärzler J. Mayr L. Grabherr F. Tilg H. The metabolic nature of inflammatory bowel dis-eases. Nat. Rev. Gastroenterol. Hepatol. 2022 19 12 753 767 10.1038/s41575‑022‑00658‑y 35906289
    [Google Scholar]
  72. Rogler G. Singh A. Kavanaugh A. Rubin D.T. Extraintes-tinal manifestations of inflammatory bowel disease: Current concepts, treatment, and implications for disease manage-ment. Gastroenterology 2021 161 4 1118 1132 10.1053/j.gastro.2021.07.042 34358489
    [Google Scholar]
  73. Yoncheva K. Popova M. Szegedi A. Mihály J. Tzankov B. Lambov N. Konstantinov S. Tzankova V. Pessina F. Valoti M. Functionalized mesoporous silica nanoparticles for oral delivery of budesonide. J. Solid State Chem. 2014 211 154 161 10.1016/j.jssc.2013.12.020
    [Google Scholar]
  74. Lee C.H. Lo L.W. Mou C.Y. Yang C.S. Synthesis and characterization of positive‐charge functionalized mesoporous silica nanoparticles for oral drug delivery of an anti‐inflammatory drug. Adv. Funct. Mater. 2008 18 20 3283 3292 10.1002/adfm.200800521
    [Google Scholar]
  75. Qu Z. Wong K.Y. Moniruzzaman M. Begun J. Santos H.A. Hasnain S.Z. Kumeria T. McGuckin M.A. Popat A. One‐Pot Synthesis of pH‐Responsive Eudragit‐Mesoporous Silica Nanocomposites Enable Colonic Delivery of Glucocor-ticoids for the Treatment of Inflammatory Bowel Disease. Adv. Ther. (Weinh.) 2021 4 2 2000165 10.1002/adtp.202000165
    [Google Scholar]
  76. Nguyen C.T.H. Webb R.I. Lambert L.K. Strounina E. Lee E.C. Parat M.O. McGuckin M.A. Popat A. Cabot P.J. Ross B.P. Bifunctional succinylated ε-polylysine-coated mesoporous silica nanoparticles for pH-responsive and intra-cellular drug delivery targeting the colon. ACS Appl. Mater. Interfaces 2017 9 11 9470 9483 10.1021/acsami.7b00411 28252278
    [Google Scholar]
  77. Gou K. Wang Y. Guo X. Wang Y. Bian Y. Zhao H. Guo Y. Pang Y. Xie L. Li S. Li H. Carboxyl-functionalized mesoporous silica nanoparticles for the con-trolled delivery of poorly water-soluble non-steroidal anti-inflammatory drugs. Acta Biomater. 2021 134 576 592 10.1016/j.actbio.2021.07.023 34280558
    [Google Scholar]
  78. Pooresmaeil M. Javanbakht S. Behzadi Nia S. Namazi H. Carboxymethyl cellulose/mesoporous magnetic graphene ox-ide as a safe and sustained ibuprofen delivery bio-system: Synthesis, characterization, and study of drug release kinetic. Colloids Surf. A Physicochem. Eng. Asp. 2020 594 124662 10.1016/j.colsurfa.2020.124662
    [Google Scholar]
  79. Scherer H.U. Häupl T. Burmester G.R. The etiology of rheumatoid arthritis. J. Autoimmun. 2020 110 102400 10.1016/j.jaut.2019.102400 31980337
    [Google Scholar]
  80. Kim S.J. Choi Y. Min K.T. Hong S. Dexamethasone-loaded radially mesoporous silica nanoparticles for sustained anti-inflammatory effects in rheumatoid arthritis. Pharmaceutics 2022 14 5 985 10.3390/pharmaceutics14050985 35631571
    [Google Scholar]
  81. Gulin-Sarfraz T. Jonasson S. Wigenstam E. von Haartman E. Bucht A. Rosenholm J.M. Feasibility study of mesoporous silica particles for pulmonary drug delivery: Therapeutic treatment with dexamethasone in a mouse model of airway inflammation. Pharmaceutics 2019 11 4 149 10.3390/pharmaceutics11040149 30939753
    [Google Scholar]
  82. Mokra D. Mikolka P. Kosutova P. Mokry J. Corticoster-oids in acute lung injury: The dilemma continues. Int. J. Mol. Sci. 2019 20 19 4765 10.3390/ijms20194765 31557974
    [Google Scholar]
  83. Camoretti-Mercado B. Lockey R.F. Airway smooth muscle pathophysiology in asthma. J. Allergy Clin. Immunol. 2021 147 6 1983 1995 10.1016/j.jaci.2021.03.035 34092351
    [Google Scholar]
  84. Selvakumar B. Eladham M.W. Hafezi S. Ramakrishnan R. Hachim I.Y. Bayram O.S. Sharif-Askari N.S. Sharif-Askari F.S. Ibrahim S.M. Halwani R. Allergic airway in-flammation emerges from gut inflammation and leakage in mouse model of asthma. Adv. Biol. 2024 8 1 2300350 10.1002/adbi.202300350 37752729
    [Google Scholar]
  85. Radu A.F. Bungau S.G. Management of rheumatoid arthritis: An overview. Cells 2021 10 11 2857 10.3390/cells10112857 34831081
    [Google Scholar]
  86. Yu R. Zhang H. Guo B. Conductive biomaterials as bioac-tive wound dressing for wound healing and skin tissue engi-neering. Nano-Micro Lett. 2022 14 1 1 46 10.1007/s40820‑021‑00751‑y 34859323
    [Google Scholar]
  87. Eming S.A. Krieg T. Davidson J.M. Inflammation in wound repair: Molecular and cellular mechanisms. J. Invest. Dermatol. 2007 127 3 514 525 10.1038/sj.jid.5700701 17299434
    [Google Scholar]
  88. Brown A. Phases of the wound healing process. Nurs. Times 2015 111 46 12 13 26689053
    [Google Scholar]
  89. Murphy P.S. Evans G.R.D. Advances in wound healing: A review of current wound healing products. Plast. Surg. Int. 2012 2012 1 1 8 10.1155/2012/190436 22567251
    [Google Scholar]
  90. Chen L. Zhou X. He C. Mesoporous silica nanoparticles for tissue‐engineering applications. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2019 11 6 e1573 10.1002/wnan.1573 31294533
    [Google Scholar]
  91. Quignard S. Coradin T. Powell J.J. Jugdaohsingh R. Silica nanoparticles as sources of silicic acid favoring wound heal-ing in vitro. Colloids Surf. B Biointerfaces 2017 155 530 537 10.1016/j.colsurfb.2017.04.049 28494431
    [Google Scholar]
  92. Zeng Q. Han K. Zheng C. Bai Q. Wu W. Zhu C. Zhang Y. Cui N. Lu T. Degradable and self-luminescence porous silicon particles as tissue adhesive for wound closure, monitoring and accelerating wound healing. J. Colloid Interface Sci. 2022 607 Pt 2 1239 1252 10.1016/j.jcis.2021.09.092 34583031
    [Google Scholar]
  93. Hooshmand S. Mollazadeh S. Akrami N. Ghanad M. El-Fiqi A. Baino F. Nazarnezhad S. Kargozar S. Mesoporous silica nanoparticles and mesoporous bioactive glasses for wound management: From skin regeneration to cancer thera-py. Materials (Basel) 2021 14 12 3337 10.3390/ma14123337 34204198
    [Google Scholar]
  94. Xue L. Deng T. Guo R. Peng L. Guo J. Tang F. Lin J. Jiang S. Lu H. Liu X. Deng L. A composite hydrogel con-taining mesoporous silica nanoparticles loaded with artemisia argyi extract for improving chronic wound healing. Front. Bioeng. Biotechnol. 2022 10 825339 10.3389/fbioe.2022.825339 35402406
    [Google Scholar]
  95. Aremu A.O. Pendota S.C. Medicinal plants for mitigating pain and inflammatory-related conditions: An appraisal of ethnobotanical uses and patterns in South Africa. Front. Pharmacol. 2021 12 758583 10.3389/fphar.2021.758583 34744737
    [Google Scholar]
  96. Chandan S. Mohan B.P. Chandan O.C. Ahmad R. Challa A. Tummala H. Singh S. Dhawan P. Ponnada S. Singh A.B. Adler D.G. Curcumin use in ulcerative colitis: Is it ready for prime time? A systematic review and meta-analysis of clinical trials. Ann. Gastroenterol. 2019 33 1 53 58 10.20524/aog.2019.0439 31892798
    [Google Scholar]
  97. Chaachouay N. Douira A. Zidane L. Herbal medicine used in the treatment of human diseases in the Rif, Northern Mo-rocco. Arab. J. Sci. Eng. 2022 47 1 131 153 10.1007/s13369‑021‑05501‑1 33842189
    [Google Scholar]
  98. Monika P. Chandraprabha M.N. Rangarajan A. Waiker P.V. Chidambara Murthy K.N. Challenges in healing wound: Role of complementary and alternative medicine. Front. Nutr. 2022 8 791899 10.3389/fnut.2021.791899 35127787
    [Google Scholar]
  99. Aleebrahim-Dehkordi E. Soveyzi F. Arian A.S. Hamedanchi N.F. Hasanpour-Dehkordi A. Rafieian-Kopaei, M Quercetin and Its Role in Reducing the Expression of Pro-inflammatory Cytokines in Osteoarthritis. Antiinflamm. Antiallergy Agents Med. Chem. 2023 21 3 153 165 10.2174/1871523022666221213155905
    [Google Scholar]
  100. Aldahlawi A.M. Alzahrani A.T. Elshal M.F. Evaluation of immunomodulatory effects of Boswellia sacra essential oil on T-cells and dendritic cells. BMC Complement. Med. Ther. 2020 20 1 352 10.1186/s12906‑020‑03146‑5 33213426
    [Google Scholar]
  101. Li C.L. Tan L.H. Wang Y.F. Luo C.D. Chen H.B. Lu Q. Li Y.C. Yang X.B. Chen J.N. Liu Y.H. Xie J.H. Su Z.R. Comparison of anti-inflammatory effects of berberine, and its natural oxidative and reduced derivatives from Rhi-zoma Coptidis in vitro and in vivo. Phytomedicine 2019 52 272 283 10.1016/j.phymed.2018.09.228 30599908
    [Google Scholar]
  102. Jyotirmayee B. Mahalik G. A review on selected pharmaco-logical activities of Curcuma longa L. Int. J. Food Prop. 2022 25 1 1377 1398 10.1080/10942912.2022.2082464
    [Google Scholar]
  103. Tanwar A. Chawla R. Ansari M.M. Neha; Thakur, P.; Chakotiya, A.S.; Goel, R.; Ojha, H.; Asif, M.; Basu, M.; Aro-ra, R.; Khan, H.A. In vivo anti-arthritic efficacy of Camellia sinensis (L.) in collagen induced arthritis model. Biomed. Pharmacother. 2017 87 92 101 10.1016/j.biopha.2016.12.089 28049097
    [Google Scholar]
  104. Ballester P. Cerdá B. Arcusa R. Marhuenda J. Yamedjeu K. Zafrilla P. Effect of ginger on inflammatory diseases. Molecules 2022 27 21 7223 10.3390/molecules27217223 36364048
    [Google Scholar]
  105. Alanazi H.H. Elfaki E. The immunomodulatory role of withania somnifera (L.) dunal in inflammatory diseases. Front. Pharmacol. 2023 14 1084757 10.3389/fphar.2023.1084757 36909188
    [Google Scholar]
  106. Chen C.P. Lin Y.C. Peng Y.H. Chen H.M. Lin J.T. Kao S.H. Rosmarinic acid attenuates the lipopolysaccharide-provoked inflammatory response of vascular smooth muscle cell via inhibition of MAPK/NF-κB cascade. Pharmaceuticals (Basel) 2022 15 4 437 10.3390/ph15040437 35455434
    [Google Scholar]
  107. Chang H.C. Wang S.W. Chen C.Y. Hwang T.L. Cheng M.J. Sung P.J. Liao K.W. Chen J.J. Secoiridoid glucosides and anti-inflammatory constituents from the stem bark of Fraxinus chinensis. Molecules 2020 25 24 5911 10.3390/molecules25245911 33327368
    [Google Scholar]
  108. Wang M. Wang S. Hu W. Wang Z. Yang B. Kuang H. Asparagus cochinchinensis: A review of its botany, traditional uses, phytochemistry, pharmacology, and applications. Front. Pharmacol. 2022 13 1068858 10.3389/fphar.2022.1068858 36532772
    [Google Scholar]
  109. Nasir B. Khan A.U. Baig M.W. Althobaiti Y.S. Faheem M. Haq I.U. Datura stramonium Leaf Extract Exhibits Anti-inflammatory Activity in CCL4-Induced Hepatic Injury Model by Modulating Oxidative Stress Markers and iNOS/Nrf2 Ex-pression. BioMed Res. Int. 2022 2022 1 1 20 10.1155/2022/1382878 35342748
    [Google Scholar]
  110. Rathod K. Ahmed H. Gomte S.S. Chougule S.A.P. De-the M.R. Patel R.J. Pvp D.B. Alexander A. Exploring the potential of anti-inflammatory activity of berberine chloride-loaded mesoporous silica nanoparticles in carrageenan-induced rat paw edema model. J. Solid State Chem. 2023 317 123639 10.1016/j.jssc.2022.123639
    [Google Scholar]
  111. Xie J. Xiao D. Zhao J. Hu N. Bao Q. Jiang L. Yu L. Mesoporous silica particles as a multifunctional delivery sys-tem for pain relief in experimental neuropathy. Adv. Healthc. Mater. 2016 5 10 1213 1221 10.1002/adhm.201500996 27028159
    [Google Scholar]
  112. Sun G. Wu X. Zhu H. Yuan K. Zhang Y. Zhang C. Deng Z. Zhou M. Zhang Z. Yang G. Chu H. Reactive Oxygen Species-Triggered Curcumin Release from Hollow Mesoporous Silica Nanoparticles for PM 2.5 -Induced Acute Lung Injury Treatment. ACS Appl. Mater. Interfaces 2023 15 28 33504 33513 10.1021/acsami.3c07361 37411033
    [Google Scholar]
  113. Yadav Y.C. Pattnaik S. Swain K. Curcumin loaded meso-porous silica nanoparticles: Assessment of bioavailability and cardioprotective effect. Drug Dev. Ind. Pharm. 2019 45 12 1889 1895 10.1080/03639045.2019.1672717 31549866
    [Google Scholar]
  114. Hamam F. Nasr A. Curcumin-loaded mesoporous silica particles as wound-healing agent: An In vivo study. Saudi J. Med. Med. Sci. 2020 8 1 17 24 10.4103/sjmms.sjmms_2_19 31929774
    [Google Scholar]
  115. Juère E. Florek J. Bouchoucha M. Jambhrunkar S. Wong K.Y. Popat A. Kleitz F. In vitro dissolution, cellular mem-brane permeability, and anti-inflammatory response of resveratrol-encapsulated mesoporous silica nanoparticles. Mol. Pharm. 2017 14 12 4431 4441 10.1021/acs.molpharmaceut.7b00529 29094948
    [Google Scholar]
  116. Yuki K. Fujiogi M. Koutsogiannaki S. COVID-19 patho-physiology: A review. Clin. Immunol. 2020 215 108427 10.1016/j.clim.2020.108427 32325252
    [Google Scholar]
  117. Ciotti M. Ciccozzi M. Terrinoni A. Jiang W.C. Wang C.B. Bernardini S. The COVID-19 pandemic. Crit. Rev. Clin. Lab. Sci. 2020 57 6 365 388 10.1080/10408363.2020.1783198 32645276
    [Google Scholar]
  118. García L.F. Immune response, inflammation, and the clinical spectrum of COVID-19. Front. Immunol. 2020 11 1441 10.3389/fimmu.2020.01441 32612615
    [Google Scholar]
  119. Wang H. Chen L. Li R. Lv C. Xu Y. Xiong Y. Polydo-pamine-coated mesoporous silica nanoparticles co-loaded with Ziyuglycoside I and Oseltamivir for synergistic treatment of viral pneumonia. Int. J. Pharm. 2023 645 123412 10.1016/j.ijpharm.2023.123412 37703956
    [Google Scholar]
  120. Piao H. Rejinold N.S. Choi G. Pei Y.R. Jin G. Choy J.H. Niclosamide encapsulated in mesoporous silica and geo-polymer: A potential oral formulation for COVID-19. Microporous Mesoporous Mater. 2021 326 111394 10.1016/j.micromeso.2021.111394 34483712
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010310578240926051158
Loading
/content/journals/cpb/10.2174/0113892010310578240926051158
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test